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Objective: Sulfur mustard (SM) is a bifunctional alkylating substance being used as
chemical warfare agent (vesicant). It is still regarded as a significant threat in chem-
ical warfare and terrorism. Exposure to SM produces cutaneous blisters, respiratory
and gastrointestinal tract injury, eye lesions, and bone marrow depression. Victims of
World War I as well as those of the Iran-Iraq war have suffered from devastating chronic
health impairment. Even decades after exposure, severe long-term effects like chronic
obstructive lung disease, lung fibrosis, recurrent corneal ulcer disease, chronic con-
junctivitis, abnormal pigmentation of the skin, and different forms of cancer have been
diagnosed. Methods: This review briefly summarizes the scientific literature and own
results concerning detection, organ toxicity of SM, its proposed toxicodynamic actions,
and strategies for the development of improved medical therapy. Results: Despite ex-
tensive research efforts during the last century, efficient antidotes against SM have not
yet been generated because its mechanism of action is not fully understood. However,
deeper insights into these mechanisms gained in the last decade and promising develop-
ments of new drugs now offer new chances to minimize SM-induced organ damage and
late effects. Conclusion: Polymerase inhibitors, anti-inflammatory drugs, antioxidants,
matrix metalloproteinase inhibitors, and probably regulators of DNA damage repair are
identified as promising approaches to improve treatment.

Sulfur mustard (SM; 2,2′-dichloroethyl sulfide; CASRN: 505-60-2) was first synthe-
sized in 1822 by Despretz and modified in 1860 by Niemann and Guthrie.1,2 Only in later
years, SM has been identified as a potent chemical warfare agent and was used at Ypres
in 1915 during World War I for the first time. Synonyms are Hun Stoff distilled (HD),
mustard gas (typical odor), Yperite (first use during the battle at Ypres), lost (acronym of
the German chemists Lommel and Steinkopf, who investigated the mass production), Pyro
(British code), and yellow cross (German shells were marked with a yellow cross).

Sulfur mustard is still the most abundantly produced and stockpiled vesicant world-
wide. During the Iran-Iraq War (1983–1988), 100 000 Iranian soldiers were injured by
SM attacks. At present, 10 000 of Iranians are now suffering from long-term adverse
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effects. Acute SM poisoning typically affects 3 major organ systems: skin, lungs, and eyes.
Moreover, SM induced tissue damage of central nervous, gastrointestinal, and hematolog-
ical system have also been reported.

The terrible experiences gained during World War I were the starting point of nearly
a century of SM research. The research group of Goodman worked on the cytostatic and
cytotoxic properties of SM and its nitrogen relatives during World War II.3 This research
was declassified after World War II and resulted in medical applications of alkylating
mustard compounds, for example, the first successful therapy of leukemia.3 The cyto-
static effect of SM was also used to treat hyperproliferative skin diseases, for example,
psoriasis.4 In addition, recognition of SM as an immunosuppressant compound prompted
studies about chemical immunosuppression. These studies finally smoothed the way for
organ transplantation.5

Nevertheless, despite some useful application in medical care the world is still facing
the threat of military or, what seems to be even more likely, terrorist use of SM. Because
the exact mechanism of SM pathology remains elusive, intensive research efforts have been
made for 9 decades.

The aim of this article is to describe the clinical pathology and the proposed underlying
pathophysiological mechanisms of SM toxicity. It focuses mainly on the acute epithelial
lesions following SM exposure. On the basis of this concept, rational targets for further
research are defined and options investigated by our group are shown.

PHYSICOCHEMICAL PROPERTIES

Sulfur mustard is an oily liquid with poor solubility in water and a high solubility in organic
solvents. Its color varies from light yellow to dark brown, depending on the technical
impurities of the compound. Its freezing point lies between 13◦C and 14◦C and its boiling
point between 215◦C and 217◦C (760 mm Hg). The physicochemical properties of SM are
summarized in Table 1. Depending on technical impurities of the compound, a typical odor
of the substance has been described as more mustard-, garlic-, or onion-like.

Sulfur mustard hydrolysis in water by a SN1 mechanism to form 2-hydroxyethyl
2-chloroethyl sulfide (HCES) and hydrochloric acid. HCES hydrolyses further forming
thiodiglycol and hydrochloric acid. The rate constants in water at 25◦C for the 2 consecutive
hydrolysis reactions were estimated to be 2.933 ± 0.15 × 10−3 and 3.87 + 0.14 × 10−3 s−1,
respectively.6 In tissue, SM forms a cyclic sulfonium ion that alkylates nucleophilic cellular
sites, leading to the pathology described later.

Table 1. Physicochemical properties of sulfur mustard

Chemical formula C4H8Cl2S

Appearance Oily liquid, light yellow to dark brown

Odor Mustard, garlic, and onion

Molecular weight 159.08

Liquid density 1.27 (specific gravity)

Freezing point 13◦C–14◦C

Boiling point 215◦C–217◦C

Volatility (mg/m3, 20◦C) 610

Solubility Poor in water, high in ethanol
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TOXICOKINETICS

Penetration rates of liquid SM were determined in vitro (71–294 μg/(cm2/h)) on human
skin) with a Franz-type glass diffusion cell that correspond quite well to in vivo data derived
from human skin (60–240 μg/(cm2/h)).7 It could be shown that 80% of applied liquid SM
evaporates before penetrating the skin.8 On the one hand, 20 μg/cm2 of liquid SM is needed
to produce blisters,9 but only 4 μg/cm2 of vapor is sufficient to induce an equal effect.10 On
the other hand, occluded conditions, sweat, and heat were shown to increase skin penetration
dramatically.7 From the total penetrating SM only 10% to 20% are fixed to macromolecules
in skin. The remaining 80% to 90% are rapidly transported away by circulation.7,11 Recently,
evidence has accumulated that unhydrolyzed mustard even remains present in the stratum
corneum and the upper epidermis.7 This finding could explain the occurrence of secondary
blisters even 30 days after termination of SM exposure.12

Apart from severe local damages, SM may also cause systemic effects. A 2-
compartment model was suggested for the elimination of SM from rats: t1/2α

= 5.56 min-
utes, t1/2β

= 3.59 hours, volume of distribution at steady state (Vdss) 74.4 L.13 However, a
high-distribution volume indicates accumulation of SM in fatty organs or fat depots. Re-
distribution of active SM may allow ongoing alkylation of various proteins, for example,
hemoglobin. Indeed, it has been shown recently that the adduct levels of SM to hemoglobin
in guinea pigs and marmosets increase over several days.14 A similar behavior may be ob-
served in humans, as unhydrolyzed agent has been found in fatty tissues of an SM victim.15

In addition, blood samples taken 3 to 4 weeks after exposure showed substantial SM N7-
guanine adducts in the DNA.16 This is rather surprising, as DNA adducts are more or less
effectively repaired within 24 hours.17

In conclusion, these results provide strong evidence that unhydrolyzed SM may be
slowly released from various tissue depots (eg, skin and fat). These data could provoke
a paradigm shift as an SM reservoir in the body has not been assumed until now.18 The
existence of an SM depot would have major implications for the treatment as well as for
the safety of medical personnel treating casualties of sulfur mustard exposure. Therefore,
the use of protective equipment is highly recommended, and rapid detection methods are
required urgently. To fill this gap, a new SM detector based on an immunochromatographic
test strip system was developed, as described later on in the course of this article.

PATHOLOGY OF ACUTE SULFUR MUSTARD POISONING

Sulfur mustard pathology will be described in the following chapters deducing from gross
to molecular pathology. Thereby, an integrated description of SM-induced effects will be
attempted as summarized in Table 2.

Gross pathology

The clinical effects of SM poisoning have been extensively reviewed.19−22 Acute toxic
effects after SM exposure have been observed after a latency period of variable length
depending on the dose, liquid, or volatile exposure, and the individual susceptibility. Three
organ systems are known to be mainly affected: eyes, lung, and skin. Other early toxic effects
have been described for the bone marrow, the central nervous system, and the gastrointestinal
tract.
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Table 2. Synopsis of sulfur mustard pathology

Gross pathology Histopathology and cytopathology Molecular pathology

Erythema Cellular infiltrate cytokines (IL-1, IL-6, IL-8, and TNF-α)

Pain Separation of cellular layers Prostaglandins

Blisters Apoptosis Matrix metalloproteinases

Pseudomembranes Necrosis Serine proteases

Ulcers Caspase activation

Impaired wound healing DNA adducts

Cell cycle arrest

Oxidative stress

Intracellular Ca++ increase

Impaired energy metabolism

Eyes

The irritating potential of SM on the eye was first discovered in 1887 by Theodor Leber
(founder of ophthalmic research).23 The eyes are most sensitive to SM.24 The latency period
is very short compared with all other organ systems. High concentrations may cause smarting
of the eyes within 30 minutes.19 It is believed that reports on eye irritation appearing within
minutes are due to impurities of SM. Mild ocular irritation can be observed after vapor
exposure to doses of 12 to 70 mg·min/m3. Vapor concentrations of 50 to 100 mg·min/m3

cause ocular symptoms like conjunctivitis, grittiness under the eyelid, and tearing. As vapor
doses increase (>200 mg·min/m3), eye injury is characterized by eyelid as well as corneal
edema with impairment of vision, photophobia, and severe blepharospasm.25 However, the
resulting temporary blindness of the patients will gradually improve after 4 to 5 weeks.19

Respiratory tract

The respiratory tract is similarly sensitivity toward SM.26 Comparably low SM doses (12–
70 mg·min/m3) may cause first symptoms. Where severity of signs and symptoms in skin
and eye correlate with environmental concentration of SM, such a direct relationship does
not hold true for the respiratory tract. Respiration rate affects the absorbed dose clearly.
Inhalation of SM vapor mainly affects the laryngeal and tracheobronchial mucosa after
a latency of several hours. The onset of symptoms starts with irritation of nasal mucosa,
hoarseness, sneezing, and coughing. When fully developed, SM injury of the respiratory tract
is characterized by lacrimation, rhinorrhea, loss of smell and taste, and discharge of mucus
from nose and throat. As vapor doses increase, tracheobronchitis and pseudomembrane
formation are observed. Pseudomembranes may loosen from the bronchiotracheal wall
and cause obstruction of the airways or even provoke heart arrest (thus, leading to fatal
outcome).27 As early as 1921, Koch described 1 case that showed a collapsed right lung
as consequence of pseudomembranous obstruction of the right main stem bronchus.28 He
reviewed the pathological findings in 62 cases of lethal gassing with SM. Eleven heavily
SM-exposed soldiers died during the first 3 days of exposure. Eighty-two percent died
within 2 weeks. In this report, fibrinous-hemorrhagic bronchopneumonias were described
that tended to form abscesses. Sixty-six percent of all cases that survived the first 2 weeks
showed lung abscesses. Even lung gangrene was observed in 3 of 62 cases. Koch proposed
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to divide the pathological sequence of SM-induced effects on the respiratory tract into 4
phases28:

1. catarrhal state;
2. pseudomembranous laryngotracheitis state;
3. pseudomembranous bronchitis and bronchopneumonia state; and
4. lung abscess and gangrene state.

At highest vapor concentrations also symptoms of the lower respiratory tract infections,
like pulmonary edema, were described,25,26 which might even progress into the full picture of
adult respiratory distress syndrome.27 Pulmonary emphysema has been frequently observed
and has been reported to be of alveolar, interstitial, and mediastinal nature.

Skin

The skin’s susceptibility to SM exposure mainly depends on three factors: skin temperature,
moistness, and anatomical location. Thus, moist body areas with a thin epidermal layer (eg,
scrotum, anal region) appeared to be highly sensitive to SM vapor. The onset of symptoms
depends on the absorbed agent dose. Higher doses are known to shorten the symptom-free
latency period. Erythema can frequently be observed 4–8 hour after SM exposure at a
threshold dose (vapor: 100–300 mg·min/m3, liquid: 10–20 μg/cm2) while blister formation
occurs at higher doses (vapor: 1000–2000 mg·min/m3, liquid: 40–100 μg/cm2).29 Blisters
appear as small vesicles in the erythema area and coalesce to large bullae. The blisters
are typically thin-walled and filled with a clear yellow fluid. The affected skin areas show
a positive Nikolsky sign, which means that increased physical friction aggravates local
damage. It is reported that skin blistering may last for several weeks after exposure despite
any further contact to SM.12

Acute cutaneous SM lesions have been classified as follows19:

1. erythematous form,
2. pigmentary exfoliation,
3. superficial vesicular to bullous form,
4. bullous necrotization,
5. deep necrotizing nonbullous form, and
6. allergic and toxic contact reactions of the skin.

Pigmentation disorders are frequently observed. Hyperpigmentation can persist in the
affected area for decades. However, hypopigmentation as well has been commonly observed
and may be located next to hyperpigmented areas. The resulting landscape-like appearance
(poikiloderma) of the skin is a characteristic dermal late effect after dermal SM injury.

Other organ systems

The symptoms of systemic poisoning are very similar to those caused by radio- or
chemotherapy. SM may induce headache, nausea, vomiting, and loss of appetite. The gas-
trointestinal tract and the bone marrow are heavily damaged at higher doses. Thus, immune
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suppression, leukopenia, diarrhea, fever, cachexia, and, in very severe, cases excitation of
the central nervous system with convulsions have been described.19,25

Taken together, in all affected organ systems, inflammation and tissue destruction are
the most prominent pathological phenomena.

Histopathology and cytopathology

SM mainly enters the body via several epithelial tissues: the skin, the eye (corneal and
conjunctival), and the respiratory tract. These epithelial cells are exposed toward highest
SM concentrations. Nevertheless, cells of the underlying tissue (eg, endothelial cells) are
also affected.

Eye lesions

The ocular epithelium does not form a barrier like the stratum corneum in the skin. Thus,
SM penetrates more easily through the ocular epithelia. Several hours after SM exposure,
conjunctival and corneal edema has been frequently observed. Goblet cells disappear leading
to decreased production of conjunctival mucus. Conjunctival vessels are occluded as a result
of severe endothelial damage. The corneal epithelium begins to detach from its stroma and
small vesicles are formed. Corneal-free nerve endings are directly affected resulting in
severe ocular pain and blepharospasm. At more severe exposure, extended destruction of
the limbal blood vessels has been observed24 and chemical anterior uveitis, corneal necrosis,
and lens opacification were reported.30

Respiratory tract lesions

Only scarce data are available concerning the effects of SM on the human respiratory tract
at microscopic level. Data are available only from patients who died several days or weeks
after exposure. Thus, primary damage and secondary effects are difficult to distinguish. The
pathological findings in casualties from lethal gassing during World War I and the Iraq-Iran
War showed similar findings.31,32 One of the most complete descriptions of the pathology of
human respiratory tract lesions after SM exposure is provided in the study by Koch, which
was previously noted.28 SM affected more the upper part of the respiratory tract and only
severe exposed persons showed signs of deep pulmonary damage. The catarrhal state was
not observed in pure form as most cases already showed formation of pseudomembranous
laryngotracheitis. Pseudomembranes were composed of fibrin and cell debris derived from
infiltrating leukocytes and necrotic epithelium. Koch concluded that this state may probably
only be observed during day 1 after SM exposure. The pseudomembranous laryngotracheitis
was characterized by diphtheria-like inflammation with fibrinous deposits. Mucus was ob-
served in the upper respiratory tract: nose, throat, larynx, glottis, and upper parts of the
trachea. Paranasal sinuses were affected with varying degree. The epithelial lining of the
upper respiratory tract showed signs of necrosis. During day 3–6, necrotic cells appeared
in the whole upper respiratory tract. A thick continuous membranous layer was observed
lining the uvula, tonsils, epiglottis, pharynx, larynx, and bronchi. Massive leukocyte in-
filtration was described leading to bronchial obstruction.33 The lungs mostly showed no
signs and symptoms. A prominent feature was the engorgement of the blood vessels. The
alveoli exhibited signs of emphysema. Only severe SM intoxicated patients showed signs
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of lung edema. Available animal data are in line with the described pathological sequence
in man.33,34

In general, SM-induced damage of the respiratory tract is also characterized by edema,
inflammation, and cell death of the airway epithelial lining. The main difference to the
observed skin effects is that lung pathology is characterized by great mucus production.

Skin lesions

The skin is composed of three primary layers: epidermis, dermis, and hypodermis. SM
affects mainly the outermost layer (epidermis) as it could be detected at the microscopic
level. Cytotoxic effects have been firstly noted in the highly proliferative basal keratinocyte
layer.25,33,35 Seperation of epidermis and dermis has been observed after several hours. In
this state the stratum corneum was described to be edematous and the basal layer seemed
to be intact without pathological findings except for some irregular nuclei.25 The nuclear
morphology of the basal layer was characterized by karyolysis and pyknosis. Nuclear kary-
orrhexis was less noted.36 The dermis was less affected and showed only signs of dis-
crete necrosis, together with a decreased number of fibroblasts and histiocytes. Biopsies
taken from an erosive zone exhibited no epidermis. Necrosis and massive cellular infiltra-
tion were described. Interestingly, capillary engorgement as well as thrombosis could be
seen.25,36

SM-induced damage to the skin is also characterized by edema, inflammation, and cell
death mainly of the basal keratinocyte layer. The main difference to the observed pulmonary
effects is that the skin pathology shows less infiltration with leukocytes.

Taken together, in all affected organ systems three histopathological observations could
be made: cell death, seperation of cellular layers, and cellular infiltrate.

Molecular pathology

Although during one century of medical research several hypotheses of SM-induced patho-
logical effects were produced, none of these hypotheses have been completely accepted. It
is likely that various proposed mechanisms identified so far may be active at the same time
and be part of a complex picture, which is not entirely understood at present.

Cell death

The so-called acid liberation theory was one of the first hypotheses on SM-related cell in-
jury. According to this theory, both 2-chloroethyl-side chains of the SM molecule undergo
first order (SN1) intramolecular cyclisation resulting in formation of hydrochloric acid in an
aqueous environment. The proposed intracellular acidification was held responsible for the
subsequently observed cellular damage.37 However, as vesicant action does not correspond
to the rate of acid liberation, it has been assumed that acid formation does not play a major
role.38 Nonetheless, the acid liberation theory has recently gained new interest. Sawyer et
al showed that keratinocytes better survived SM exposure at basic pH-values.39 The protec-
tive effects of alkalization observed in vitro are outstanding and need further investigation.
Apart from acid formation, the ethylene sulfonium cation intermediate has been assumed
to open to form a highly reactive carbenium ion, which immediately reacts with different
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cell constituents like DNA, RNA, proteins, and other molecules. It has been proposed that
especially the reactions of SM with proteins and inhibition of several enzymes significantly
contribute to the SM-induced cytotoxicity.40,41 Extensive studies revealed that hexokinase
was one of the most susceptible enzymes. The finding that other vesicant substances inhibit
hexokinase substantiated the SM data. Investigations of the SM effects on this enzyme
were performed with a purified crystalline hexokinase isomers (I–III). Hexokinase IV
(50 kD) has not been purified so far. Dixon and Needham showed that 6–7 alkylations
within every hexokinase molecule were sufficient to completely block enzyme activity.42

However, it was calculated that the SM concentration needed for complete enzyme inhibition
in vitro does not correlate with the vesicant doses in vivo. Similar to the “acid hypothesis,”
hexokinase inhibition furthermore should result in immediate cellular damage due to energy
shortage.43

SM is effectively eliminated by glutathione. Thus, high SM concentrations can rapidly
deplete the intracellular glutathione levels, resulting in the enhanced production of reactive
oxygen species.44 Consequently, pretreatment of cells with various antioxidants does not
only enhance cell survival44,45 but antioxidants have also been shown to be most effective
in treating SM lung injury in animal models.46−48

The nucleus is regarded as the most SM-sensitive cell component.49 Several reactions
affect the DNA by forming mono- and bifunctional SM adducts. Sixty-one percent of all
alkylations refer to N7 of guanine forming 7-(2-hydroxyethylthioethyl) guanine (7-HETE-
G).50−52 Niu et al demonstrated that at a SM concentration of 2.3 μM one 7-HETE-G
molecule per 1 million nucleotides is produced.53 In addition, SM also alkylates posi-
tion 3 of adenine (16%) and O 6 of guanine (0.1%).54 Apparently, human DNA repair
mechanisms are not able to remove O6-(2-ethylthioethyl) guanine. Thus, this mechanism
has been accounted for the mutagenic effects of SM. Nearly 17% of the total of alkyla-
tions produce intra- or interstrand cross-links.55 These multiple alkylations cause phos-
phorylation of ataxia teleangiectasia mutated protein at serine 1981. In consequence the
histone H2Ax is phosphorylated and p53 accumulates in the cell.56 The degree of SM-
induced DNA damage is decisive for the further cell fate. With increasing SM concentra-
tion cellular responses consists of cell cycle arrest, terminal differentiation, apoptosis, or
necrosis.57 SM-injured cells are arrested at certain cell cycle checkpoints. At higher con-
centrations (>50 μM), G1 block predominates whereas G2 block occurs at 10-fold lower
SM concentrations.58 Genotoxic stress induced by SM stimulates DNA repair.59 Failure of
DNA repair might result in programmed cell death either by terminal differentiation or via
apoptosis.60−64

In any case of DNA damage, an early burst of (ADP-ribose) polymer formation by
activation of poly(ADP-ribose) polymerase type 1 (PARP-1) can be observed that consumes
its substrate nicotine adenine dinucleotide (NAD+), which is resynthesized by ATP.

At moderate DNA damage, the cell is able to counteract the increased PARP-1 activity
by its own means. PARP-1 is a caspase 3 substrate in the early phase of apoptosis.65 Cleavage
of PARP-1 eliminates its enzyme activity and preserves the cellular energy pool.66

At high SM concentrations, PARP-1 is excessively activated resulting in rapid NAD+

and ATP depletion,67,68 which is associated with necrotic cell death.69−72

A pharmacological approach to reduce PARP-induced necrotic cell death is the use
of PARP inhibitors. PARP inhibition also blocks DNA repair59 and thereby promoting cell
death by apoptosis.73
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Furthermore, Ca++ chelators can attenuate the apoptotic response.57 Bellomo et al
proposed that modification of protein thiols might be an important event for the inhibi-
tion of microsomal Ca++ sequestration caused by a variety of toxic agents.71 Orrenius
recently reviewed the impact of Ca++ changes on cell death.74 Evidence accumulated that
oxidation of protein thiol groups from mitochondria may open a voltage-dependent anion
channel (VDAC). This event releases not only Ca++ but also low-molecular-mass matrix
components. The same mechanism has also been shown for SM-mediated cytotoxicity.75

Separation of cellular layers

The activation of several proteases and proinflammatory cytokines is a further important
mechanism of SM injury.76−78 The formation of large blisters after SM injury shares some
similarities with epidermolysis bullosa.79 Former studies revealed that 24 hour after SM
exposure, a discontinuous pattern of laminin 5 and type VII collagen could be observed.80

Interestingly, some forms of junctional epidermolysis bullosa (JEB) have been connected
to laminin 5 mutations. Furthermore, ultrastructural analysis revealed that in both patho-
logic sequalae the epidermal-dermal junction separation occurs within the lamina lucida.79

Hemidesmosomes contain two proteins that can be used to characterize the blister plane.
BP230 (also known as BPAG1) is an intracellular protein that promotes the association
of hemidesmosomes with keratin intermediate filaments. BPA immunoreactivity is dimin-
ished in SM-exposed guinea pig skin.81 BP180 is a transmembrane protein with a col-
lagenous carboxyl-terminal extracellular domain.82 Immunoelectron microscopic studies
demonstrated that the C-terminal part of BP180 actually reaches into the lamina densa.83

Immunhistochemical studies revealed that BP180 was present in both the epidermis (blister
roof) and dermis (blister ground) of mice skin following SM exposure.80 This supports in
part the findings of earlier studies that described intact hemidesmosomal components and
attached anchoring filaments to be forming the roof of the blister and the lamina densa its
base.76

Recently, it has been shown that, for example, matrix-metalloproteinases are main
players in skin pathology of SM-induced blisters84,85 and in JEB.86 Studies with the mouse
ear model furthermore suggest that matrix metalloproteinase-9 (MMP-9) is the most upreg-
ulated MMP in SM exposed skin.84 Neutrophil-derived MMP-9 inactivates α1-proteinase
inhibitor, which is known to be the endogenous inactivator of neutrophil elastase (serine
protease). MMP-9 and elastase are both capable of cleaving BP180. Recent studies have
demonstrated that the effect of MMP-9 appears to be more indirect one, lying upstream of
the neutrophil elastase.87

Interestingly, MMP activation and massive infiltration with neutrophils has also been
found in SM-damaged lungs.88,89 Especially, gelatinase B activity (MMP-9) was elevated
24 hours after SM exposure. Meanwhile, treatment with the MMP-inhibitor doxycycline
attenuated lung injury.88 In the eye, MMP activation after SM exposure could also be shown
and pathologic effects could be ameliorated with the MMP inhibitor Ilomastat.90

Inflammatory mediators and cellular infiltrate

The histopathology of SM-damaged organs indicates that various vasoactive and chemoat-
tractant mediators are produced in the affected area. Several pathways are discussed to
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regulate gene expression of proinflammatory mediators. Dillman et al have demonstrated
that p38 MAP kinase signaling is involved in proinflammatory cytokine release.91 IL-
1α/β, IL-6, IL-8, TNF-α, and GM-CSF have been shown to be released shortly after SM
exposure.85,92−95 This cytokine release pattern is known to have a strong chemotactic ac-
tivity for neutrophils and macrophages. The amount of infiltrating cells is, therefore, both
dose and time dependent.80 Nowadays, anti-cytokine drugs (eg, infliximab, etanercept) are
available and should be tested in currently available in vivo animal models of SM injury.

Another group of inflammatory mediators are the eicosanoids, which are generated de
novo from phospholipids. The most important eicosanoids are the prostglandins, thrombox-
anes, and leukotrienes, which are all involved in SM-related tissue damage. Cyclooxygenase
(COX-1, COX-2) inhibition has been shown to reduce SM-induced inflammation.96 As the
anti-inflammatory action of glucocorticoids largely results from inhibition of cyclooxy-
genase inhibition, glucorcoticoids also provided some protection.97,98 However, detailed
studies are still needed to evaluate the best therapeutic regimen to ameliorate or reduce
SM-induced inflammation.

STRATEGIES FOR THE DEVELOPMENT OF IMPROVED
DIAGNOSIS AND THERAPY

From our point of view, it appears rational to investigate

1. decontamination,
2. diagnosis,
3. pathophysiology,
4. effect monitoring,
5. development of new toxicological methods, and
6. therapeutic approaches.

Decontamination

The best strategy to protect a person against the various toxic effects of SM is to prevent or
minimize contamination with the agent. Protective gears, mashes, and special rubber boots
and gloves provide good protection against SM vapors for a certain period. Several countries
have developed either topical skin protectants (TSP) or decontamination devices. TSPs are
applied to skin prior to exposure to minimize penetration of CWAs. Some formulations
contain chemicals, which degrade CWAs into nontoxic compounds. However, the use of
such TSPs is only an option for persons who are priory aware to enter a contaminated
environment, for example, soldiers, fire workers, medical personnel, and others. People
attacked by surprise have to rely on effective decontamination procedures. Studies from
World War I had shown that the application of a solvent could prevent vesication up to 45
minutes postexposure.99 In contrast, in studies performed during World War II it was found
that SM was rapidly fixed to tissue structures. Peeling off the intoxicated skin has been
shown to minimize vesication even 14 hours postexposure.100 This implicates a significant
persistent reservoir of reactive SM in exposed skin. More recently, Chilcott has shown that
35% of the applied SM dose is present in the upper epidermis and stratum corneum.101

This SM reservoir has to be extracted and is not affected by decontamination procedures
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using tap water, reactive powders, neutralizing solutions, reactive skin lotions (eg, RSDL), or
absorbent powders (eg, fuller’s earth). The above-described findings have major implications
for medical procedures and safety measures of medical personnel. Several research projects
are dedicated to improve decontamination of CWA. It is believed that the novel use of
enzymes provides important advantages in a medical context compared to already-existing
harsh chemical procedures. Recently, Amitai et al showed the efficacy of a new enzymatic
system, using chloroperoxidase to degrade SM and VX.102

Detection of exposure

The ability to detect traces of chemical warfare agents has become a greater priority in
recent technological and biotechnological research. A reliable diagnostic tool to monitor
and confirm the presence of SM even after decontamination procedures is still being needed.
In this context, continuous air monitors using gas chromatography (MinicamsTM) are used
but have been found to lack sensitivity. In addition, these detectors are expensive and need
special training. By contrast, immunochromatographic test strip systems have shown several
advantages over other detection methods, most notably the easy on-site use, the small size
of the detector, and the rapid test results. A feasibility study to develop a small prototype
detector has been initiated in cooperation between the Securetec AG, Munich, and the
German Armed Forces Medical Corps. The aim of this project is the development of such
an immunochromatographic test strip for the reliable and rapid detection of sulfur mustard
under operational conditions, including contaminated areas, for example, following terrorist
attacks.

In an aqueous environment, SM quickly reacts with DNA and forms in 61% alkylations
to N7 of guanine forming 7-(2-hydroxyethylthioethyl) guanine (7-HETE-G).50−52 In our
immunochromatographic detection system, a well-characterized antibody (2F8) was used,
which demonstrated high specificity and sensitivity for SM ssDNA adducts in ELISA
assays.14 In the first project phase the antibody was purified and conjugated to colloidal
gold particles that are used for visualization of the test line. Preliminary experiments showed
that 2F8 conjugates bind specifically to SM-treated ssDNA and run well in the lateral flow
technology system.

Free SM quickly reacts with oligonucleotides attached on the strips forming adducts
predominantly at the N7-guanine. These adducts were visualized using the lateral flow
technique to form a clearly visible line.103 The SMD was able to detect SM vapor released
from a 20 μM solution (Fig 1) and from pig skin exposed to 2 μM SM diluted in phospate
buffered saline. It was sufficient to hold the SMD near the skin surface (data not shown).
As the SMD detects free SM, we considered the possibility of using it in a contaminated
area. For this purpose, the SMD has been tested during a NATO CBRN Defence Live-Agent
exercise. The SMD was attached to the individual protective equipment of a soldier who
entered a cave. The soldier found an open shell with an unknown liquid and used the SMD
to confirm the presence of SM. The SMD showed positive results for the shell as well as
for the detector attached to the IPE (Fig 2).

The prototype SMD has been shown to detect SM on skin and in the en-
vironment. This easy-to-use detection system will be improved in an additional
study.
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Figure 1. Detection of sulfur mustard vapor with the sulfur mustard detector. Sulfur
mustard was diluted in phosphate-buffered saline at indicated concentrations. Sulfur
mustard detector was held above the fluid for 30 seconds (A). The sulfur mustard
detector showed a red line as a positive result (B).

Pathophysiology

Although a huge quantity of data exists, SM pathophysiology is still not clearly understood
and further research has to be done. Presently, our group investigates the relevance of mode
of cell death, MMPs, and inflammatory response on SM-induced cell injury.

Mode of cell death

To evaluate apoptosis and necrosis, ROS, NO, and further signal molecules in SM-treated
cells, a screening program has been set up. In this program, Bloch et al were able to show the
activation of the NO-producing enzymes eNOS and iNOS, as well as the formation of free
radicals and radical reaction products. Furthermore, the detected activation of caspase-3
and the 85-kDa cleavage product of PARP indicated the induction of apoptosis.104

MMPs

Popp et al focused on the expression and activity of the two gelatinases MMP-2 and MMP-9,
which preferentially cleave collagen type IV. This major component of basement membranes
is present at the interphase of the epidermis and dermis which are both affected upon
SM exposure. In this study, mRNA expression levels (using real-time quantitative PCR)
and protein synthesis (by means of zymography and Western blotting) of both MMP-2,
MMP-9, membrane-type 1 MMP (MT1-MMP), and the major physiological MMP inhibitors
TIMP-1 and TIMP-2 were determined in various human cell lines such as keratinocytes
(HaCaT) and fibroblasts. The results revealed different patterns of expression for MMPs
and TIMPs in the investigated cell lines compared with primary cells indicating for a distinct
regulation of the corresponding genes upon treatment with 1–100 μM SM.105
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Figure 2. Sulfur mustard detector was used to detect environmental traces of
sulfur mustard. Sulfur mustard detector was attached to an individual protec-
tive equipment before the soldier entered a cave with an open sulfur mustard
grenade shell. Sulfur mustard detector was held over the shell for 5 seconds.
After leaving the cave, the sulfur mustard detector showed red lines as positive
results for the individual protective equipment as well as for the shell.

Inflammatory response

Rebholz et al showed that SM activates NFkB in a biphasic manner in mouse keratinocytes.
This effect was preceded by phosphorylation of IKKβ, IκBo, and RelA. Further down-
stream, it could be shown that gene expression of IL-1β, TNF, and other NFkB dependent
factors is activated.106

Effect monitoring

SM induces alkylation of the DNA, thus producing DNA mono- and diadducts (ie, DNA
strand breaks and interstrand cross-links). These DNA modifications are believed to
be highly mutagenic and carcinogenic. Quantification of DNA strand breaks and DNA
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cross-links in living cells is, therefore, an important endpoint in the assessment of SM
toxicity. Appropriate monitoring, however, has so far only been restricted to rather time-
consuming and difficult methods such as the comet assay.107 However, Debiak et al just
recently adapted a robust, fluorescent-based method for the detection of DNA damage also
apt for high throughput applications.108 This fully automated version of the Fluorescent
Alkaline DNA Unwinding (FADU) assay is faster and more sensitive than currently used
methods. The assay is running on the base of a 96-well format, allowing parallel analysis of
multiple samples. The procedure is completed within 2–4 hours including sample prepara-
tion. The high sensitivity, high throughput, fast and easy handling, and low costs make the
FADU assay an attractive candidate for the assessment of SM exposure of victims.

Development of new toxicological methods

SM injury is a rather rare intoxication, with only a few people having been affected world-
wide. Hence, reliable human data are scarce, and SM exposure of animals is hampered by
long observation times. To reduce or replace animal experiments for elucidation of SM-
induced pathomechanisms and relevant therapeutic approaches, several in vitro models were
developed to study especially SM airway injury. In this context, just recently a coculture
model of the human distal lung consisting of human epithelial and microvascular endothelial
cells has been established to study cellular interactions of the epithelium and endothelium at
the alveolo-capillary barrier.109 This in vitro model has been shown to be a suitable means to
examine epithelial and endothelial interactions in the pathogenesis of acute lung SM injury.
A concentration-dependent increase of SM-mediated cytotoxic effects with high affection
of endothelial cells could be demonstrated.45

Therapeutic approaches—the road ahead

Substantial progress has been made to improve medical treatment of SM skin injury in
the past.22 However, the most serious long-term effects of SM intoxication are respiratory
disorders. The respiratory tract is more difficult to treat in comparison to skin burns. Thus, it
is necessary to enhance research efforts to identify pharmacological targets with more rele-
vance to lung injury. Inflammation and cell death are prominent features of SM injury. It has
been shown that steroids and nonsteroidal anti-inflammatory drugs are beneficial.22 There-
fore, it is crucial to get a better insight in activation of NFkB and release of prostaglandins.
In addition, MMP activation is present in all SM-affected organ systems. Detailed insight
concerning the regulation of MMP activation and other proteases is still needed. Neverthe-
less, potent MMP inhibitors are available and are of possible relevance to prevent SM lung
damage.88 Besides MMP inhibitors, N-acetylcysteine is a potent drug to treat pulmonary
lesions after SM inhalation. Thus, more information is needed concerning the relevance of
reactive oxygen species and nitric oxide formation. There is no doubt about a beneficial
effect of slowing down inflammation and tissue destruction by MMPs after SM exposure.
In contrast, it is difficult to judge upon the final outcome of pharmacologic treatment of
SM induced cell death and DNA damage. It has been successfully shown to inhibit SM-
induced apoptosis in vitro by caspase inhibition.110 The rationale of this intervention is to
give the cell time for DNA damage repair. It has to be shown that initiation of apoptosis
is associated with a loss DNA repair abilities, as related regulatory proteins; for example,
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PARP are cleaved in this phase. If apoptosis is inhibited, it can be assumed that cells with a
damaged or broken DNA will either die a necrotic cell death, due to persistent DNA damage
and ATP depletion, or survive. In case of necrosis, this would enhance the inflammatory
response dramatically and promote further tissue damage. In case of cell survival, cells may
have irreversible levels of DNA damage, which are later prone to mutagenic transformation.
Thus, it would be perhaps better to eliminate SM-damaged cells as soon as possible, which
in case of SM skin injury is achieved by surgical wound debridement, which also promotes
wound healing.22 However, this surgical procedure will not be available for mass casualties.
In addition, lungs and eyes cannot be treated in this way. Thus, a pharmacological approach
is still needed. Summarizing, the drug or drug combination should diminish the inflamma-
tory response, prevent survival of DNA-damaged cells, minimize tissue destruction, and
enhance wound healing.

An interesting drug family, which should be considered again in this context, is phar-
macological inhibitors of PARP, which have the potential to promote apoptosis, reduce
cell necrosis,63,111 and downregulate multiple simultaneous pathways of inflammation and
tissue injury.112 By suppressing inflammatory response and inhibiting infiltration of acti-
vated mononuclear cells, PARP inhibitors could indirectly diminish oxidative and nitrosative
stress.

Figure 3. Pathways implicated in sulfur mustard-induced pathophysiology and possible
targets (red) for therapeutic intervention. Sulfur mustard-induced direct and indirect (reactive
oxygen species) DNA damage lead to polymerase (PARP) activation and nicotine adenine
dinucleotide (NAD) depletion, which may result in necrotic cell death. Sulfur mustard
exposure has also been demonstrated to activate the extrinsic and intrinsic pathway of
apoptosis. Sulfur mustard-induced release of (pro)inflammatory cytokines has been linked
to NFkB activation and prostaglandine release. Sulfur mustard has also been shown to
upregulate matrix metalloproteases and serin proteases. The exact signal transduction for
matrix metalloproteinase (MMP) activation has not been identified yet. In conclusion, PARP
inhibitors, anti-inflammatory drugs, antioxidants, and MMP inhibitors are identified as
promising pharmacological approaches to improve clinical outcome.
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In summary, with respect to present knowledge about SM-induced pathophysiology
PARP inhibitors, anti-inflammatory drugs, anti-oxidants, MMP inhibitors, and probably
regulators of DNA damage repair are identified as promising approaches to improve treat-
ment (Fig 3). Safety considerations concerning long-term effects of drug treatment, which
might affect DNA repair, mutations, and even epigenetic mutations, have to be taken into
account. Moreover, it is a long way to introduce such drugs into medical treatment. Clinical
studies and bridging studies are needed. This has not been done or initiated so far. To achieve
this goal, a coordinated multinational approach would useful to compile dossiers for drug
regulatory purposes, sharing the financial burden and avoiding duplication of effort.
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