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Abstract

The interaction of proteins at cellular interfaces is critical for many biological processes, from intercellular signaling to cell
adhesion. For example, the selectin family of adhesion receptors plays a critical role in trafficking during inflammation and
immunosurveillance. Quantitative measurements of binding rates between surface-constrained proteins elicit insight into
how molecular structural details and post-translational modifications contribute to function. However, nano-scale transport
effects can obfuscate measurements in experimental assays. We constructed a biophysical simulation of the motion of a
rigid microsphere coated with biomolecular adhesion receptors in shearing flow undergoing thermal motion. The
simulation enabled in silico investigation of the effects of kinetic force dependence, molecular deformation, grouping
adhesion receptors into clusters, surface-constrained bond formation, and nano-scale vertical transport on outputs that
directly map to observable motions. Simulations recreated the jerky, discrete stop-and-go motions observed in P-selectin/
PSGL-1 microbead assays with physiologic ligand densities. Motion statistics tied detailed simulated motion data to
experimentally reported quantities. New deductions about biomolecular function for P-selectin/PSGL-1 interactions were
made. Distributing adhesive forces among P-selectin/PSGL-1 molecules closely grouped in clusters was necessary to achieve
bond lifetimes observed in microbead assays. Initial, capturing bond formation effectively occurred across the entire
molecular contour length. However, subsequent rebinding events were enhanced by the reduced separation distance
following the initial capture. The result demonstrates that vertical transport can contribute to an enhancement in the
apparent bond formation rate. A detailed analysis of in silico motions prompted the proposition of wobble autocorrelation
as an indicator of two-dimensional function. Insight into two-dimensional bond formation gained from flow cell assays
might therefore be important to understand processes involving extended cellular interactions, such as immunological
synapse formation. A biologically informative in silico system was created with minimal, high-confidence inputs.
Incorporating random effects in surface separation through thermal motion enabled new deductions of the effects of
surface-constrained biomolecular function. Important molecular information is embedded in the patterns and statistics of
motion.
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Introduction

Cell-cell interactions are critical in a variety of biological processes

such as morphogenesis, immune responses, and homing. The

interaction of surface-tethered biomolecules between cells is essen-

tially two-dimensional because of the limited ability of the molecules

to move in the dimension perpendicular to the cell surfaces.

Receptors and ligands must therefore find each other by lateral

motion on their respective surfaces [1]. A reactive head group

attached to a macromolecular stalk extending from the surface of a

cell results in a configuration with more factors governing function

and more effects on cellular behavior than with the three-

dimensional, freely-diffusive case. For example, in vascular homing

the force response of the surface-tethered molecules is critical [2]. In

cytotoxic T-cell mediated apoptosis, the two-dimensional, sorted

arrangement of interacting partners might be important to

developing a long-lived, death-mediating signaling complex [3].

Striking behaviors result from the complexity of surface-tethered

molecules. The existence of catch-slip bonds has recently been

demonstrated [4–6]. Catch-slip bonds exhibit the unexpected

property that, as the force transmitted through the binding pocket

increases, bond lifetimes increase prior to reaching a peak and then

decrease. It has also been demonstrated that tether-constrained

molecules more efficiently form bonds in some presentation contexts

[7]. A two-dimensional molecular interaction system that has been

studied is the binding of T-cells to antigen-presenting cells. There

are many proteins involved in the intercellular interaction, and the

binding of CD2 with LFA3 has been studied. As the membranes

between the two cells remain in contact, they smooth against each

other and form a space with a small separation [8]. Constraining the

most likely position of the reactive sites to overlap well within the

volume between the cells, or an even smaller space within the

volume between the cells [9], was found to result in up to a 40-fold

enhancement in the effective reaction rate [8].

PLoS Computational Biology | www.ploscompbiol.org 1 December 2009 | Volume 5 | Issue 12 | e1000612



The molecular characteristics, such as length, flexibility of the

molecular tether, and the binding pocket chemistry, that facilitate

bond formation for two-dimensional interactions when the contact

between surfaces is less than one second may be very different

from the molecular characteristics that facilitate adhesion when

the contact lasts minutes to hours. One example is cells traveling

through the blood that capture to a blood vessel surface as a first

step in homing to tissue. Vascular homing processes occur as white

blood cells are recruited to sites of inflammation, lymphocytes

travel to the lymph nodes, cancer cells metastasize to spread to

new tissues, and stem cells home to sites of injury to repair tissues

[10–12]. A cell traveling in excess of hundreds of cell diameters a

second may briefly bump into the wall, leaving no opportunity for

the proteins in the membrane of the flowing cell and in the

membrane of the immobilized cell on the vessel wall to adapt for

an optimal, sorted presentation of molecules. Although the

average density of CD2 on T-cells is around 200 molecules per

square micrometer [13], within a factor of two of the average

density of ligands mediating capture and dynamic adhesion on

neutrophils [14], the adhesive contacts involving hundreds of

molecules per square micrometer have been observed to require

thirty minutes to fully form in vitro with assays for CD2 and LFA3

[7]. T-cell interactions with antigen presenting cells have been

observed to go through several phases in vivo, involving contacts

lasting a few minutes and contacts lasting hours [15], suggesting

molecular sorting in the contact region plays a role in vivo. On the

other hand, dynamic adhesion ligands are thought to be localized

cellular membrane ruffles called microvilli [16]. The contact

widths and times for these ridges during cell capture are much

shorter and smaller than for CD2 and LFA3, as small as 100 nm

and as short as 1 ms [16,17], respectively. Also, once they form,

the reacting pairs must survive higher forces exerted on the cell.

Consequently, there may be a specialized set of structural,

dynamic, and kinetic features of the molecules responsible for cell

capture that facilitate rapid molecular tether formation and

lifetime.

Selectins mediate dynamic interactions between cellular surfac-

es. Selectins have received considerable attention because of their

importance in inflammatory and immune trafficking as well as

their role in diseases such as atherosclerosis and cancer metastasis

[10,18]. Many assays have been employed to make measurements

of selectin molecular interactions: laser traps, atomic force

microscopy, biomembrane force probes, and flow cells [5,19–23].

Arguably, a significant advantage of flow cells is that they give a

report of molecular binding that is quite functionally relevant.

Flow cell assays capture the characteristics of a hydrodynamic

environment more directly than single-molecule assays. They

balance the experimental complexity of an in vivo vascular model

and the ability to make deductions about biomolecular interactions

at the most basic level. Observations of complicated cellular

behavior in a flow cell, such as hydrodynamic shear thresholding,

have helped to inspire the application of force spectroscopy

techniques that have established the existence of catch-slip bonds

[24,25].

It is not clear which known qualitative molecular characteristics

are important to their functional ability to capture a cell or particle

and initiate bonds that can withstand detaching forces. We

therefore adapted an adhesive dynamics modeling strategy that

can test functionally relevant P-selectin/PSGL-1 molecular

behaviors.

Novel aspects of the simulation and analysis methodology were:

N The simplest biophysical experimental system capable of

reporting biomolecularly-dependent behaviors was simulated.

This is the microbead assay. Simplicity minimized the number

of simplifying assumptions that were made and minimized

sources of error and uncertainty.

N Thermal motion of the sphere was included in the model.

N The adhesion receptors were modeled as extending from

discrete points on the surface of the sphere. The modularity

made it simple to change the form of the rate expression for

bond formation to test the effects of the dependence of bond

formation on surface separation. The concept is intricately

linked to molecular confinement, whereby the rate of reaction

between a receptor and ligand is enhanced by physically

constraining their reactive end groups to more efficiently make

contact.

N A detailed analysis of the simulated sphere’s motions was

made. Analyzed motion characteristics included pause times,

distances between pause events (skip distances), and the

autocorrelation of velocity perpendicular to the flow direction

(wobble autocorrelation). A detailed qualitative analysis of the

motions was also performed.

The simulation results and analysis methodology resulted in

several new findings:

N Clustering adhesion molecules into functional groups that

equally distribute the load is critical for function. Nano-scale

molecular clustering reconciles results from different assays.

Clustering makes it possible to capture the sphere and create

‘‘stop and go’’ motion at physiologic ligand densities despite

large predicted forces on the cluster.

N Initial, capturing bond formation effectively occurred across

the entire molecular contour length, although rebinding events

were enhanced by vertical transport to the wall through initial

capture.

N The wobble velocity autocorrelation is proposed as new metric

to verify how molecules behave at the interface between

surfaces and validated in silico. The wobble velocity autocor-

relation may help uncover molecular behaviors not previously

Author Summary

The binding of a receptor on one cell to a ligand on
another is a process of broad biological interest, important
to cell adhesion and signaling. Interactions between cell
surfaces can be called ‘‘two-dimensional’’ because the
reactive groups on interacting molecular pairs are
constrained to move 100 nm or less in the direction
perpendicular to the surfaces. The molecular reactive
groups are attached to their respective cellular surfaces
through a molecular tether embedded in the cell
membrane. There are many parameters that might affect
the observed binding kinetics, such as the distance
between the cell surfaces, the length of the molecular
tether, and the freedom of the reactive groups to move
about on their molecular tether. A well-studied case of
two-dimensional interactions is that through which
circulating leukocytes capture to the endothelium and
exit the blood into the tissues. Leukocyte capture presents
an additional complexity: bonds that restrain leukocytes
against the shearing force exerted by the blood must be
capable of withstanding the force trying to pull the
receptor and ligand apart at their noncovalent interface.
New models have been proposed to explain the behavior
of individual receptors and ligands, raising the question:
which molecular behaviors have an effect on function?
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investigated but perhaps important for the function of

additional classes of molecules.

There were also two findings where qualitative changes in the

expression governing molecular behavior did not make a difference

to the simulated sphere’s motion. The effects of molecular

confinement on bond formation were not functionally important

to dynamic adhesion. The result demonstrates a criterion where

successful static and dynamic interaction systems differ. Also, P-

selectin/PSGL-1 catch-slip bonds performed nearly as well as slip-

only bonds in mediating capture interactions, and were equally

effective at mediating pauses. The result reinforces the hypothesis

that a purpose for catch bonds might lie in distinguishing soluble

ligands from immobilized ones rather than regulating the dynamics

of adhesion, at least for P-selectin/PSGL-1.

The implications of the present study are extensive. With an

increased understanding of the molecular features that enhance

bond formation between surfaces, it will be possible to engineer

molecular systems with an optimal physiologic impact. Optimiz-

able systems include enhanced targeted drug delivery and

molecular imaging agents and dendritic cell therapies with the

potential for enhanced T-cell activation.

Methods

For each simulation, discrete attachment points for the base of

individual adhesion receptor molecules were randomly distributed

over the surface of a microsphere. To accurately capture scenarios

where the adhesion receptor was immobilized to the surface, as

with experimental microbeads or proteins anchored to the

cytoskeleton, on-sphere diffusion of the anchorage points was

assumed to be zero. A stochastic methodology was employed to

include three-dimensional lateral, vertical, and rotational diffusion

of the sphere and is described in greater detail in Protocol S1.

Three-dimensional diffusive motion of the molecular binding

pockets within the contact volume was treated during consider-

ation of the on-rate expression. The simulation geometry is

illustrated in Figure 1, and steps in the calculation are detailed in

Figure 2.

Two models were compared to account for different mobilities

of the molecular binding pockets on their respective tethers. In the

first, it was assumed each receptor within a bond length of the

surface could find a ligand with an equal rate:

kon~kf nLG l{zRð Þ: ð1Þ

The symbols and values employed are defined in Table 1. The

Heaviside function, denoted by H( ), limited nonzero bond formation

rates to receptors in the contact patch. The reaction rate described

by (1) could be described as contact patch confinement because only

receptors in the contact patch could react, and finer details of the

reaction configuration were assumed to be unimportant for receptor

function. The concept is illustrated in Figure 1B.

In the second approach, receptors with anchorage points on the

sphere closer to the surface were assumed to sample a wider area

of the surface, enhancing their probability of encountering an

immobilized binding partner:

kon~kT
f nLG l{zRð Þ

l2{zR
2

� �

l2
: ð2Þ

We refer to the reaction model described by (2) as molecular

area confinement. The geometry of the search by the receptor’s

binding pocket for a ligand immobilized within a suitable distance

influences the reaction. Therefore, (2) is conceptually similar to the

geometric interpretation of the enhanced apparent association rate

of laterally diffusive cellular CD2 with LFA3 on two surfaces with

an extended contact time [7]. According to (2), reactions proceed

more quickly when the receptor is held closer to the surface and

sweeps out a broader area in the search for ligands. The concept is

illustrated in Figure 1C. The rate, kf
T, was normalized based on kf

Figure 1. Simulation geometry. (A) A Cartesian coordinate system was employed. Flow was applied in the X-direction with a linear shear rate, S. A
three dimensional sphere with a fixed radius, R, was coated with receptors, and each anchor point of the base of the receptor’s tether region to the
surface of the sphere is shown as a black dot. Only the receptors within an unstressed receptor/ligand contour length of the surface, l, were allowed
to form bonds. This region has been highlighted in yellow. The gap between the base of the sphere and the surface, d, was allowed to vary. The
diffusion of the sphere was included in the simulation. The diffusion had six components with the inclusion of rotation in the sphere’s motion. Motion
perpendicular to the flow direction, along the Y-axis, is referred to as ‘‘wobble’’ in the text. (B,C) Two different models of reactivity for molecules in the
contact volume were included in the simulations. For contact patch confinement, described mathematically by (1), all of the receptors on the sphere
within an unstressed receptor/ligand contour length of the surface were assumed to react with a constant rate. For molecular area confinement,
described mathematically by (2), receptors immobilized on portions of the sphere closest to the surface were allowed to form bonds with an
increased rate proportional to the area of the projection of the molecular contour length onto the XY plane. The colors in (B,C) depict the relative
reaction rate of receptors, and warmer colors indicate an increased reaction rate.
doi:10.1371/journal.pcbi.1000612.g001
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so both (1) and (2) would yield the same average reaction rate

across the contact patch for a sphere touching the wall to within

surface roughness limitations.

A number of models of receptor-ligand dissociation kinetics

under an applied load have been developed to describe the

dissociation of selectins from their ligands. One of the first models,

based on observations of non-covalent solid materials failure [26],

proposed that the application of force increases the dissociation

rate in an exponential manner [1]. Bonds exhibiting this type of

force response kinetics are referred to as ‘‘Bell slip bonds’’ to

distinguish the model from alternate proposals for the forced

dissociation relation [27–29]. Increasing force causes the slip bond

to dissociate more quickly. Newer measurement techniques

demonstrated force decreases selectin bond dissociation rates until

a peak mean lifetime is reached, and higher levels of force increase

the bond dissociation rate. Bonds exhibiting this type force

response kinetics are referred to as ‘‘catch-slip’’ bonds because of

the biphasic force response. Several theoretical and mathematical

models have been developed to describe catch-slip bonds

[22,25,30,31]. The five-parameter model of rapid internal state

equilibration [22] is an appealing model that has a sound

theoretical basis, captures the salient quantitative features of

selectin dissociation kinetics [32], and converges on a high-

impedance dissociation pathway at high forces that closely

resembles the Bell slip bond model of dissociation.

The dissociation rate for existing receptor-ligand complexes was

first computed using the Bell slip bond model for dissociation

under an applied load [1,26]:

kr~ko
r e

c f
I

b

�� ��
kBT : ð3Þ

After initial validation and investigation with slip bonds, the

effect of catch-slip bonds on motion was investigated utilizing the

five-parameter model of rapid internal state equilibration [22]:

kr~
ko

10Wozko
20e

c20 f
I

b

�� ��
kBT e

c21{c12ð Þ f
I

b

�� ��
kBT

Woze
c21{c12ð Þ f

I
b

�� ��
kBT

: ð4Þ

It was assumed a bond exerted no force when in compression but

behaved as a very stiff spring when stretched past its contour length.

A constant dissociation rate for a bond in compression has been

assumed in previous simulations of selectin-mediated rolling [33].

We refer to the model combining this assumption with a stiff spring

for extension [34,35] as a rope model. The expression employed was:

f
I

b

���
���~ b

I
���
���{l

� �
sG b

I
���
���{l

� �
: ð5Þ

Figure 2. Iterative calculations in the simulation. (A,E) An initial gap size, generally small compared to the sphere’s radius, was randomly
selected from the governing equilibrium distribution. (B,F) Receptors were randomly distributed over the surface. Fluid flow was started. Forces and
torques were calculated, a diffusive component was added, the new sphere position and rotation was calculated, and receptors were tested for bond
formation. (C,G) The sphere was translated and rotated into the new position. One bond formed in the calculation from the previous step. New force
calculations on the bonds and sphere were performed. The bond’s green color indicates the sphere had not yet moved enough to begin
mechanically stressing the bond. The new sphere position and rotation was calculated based on the forces and toques plus the diffusive component,
then free receptors were tested for formation, and the existing bond was tested for breakage with the current position. (D,H) The sphere was
translated and rotated into the new position. The brighter sphere coloring indicates the sphere moved closer to the ligand-coated surface. Vertical
motion was significant compared to the length of a bond. The bond from the previous step was still present, and a new bond formed. If the new
bond were to survive until it became stressed, it would exert a force perpendicular to the flow direction that will cause the sphere to wobble because
it is off the sphere’s center line. Force calculations on the bonds and sphere were performed. The red color indicates the trailing bond was stressed
and exerted forces and torques on the sphere. Next, the diffusive component would be added to the forces and torques on the sphere, the new
sphere position and rotation would be calculated, then free receptors would be tested for formation and the existing bonds would be tested for
breakage. The position would be updated and the calculation iterated.
doi:10.1371/journal.pcbi.1000612.g002
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Note that the rope model spring constant was very high, so

bonds did not extend much past their equilibrium length.

Alternatively, a freely-jointed chain model was used with the

condition that a chain in compression exerted no force:

b
I
���
���~ coth

f
I

b

���
���2p

kBT

0
B@

1
CA{

kBT

f
I

b

���
���2p

0
B@

1
CA

0
B@

1
CA lz

f
I

b

���
���

s

0
B@

1
CAG b

I
���
���{l

� �
: ð6Þ

Although the time steps were much smaller, data from the

model was sampled to file at 1,000 fps, in analogy with

experiment. This represents an upper sampling limit for many

experimental systems used to acquire data optically. Numerical

parameter values used in the simulation are given in Table 1.

The force deformation models are described in greater detail in

Figure S1.

Results

Validation of motion relations with non-interacting
microspheres

Sphere motion in the absence of binding interactions established

a baseline for both validation against experimental results and

comparison to reactive sphere motion. Vertical stepping accuracy

was first investigated by recording the gap and velocity distribution

of vertically diffusing microspheres over a long time interval in the

presence of gravity and fluid flow. Figure 3 compares the results

for motion between a 6 mm-diameter and a 10 mm-diameter

sphere in the presence of a 50 s21 wall shear rate for 1,000 s of

simulated time. The results for vertical motion are shown in

Table 1. Symbols used in the text and parameter values used in the simulation.

Symbol Description Value Units Reference

c Slip bond compliance 0.37 or 1 Å [23,48]

c20 High impedance catch-slip compliance 2.4 or 0.68 Å [22]; regression in [32] for [5]

c21-c12 Difference in catch-slip bond compliances for conformation transitions 8.7 or 12 Å [22]; regression in [32] for [5]

d Gap between the sphere and the wall Variable ,10–200 nm Protocol S1

dmin Surface roughness 10 nm Near ideal surfaces

Dt Time step size Variable ,ms Protocol S1

l Maximum unstressed bond length 92 nm [36,37]

rs Sphere density 1.05 g/mL Manufacturer web site

rw Water density 1.00 g/mL

s Bond spring constant 100 or 5.3 pN/nm Rope bonds [34,35];
freely-jointed chain bonds [21]

Wo Catch-slip bond probability ratio of low to high impedance state when unstressed 90 or 21.7 Ratio [22]; regression in [32] for [5]

g Gravitational constant 9.8 m/s2

k10
o Catch-slip bond dissociation rate for the low impedance pathway 10 or 5.39 s21 [22]; regression in [32] for [5]

k20
o Catch-slip bond unstressed dissociation rate for the high impedance pathway 0.37 or 1.66 s21 [22], or regression in [32] for [5]

kB Boltzmann constant 1.38610223 J/K

kf Bond formation rate between two surfaces per unit area per unit site
density receptor and ligand

4.861024 mm2/s Deduced from [60]

kf
T Bond formation rate between two surfaces in very close proximity ,1.76kf mm2/s Protocol S1

kon Rate at which a receptor finds a ligand on the surface and forms a bond Variable s21 (1,2)

kr Bond dissociation rate Variable s21 (3,4)

kr
o Unstressed slip bond dissociation rate 1.54 or 0.53 s21 [23] or [48]

M Mobility matrix Varies Varies Protocol S1

nL
o Total density of individual ligands or clusters 100 or 90 sites/mm2 90 to match [23]

nL Density of unbound ligands in the contact patch Variable sites/mm2

nRu Density of individual receptors or receptor clusters on the sphere 50 or 95 sites/mm2 95 to match [23]

NRL Number of receptor-ligand complexes Variable number

p Persistence length of freely-jointed chain 3.5 Å [21]

R Sphere radius 3, 5, or 4.9 mm 4.9 to match [23]

S Wall shear rate 50 or 100 s21 50 to match [23]

T Temperature 295 K

VS Sampled instantaneous velocity Variable mm/s

VS,X Sampled flow-direction instantaneous velocity Variable mm/s

VS,Y Sampled perpendicular-direction instantaneous velocity Variable mm/s

zR Z-coordinate of the anchorage point of a receptor Variable nm

doi:10.1371/journal.pcbi.1000612.t001
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Figure 3A. As in all simulations presented here, a minimum

separation distance of 10 nm was enforced with a reflective

boundary condition to simulate a minimal wall roughness that

would be experimentally achievable and avoid singularities in the

fluid dynamic equations. The data for the simulated microspheres

agreed very well with the theoretical Boltzmann distribution for

particles diffusing in a gravitational force field, validating the

vertical stepping method.

Thermal fluctuations in the vertical coordinate were more

significant for smaller particles than for larger ones. The length

scales for vertical motion in Figure 3A are biochemically relevant

because biomolecular interactions occur on the nano-scale. Of

special interest is the PSGL-1/P-selectin bond, which has been

estimated to extend up to roughly 90 nm when unstressed

[36–38]. The simulation results predict the 10 mm-diameter and

6 mm-diameter spheres will remain with 90 nm of the surface 99%

and 67% of the time, respectively, in agreement with the

Boltzmann distribution. Only after 1,000 s of simulation time

did the probability distribution function converge well upon the

equilibrium distribution. The long time required to achieve

statistical equilibrium suggested the importance of transport

history for interacting spheres. The long equilibration time has

implications for experimental flow cell studies employing microbe-

ads. First, all of the beads that appear to be near the wall are not

equivalent. Some beads spend a larger portion of their time near

the surface than others while traversing a field of view. Some beads

are sufficiently far so they are incapable of binding even if the

population is given sufficient time for sedimentation. Secondly, a

flow cell must be very long, 10 cm, for the beads in a field of

view to follow the equilibrium distribution if it takes 1,000 s for a

10 mm-diameter bead to be able to fully sample the gap

possibilities once the bead sediments to near the surface.

The probability distributions for the sampled flow-direction

velocity, VS,X, for the non-interacting spheres flowing at 50 s21

are shown in Figure 3B. Variation in the convective component of

the motion was expected due to variations in the vertical

coordinate of the sphere. It is stressed that these are sampled

velocities: there was a convective as well as an effective diffusive

component to motion in the flow direction. As the gap between the

bottom of the sphere and the wall increased, the sphere’s velocity

Figure 3. Investigation of non-reactive microsphere motion with a 50 s21 wall shear rate. (A) The probability distribution functions for
gap size for a simulated 6 mm-diameter sphere (blue triangles), the theoretical Boltzmann distribution for a 6 mm-diameter sphere (heavy dashed
line), a simulated 10 mm-diameter sphere (red circles), and the theoretical Boltzmann distribution for a 10 mm-diameter sphere (narrow solid line) are
shown. The simulation results agree well with the equilibrium theory and demonstrate vertical diffusion occurs over a biochemically relevant length.
(B) Sampled instantaneous, flow-direction velocity probability distribution functions for a 6 mm-diameter sphere (heavy blue dashed line) and a
10 mm-diameter sphere (narrow red line) are shown and compared to the experimental results with microbeads possessing a nominal diameter of
6 mm [39] (grey bars). The results demonstrate the experimentally observed skewing of the instantaneous velocity distribution from normal and
predict a tighter velocity distribution for larger particles. (C) Contour plots of the probability distribution functions of the sampled instantaneous,
flow-direction velocity for a simulated 6 mm sphere (bottom) and a 10 mm simulated sphere (top) at 50 s21 are shown. Each was re-normalized to the
respective maximum, so the results for the 6 mm-diameter sphere cover a larger area. Tabulated deterministic solutions published by Goldman et al.
[40] are shown as triangles (6 mm-diameter sphere) and circles (10 mm-diameter sphere). Although agreement was good, the simulation slightly
underpredicted the superposition result. (D) Time-domain flow-directed instantaneous velocity for a 6 mm-diameter sphere (maroon line), flow-
directed instantaneous velocity for a 10 mm-diameter sphere (red line), gap size for a 6 mm-diameter sphere (dark blue line), and gap size for a 10 mm-
diameter sphere (light blue line) are shown. The low-frequency fluctuations in the instantaneous velocity reflected fluctuations in the gap.
doi:10.1371/journal.pcbi.1000612.g003
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increased due to the linear shear gradient. The apparent flow-

plane diffusive component of the sampled velocity may be positive

or negative. The standard deviation of the diffusive component of

the sampled velocity will decrease as the sampling rate is decreased

(refer to Protocol S1). As might be expected, the mode of the

sampled velocity data for the 6 mm-diameter sphere was lower

than the mode for the 10 mm-diameter sphere due to the smaller

size. The sampled velocity for non-interacting, 6 mm-diameter

spheres flowing at 50 s21 was skewed from normal, very similar to

the pooled experimental instantaneous velocity results as previ-

ously reported [39]. The mode of the simulation results, 90 mm/s,

was higher than the experimental mode previously reported [39],

70 mm/s. The discrepancy was still within a range that can be

accounted for by experimental differences in the microbead size,

possible variations in the observed populations, and differences in

the surface roughness and coatings. The sampled velocity results

for the 10 mm-diameter sphere were less skewed because there was

a smaller variation in the distribution of gap size for the larger

sphere.

A statistical plot of VS,X against the gap size is presented in

Figure 3C for the 6 mm-diameter and 10 mm-diameter spheres.

During each time step, the forces, torques, and damping factors

acting on the sphere were computed by interpolating the

individual fluid dynamic solutions and then applied using

superposition. The deterministic superposition solutions previ-

ously tabulated [40] are shown on the same plot. There was a

slight disagreement between the statistical mode for the

simulation and the tabulation. Observing vertical slices through

the ‘‘Gap Size’’ axis, it is apparent that the mode of VS,X as a

function of gap size is less than the tabulated value reported by

Goldman et al. [40]. There are two possible reasons for the

discrepancy. The first may be a cumulative effect of residual

errors in the interpolation method used to obtain the individual

hydrodynamic damping factors. The other is that the statistical

weighting of motions truly results in a mode that is lower than the

deterministic solution. Such differences have been theorized to

occur with important consequences in biomolecular reaction

systems [41]. Despite the minor discrepancy, the results agreed

sufficiently for present purposes. Figure 3D presents sample time

domain VS,X data for the both sphere sizes. The vertical

excursions of the 10 mm-diameter sphere away from the wall

were infrequent and of small magnitude. The high-frequency

fluctuation in VS,X was largely due to the high sampling rate:

lateral diffusion was well distributed across frequencies. The low-

frequency component of the velocity fluctuations agreed well with

variations in the gap size.

Validation of motion with binding microspheres: rope vs.
freely-jointed chain

The effects of microsphere size and the molecular force

distension model were compared to gain a quantitative under-

standing of how contact area and molecular distension affect

motion. Figures 4A–C present simulation results for spheres

bearing 50 sites/mm2 of receptor interacting with 100 sites/mm2 of

ligand at a wall shear rate of 50 s21. The data for Figure 4 was

sampled at 1,000 fps. Figure 4A presents simulation results for a

6 mm-diameter sphere that forms rope-like bonds, Figure 4B

presents data for a 6 mm-diameter sphere that forms freely-jointed

chain bonds, and Figure 4C presents data for a 10 mm-diameter

sphere that forms freely-jointed chain bonds. As an additional tool

to validate and interpret the physics, three-dimensional videos

were constructed from the simulation results (sampling reduced to

250 fps, Videos S1, S2, S3). One second of data was selected from

each of these scenarios when constructing the videos. The videos

illustrate the microsphere behaved in a physically realistic way.

Bond formation events introduced realistic forces and torques

that caused the sphere’s rotational orientation and centroid to

converge on a stable mechanical equilibrium point. The sphere

was still free to undergo stochastic fluctuations in translation and

rotational orientation when settled in the bound state. Roughness

held the sphere 10 nm from the absolute, mathematical surface,

but did not prevent the sphere’s oscillations. In practice, the

motion of a bead being pushed into the surface by a biomolecular

lever arm depends on the details of the experimental surface

construction and blocking strategy. The results must be construed

as a case representing an ideal experimental methodology.

The results recreated the discrete ‘‘stop and go’’ behavior

observed with microbeads and demonstrated the effect of

differences in biomolecular tether properties. Discrete stops were

apparent in Figures 4A–C as drops to a zero-mean, fluctuating

VS,X. The results closely capture the discrete pause behavior

reported for selectin-coated microbeads [39]. The results also

illustrated differences in molecular tether stiffness can influence the

sphere’s motion during a binding event. It is important to point

out the interpretation of experimental velocity fluctuations must

also include a consideration of noise in the acquisition system [42].

Fluctuations in VS,X in for the sphere bound by the freely-joined

chain in Figure 4B were larger than the sphere bound by the rope

in Figure 4A, although fluctuations in VS,Y agreed more closely.

Although there were significant fluctuations in the gap between the

bottom of the sphere and surface prior to the first bond formation

event, the sphere maintained contact following the first capture

event.

Multiple bonds were often present, but most frequently only one

bond supported the sphere against the hydrodynamic load. The

bond loading forces from the trials in Figures 4A,B are presented

in Figure 4D. The top panel illustrates the result with the rope

model and the bottom panel illustrates the result with the freely-

jointed chain model. Insets show the results for the second bond

formed in each trial and better illustrate the force fluctuations by

expanding the time axis. The magnitude of the force fluctuations

with the stiffer rope was apparently larger than for the freely-

jointed chain, but the average force on the bond was similar. The

theoretical result was interesting because, if such fluctuations

occur, they would result in transient peak forces larger than the

mean calculated from the average bond angle and shear force.

Forces experienced by the bonding pocket have an effect on

molecular conformation and function [25]. The result suggested

tether properties can be transmitted to the binding pocket and

may influence function. Also, many bonds formed and dissociated

without ever supporting a hydrodynamic load, in agreement with

simulations of leukocyte rolling [43].

Although less common, several multivalent force-bearing

bond events occurred. For the trial in the bottom panel in

Figure 4D, this is apparent shortly before 5 s: simultaneous load

bearing bonds supported a lower peak force. Video S3

demonstrates how the sphere can arrive at such a configuration:

multiple force-bearing bonds also occurred with the 10 mm-

diameter sphere at 7.920 s. Bonds near the edge of the contact

patch can also become stressed due to stochastic excursion in the

sphere’s position: brief loads are apparent in the bottom panel of

Figure 4D, such as at 8.972 s. Video S2 illustrates how this is

possible. Bonds shorter than the deduced unstrained bond length

supported no force and could form freely. While the sphere

paused, it was possible for additional bonds to form in the contact

patch. Although the bonds must form while unstressed, the

sphere could still undergo small diffusive fluctuations in position

to stress them.
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Investigation of bond loading
Mechanical loading history can be an important factor governing

bond lifetimes [44]. The molecular force loading history was

explicitly investigated. A simplifying assumption was made in the

model: bonds shorter than the deduced unstrained bond length

supported no force. As the bonds extended further, there was a step

in the force/length relationship. The assumption amounted to a

step to 56 pN as the length extended past the unstressed molecular

contour length of 92 nm, as calculated from freely-jointed chain

model parameters [21], and increased continuously thereafter. The

force/length relationship is presented in detail in Figure S1.

Bond loading results from different simulations are presented in

Figures 5A–C. Bonds were temporally aligned so loading would

occur at 0.001 s. The larger, 10 mm-diameter spheres had a larger

area within a molecular contour length of the surface, tended to

form the most bonds, and exhibited the most frequent multiple

bond formation events. Figures 5A,B illustrate the result for a

6 mm-diameter sphere interacting with a 50 s21 and 100 s21 wall

shear rate, respectively. Although the peak load was about double

in the latter case, the increased shear did not have as much of an

effect on the loading rate. Also, there was a multivalent bonding

event apparent with the blue and green tracings, which explains

why they were not individually loaded to the full force required to

restrain the sphere against hydrodynamic drag. Figure 5C

illustrates the result for a 10 mm-diameter sphere interacting with

a 100 s21 wall shear rate, which also has a much larger contact

area. Note that aside from many more binding events and more

multiple loading events, some of the force tracings exhibit a

prominent inflection point between 0.001 s and 0.004 s. This

feature is also present, although less pronounced, in Figure 5B.

Figure 5D demonstrates bonds only become loaded and exert

lateral motion on the sphere towards a mechanical equilibrium point

once they leave the contact patch. Results from 10 mm-diameter

spheres interacting with a 100 s21 wall shear rate were screened for

singly-loaded bonds and the force was plotted in relation to the

receptor attachment point relative to the sphere’s center. The result

explains the inflection-like point in Figure 5C sometimes apparent

for up to the first 5 ms of bond loading. Single bonds can become

stretched just until the point they exert a restoring force, 56 pN, in

the contact patch as their anchor point on the sphere rotates into the

upstream hemisphere. Bond loading increases rapidly once the

anchor point on the sphere rotates out of the contact patch and can

then induce motion perpendicular to the flow direction, wobble.

Figure 6 demonstrates increasing shear has a small effect on

mechanical equilibrium during a pause event, where molecular

bonds restrain motion of the sphere against hydrodynamic forces.

Figure 4. Reactive microsphere motion illustrates the discrete nature of bond formation events and force loading. Reactive spheres
were simulated with S = 50 s21, nLu= 100 sites/mm2, nRu= 50 sites/mm2, association kinetics governed by (1), and dissociation kinetics governed by (3).
(A) Results for a 6 mm-diameter sphere with a rope model of bond deformation, (5). Sampled flow-direction velocity (VS,X, red), perpendicular velocity
(VS,Y, maroon), gap size (dark blue) and number of bonds (light blue) are shown. (B) Results for a 6 mm-diameter sphere with a freely-jointed chain
model of force deformation, (6). An increase in the magnitude of the fluctuations of VS,X was observed with the decrease in stiffness relative to (A). (C)
Results for a 10 mm-diameter sphere with a freely-jointed chain model of force deformation, (6). The motion was higher frequency in nature with
shorter pauses and more frequent pause events. (D) A comparison of simulated bond loadings for the rope tether results in (A), top, and the freely-
jointed chain in (B), bottom. Each sampled point on the inset is spaced by 1 ms. In both cases, the sphere’s pause tended to be supported by a singly-
loaded bond. The decreased stiffness of the freely-jointed chain tether resulted in a smaller standard deviation of the supported force. A lower
maximum initial force loading was predicted for the freely-jointed chain model than for the rope model (insets).
doi:10.1371/journal.pcbi.1000612.g004

Nano-motion Dynamics

PLoS Computational Biology | www.ploscompbiol.org 8 December 2009 | Volume 5 | Issue 12 | e1000612



The time to achieve the equilibrium configuration is slightly

increased with increased shear. Singly-loaded binding events were

pooled from simulation runs for 6 mm-diameter spheres with wall

shear rate of 50 s21, 6 mm-diameter spheres at 100 s21, 10 mm-

diameter spheres at 50 s21, and 10 mm-diameter spheres at

100 s21. As expected, the mean peak loading force increased

with wall shear rate and was 88, 156, 247, and 428 pN,

respectively. Note that these values correspond to the maximum of

the force fluctuations for single bonds as observed in Figure 4D. It

is worth noting these forces would cause dissociation of the

adhesion molecule from the cytoskeleton in leukocytes and

therefore decrease force on the bond [45,46]. The peak bond

force did not exhibit a strictly linear dependence on shear. The

freely-jointed chain tether distensibility allowed the tethers

supporting the bond to extend slightly and the lever arm angle

to decrease as increased shear force increased the biomolecular

distension. In all conditions, the standard deviation of the peak

bond force was small: less than 4 pN. Increasing the wall shear rate

had a small effect on the mean peak single bond loading rates.

They were 61, 71, 62, and 96 pN/ms, respectively.

Comparison with experiment
Having demonstrated the simulation qualitatively recreated

motions observed for non-interacting spheres and also recreated

the discrete, transient stops observed for interacting spheres, the

next important consideration was whether the results matched

detailed motion patterns observed experimentally. The site

density, measured bond force-response characteristics, sampling

rate, and diameter were chosen to match the previous investiga-

tion [23]. Given the alternative bond lifetime models and

parameter discrepancies in the literature, several alternative

dissociation models and rates were selected to test whether they

might give a match to experiment. A brief comparison of

alternative models of bond dissociation for P-selectin/PSGL-1 is

shown in Figure S2. Two methods were employed to judge the

quality of the match between the simulation and experiment. In

the first, a video sample was obtained from Dr. Eric Y. H. Park.

Simulation results were screened by eye to identify a period with

similar qualitative behavior to a small experimental tracking data

set. A detailed comparison of the motion was made. Secondly,

velocity tracings from simulated microbeads were analyzed using a

Figure 5. Loading patterns demonstrate how bond forces influence sphere motion. Reactive spheres were simulated with nLu= 100 sites/
mm2, nRu= 50 sites/mm2, association kinetics governed by (1), and dissociation kinetics governed by (3). Note that the step function in the freely-jointed
chain model, (6), resulted in a step from zero force to 56 pN as the tether extended past 92 nm, and then force continued to increase continuously. (A) A
sample of bond loading data for 6 mm-diameter spheres with a 50 s21 wall shear rate. (B) Results from a simulation for 6 mm-diameter spheres with a
100 s21 wall shear rate. Note that bonds were aligned to their respective initial loading points in the figure, so the total instantaneous force exerted by
the concurrent bonds, shown by the green and blue tracings, on the sphere cannot be calculated by summing the two values at the same time point on
the plot. (C) Bond loading results from a 10 mm-diameter sphere at a 100 s21 wall shear rate. Of the three cases, the larger sphere had the most bond
loading events and also was the most likely to form simultaneous hydrodynamic force bearing bonds. (D) Loading trajectories for single, force-bearing
bonds. Data were compiled from simulation runs for 10 mm-diameter spheres with a 100 s21 wall shear rate. Individual tracings represent individual
bond events, with position coordinates representing the position of the bond tether point on the sphere relative to the center, projected onto the XY
plane. The color depicts the force on the bond. The black circle illustrates the expected contact patch for unstressed bonds when the sphere touches the
wall to within the limits of the assumed roughness. Single bonds only supported minimal force initially, evident in the first 5 ms of loading in (C), but
could only cause the sphere to wobble once the tether point exited the contact patch, apparent in (D).
doi:10.1371/journal.pcbi.1000612.g005
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pause time analysis method to deduce an experimentally apparent,

effective dissociation constant. Complete velocity results from the

simulations employing parameters derived from the experimental

study [23] are presented in Figure S3.

Differences between the experimental and simulated motion

patterns that suggested a refined interpretation of the experimental

data needed to be made. Figures 7A,B present experimental data

from the same microbead tracked by the two different methods.

Figure 7A presents experimental tracking data from the pre-

viously published analysis [23] using a sum-of-absolute-differences

algorithm. Figure 7B presents experimental results using a centroid

tracking algorithm with intensity threshold segmentation,

MCShape. The additional comparison set facilitated interpreta-

tion of the experimental results by establishing confidence that the

velocity waveform characteristics were not noise artifacts resulting

from the tracking method. The blue tracings show VS,X and the

green tracings show VS,Y. Figure 7C presents experimental data

from an apparently non-interacting particle for reference purpos-

es. Figure 7C illustrates the magnitude of the noise that can be

expected from the algorithm employed in Figure 7B. Although

some noise may be present in the velocity signal in Figure 7B,

there is clearly a long pause beginning at roughly 0.35 s.

Additional, briefer pauses are apparent with both tracking

methods in Figures 7A,B. Figure 7D illustrates a selected portion

of simulation results using the Bell dissociation model parameters

reported for microbeads [23], sampled at 250 fps. The reduction

in simulation sampling rate from 1,000 fps to 250 fps reduced the

fluctuations in the sampled velocity due to diffusion. The

simulation qualitatively recreated the starting and stopping events

observed in the experiment, although there were fewer very short

pauses in the simulation results than observed experimentally. The

deceleration to a near-zero VS,X agreed with experiment well, and

the particle took several frames to slow in both cases. The

simulation missed the lagging component in the acceleration that

was apparent in the experimental data. A detectable lag period

required for particle acceleration was observed previously with

detachment from ligand-presenting accumulation strips [47].

There were several brief deceleration events in the experimental

tracking results in Figures 7A,B that were larger than the noise in

Figure 7C but missing from the simulation results in Figure 7D.

The disagreement suggested an important component to the

experimental physics was missed in the analysis and therefore not

included in the simulation.

Pause time statistics calculated from simulated sphere motion

matched experimental results. The statistical point estimate koff, an

indicator of the dissociation rate for individual molecules or

molecular clusters loaded with force, was calculated as described

previously [48]. Inputting the Bell model molecular parameters

experimentally measured for microbeads into the simulation [23],

an apparent koff was obtained from the simulated velocities that

matched the statistical point estimate to within 8% (Table 2).

Model predictions
There have been many measurements of selectin kinetics and

mechanical responses. The reported measurements vary by orders

of magnitude. Analyses have incorporated receptor multivalency

[22,48,49] as well as cellular deformability and microvillus

elongation [23,48–51] as possible reasons for the discrepancies.

The experimental result of Evans et al. [22] represents a

monomeric bond formation case. Simulation results assuming

parameters estimated from the discussion [22] are presented in

Figure 7E. The result demonstrates monomeric bonds would not

result in pauses, at least for 10 mm-diameter spheres. Some bond

events might not even be detectable above noise. Comprehensive

results from the simulations employing the monomeric parameters

[22] are presented in Figure S5. The results suggest the transient

deceleration events in Figures 7A,B that did not pause the sphere

could be low-valency bond formation events.

A conclusion of previous studies has been that dimerization plays

a significant role in measured cellular bond lifetimes [48,49]. We

refer to multivalent molecular groupings that form bonds as a unit

and evenly distribute a force as clusters. Reliability theory rules

governing cluster dissociation, similar to those employed in previous

analyses of bond lifetime [52], were added into the present model.

The goal was to investigate whether bond clusters could account for

the observed discrepancies in the flow cell microbead pause kinetics

with the parameters measured by molecular force spectroscopy

techniques. Clusters were assumed to form at the same rate as

monomers. This assumption facilitated the interpretation of the

motion statistics, although dimerization has been reported to result

in a two-fold enhancement on bond formation rates, as assessed by

detected pause events [53]. The summary statistics for a variety of

simulation conditions are compiled in Table 2. A more compre-

hensive compilation of results is available in Table S1.

Reliability theory was used to create a dimeric grouping of the

catch-slip parameters obtained from experiments with dimeric P-

Figure 6. Peak loading characteristics for single bonds. Simulation results for 6 mm-diameter spheres with a 50 s21 (grey) and 100 s21 (dark
grey) wall shear rate and for 10 mm-diameter spheres with a 50 s21 (white) and 100 s21 (black) wall shear rate were screened for single bond loading
events. (A) Statistical compilation of mean peak single bond loading forces. The error bar depicts the standard deviation. (B) Statistical compilation of
peak loading rates. The error bar depicts the standard deviation.
doi:10.1371/journal.pcbi.1000612.g006
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selectin/PSGL-1 interactions [5,32], which might physically

correspond to tetrameric bond clusters. The statistical point

estimate obtained for the dimeric dimers indicated dissociation

kinetics still faster than observed experimentally. The observed

koff calculated from the simulation also closely matched the

statistical point estimate. Trimeric groupings of the catch-slip

dimers [5], which might correspond to hexameric clusters,

produced dissociation kinetics slightly slower than experiment

(Table 2). Simulation results suggested the flow cell experiment

[23] was primarily detecting dimeric to trimeric groupings of

dimers measured in the force spectroscopy experiment [5]. The

cluster had to be increased to 36 dimers for the observed koff to

approach that reported by Park et al. [23] (Table 2). Interest-

ingly, membrane P-selectin has been reported to form non-

covalent hexamers under some isolation conditions [37].

Membrane PSGL-1 has also been observed to form rosettes

[36]. A thorough analysis optimizing cluster size distributions to

match bond lifetime data has been previously performed for

cellular systems [48,49]. Therefore, subsequent analysis investi-

gated what might be expected from an experimental microbead

flow system similar to the previous study [23], except with the

molecules immobilized in a dimeric configuration.

Fluctuations in VS,Y, wobble, might also contain information

about biomolecular tether formation events. The simulation results

in Figure 7D demonstrate brief increases in the magnitude of VS,Y at

the same time VS,X is observed to decrease. The wobble was not

readily apparent in the experimental velocity results. The tracking

results in Figure 7A exhibited little variation in VS,Y. The algorithm

employed in Figure 7B exhibited random variations in VS,Y that

appeared to be noise. There is one event just before 0.7 s that might

correspond to a real wobble. The movies were taken with a 206
objective and the movie quality would be improved with current

technology. It is possible better resolution will detect real wobble.

Higher site densities do not mediate extended pauses nearly as well

as when the receptors and ligands are packaged into molecular

clusters, as shown in Figure 8. The catch-slip parameters regressed

Figure 7. High temporal resolution comparison of simulation results to the data of Park et al. [23]. Experiments and simulations were
performed with S = 50 s21, R = 4.9 mm, nLu= 90 sites/mm2, and nRu= 95 sites/mm2. The sampled flow-direction velocity (VS,X, blue) and the sampled
perpendicular velocity (VS,Y, green). (A) Results for an experimental microbead using the original sum-of-absolute-differences tracking algorithm. (B)
The same experimental microbead was tracked using the centroid-based MCShape algorithm. (C) Tracking results using MCShape for an apparently
non-interacting experimental microbead in the same video segment. (D) Simulation results using the Bell slip bond model, (3), dissociation
parameters from Park et al. [23]. The comparison demonstrates the model recreates microbead motions well to a first approximation. (E) Simulation
results using catch-slip model, (4), dissociation parameters from the discussion of the biomembrane force probe results by Evans et al. [22]. The
results demonstrate that if the parameters discussed by Evans et al. [22] are true measures of monomeric bond dissociation under force, they would
be difficult to detect by a pause time analysis of flow cell assay data.
doi:10.1371/journal.pcbi.1000612.g007
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from the dimeric flow cell data [5,32] were used for further analysis.

They represented a minimum achievable valency configuration for

experiments employing wild-type PSGL-1 and were able to

detectably pause the sphere. Comprehensive velocity results with

these parameters are shown in Figure S4. The effect of receptor

distribution was tested by increasing cluster valency or alternatively

increasing the number of receptor clusters. The apparent koff was

estimated from the slopes of the black lines in Figure 8C. Some

quantization was apparent in the pause time values due to the brevity

of the pause relative to the sampling rate. The receptor cluster site

density basis was 95 sites/mm2. The results with 16and 26receptor

cluster density were similar for an assumed cluster valence of one,

suggesting multiple hydrodynamic load-bearing attachment points

could not form efficiently. It was necessary to package receptors and

ligands into molecular clusters to effectively extend pause times.

Recent observations suggest that skip distances are an important

measure of biomolecular binding efficiency [39]. An analysis of

how far the modeled sphere traveled between the pause events was

performed. Single-component Poisson models could not reconcile

the initial steep slope and shallower response phase at longer skip

distances apparent in Figure 8B. A logarithmic transformation was

employed, as shown in Figure 8D. Two linear segments were

apparent in the transformed data, suggesting a statistical model

blending multiple Poisson processes might match well. The mixed

Poisson process model was tested:

P Dƒdð Þ~
XN

i~1

Pi 1{e{d=Di
� �

, ð7Þ

where

XN

i~1

Pi~1: ð8Þ

Here, d is the skip distance, the Pi’s are the probability of one of

the N Poisson processes, and the Di’s are the respective rate

Table 2. Summary statistics for selected simulation conditions.

Cluster
Valence kon

Statistical Point
Estimate koff s-1

nRu Cluster Density
695 sites/mm2

nLu Cluster Density
690 sites/mm2

koff
s21

Optimal Mixed
Poisson Process

Short Skip
Distance mm

Long Skip
Distance mm

Medium Skip
Distance mm

Dissociation Parameters and Model: Park et al. (3)

1 (1) 12.6 16 16 12.0 2 0.69 12.89

1 (2) 12.6 16 16 11.6 2 0.58 15.23

Dissociation Parameters and Model: Marshall et al., Catch-slip (4)

1 (1) 100 16 1/26 51.7 2 1.81 46.17

1 (2) 100 16 1/26 66.1 2 3.24 43.84

1 (1) 100 16 2/36 64.6 2 3.24 34.71

1 (2) 100 16 2/36 70.3 2 0.30 33.15

1 (1) 100 16 16 55.5 2 0.40 21.45

1 (2) 100 16 16 72.4 2 1.12 21.18

1 (1) 100 16 26 59.3 2 0.93 8.80

1 (2) 100 16 26 53.6 2 1.01 9.83

1 (1) 100 16 46 41.2 2 0.44 3.51

1 (2) 100 16 46 37.1 3 0.22 5.32 0.86

2 (1) 20.5 16 16 22.0 2 0.85 13.38

2 (2) 20.5 16 16 21.3 2 0.83 12.27

1 (1) 100 26 16 60.3 2 0.73 9.34

1 (2) 100 26 16 55.5 2 0.89 9.64

3 (1) 10.0 1/36 1/36 10.4 2 2.02 118.45

1 (2) 10.0 1/36 1/36 14.5 2 0.65 82.56

Dissociation Parameters and Model: Marshall et al., Slip Only (3)

1 (1) 100 16 1/26 62.7 2 2.60 37.78

1 (2) 100 16 1/26 61.8 2 9.62 36.63

1 (1) 100 16 2/36 69.1 2 1.47 29.48

1 (2) 100 16 2/36 55.1 2 1.18 27.51

1 (1) 100 16 16 56.0 2 1.03 20.46

1 (2) 100 16 16 56.0 2 1.08 23.19

1 (1) 100 16 26 59.3 2 0.79 9.48

1 (2) 100 16 26 53.6 2 1.01 9.83

1 (1) 100 16 46 38.7 3 0.16 5.34 0.73

1 (2) 100 16 46 29.3 3 0.13 7.95 0.65

doi:10.1371/journal.pcbi.1000612.t002
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parameters with dimensions of distance. Parameter estimates were

derived using nonlinear regression in MATLAB. The results for a

two-component Poisson process are plotted as black solid lines in

Figures 8B,D. The regression fit the data well. A physical

explanation for the high probability of short skip distances relative

to a single-component model would be the existence of pre-

existing bonds in the contact patch. When the hydrodynamic load-

bearing bond breaks, the sphere could only perform a long skip if

no pre-existing bonds were present in the contact patch to catch

the sphere. Indeed, the short-skip distance derived from the

regression was on the order of the size of the patch where

molecules on the sphere could contact the surface, one micrometer

(Table 2). Figures 8B,D illustrate, as expected, the skip distance

was most effectively reduced by increasing the density of receptors

on the surface. Surprisingly, doubling the valency with a constant

cluster density was almost as effective at reducing the skip distance

as doubling the site density with constant valency, despite a

constant association rate. The result demonstrates dissociation

kinetics can influence measures of bond formation. The result also

reinforced the conclusion that functionally effective molecular

interactions require clustering.

To investigate the effects of the catch component in catch-slip

bond formation, simulations were also run assuming the high-

impedance pathway parameters derived from the dimeric flow cell

study [5,32], entered as a Bell slip model. The results are indicated

as ‘‘slip only’’ in Table 2. If catch-slip bonds were present, it was

postulated they might result in a decreased sensitivity of the short-

skip fraction to the amount of ligand available. A test of the

functional impact of reaction enhancement due to confinement

was included in the analysis by comparing the results with different

receptor bond formation rules defined by (1,2). Reactions

enhanced by molecular area confinement might be expected to

result in smaller short-skip distances than reactions exhibiting

contact patch confinement. Instead, a distinguishable effect of the

confinement model on the short-skip measurements was not

observed. This may be due to the smaller sample size at lower

ligand densities. However, a robust indicator of biomolecular

activity should have a detectable pattern even with the smallest

sample size of 24 events. Instead, an emerging trend in the long-

skip data was apparent in Figure 9A. Surprisingly, the long skip

distances clustered better according to the functional form of the

off-rate than the on-rate at low ligand densities. At the lowest

Figure 8. Pauses primarily affected by clustering but skips primarily sensitive to available binding pockets. Reactive spheres were
simulated with S = 50 s21, R = 4.9 mm, nLu= 90 sites/mm2, 16nRu= 95 sites/mm2, conditions similar to the experiment of Park et al. [23]. Association
kinetics were governed by (1) or (2). The catch-slip dissociation model, (4), was used employing parameters regressed from the flow-cell data of
Marshall et al. [5,32] for dimeric interactions. Increased valency, V, was achieved for each receptor cluster site by using reliability theory rules [52] to
create load-sharing molecular clusters. Therefore, 26V might physically correspond to a tetrameric bond cluster. The black lines show the fit
parameters reported in Table S1 and the dots show data points from the simulation. The percentile, ‘‘P,’’ indicates the uniform order statistic median.
Each data set was pooled from three 10 s simulation runs. Blue: single valence receptor clusters with contact patch confinement. Red: single valence
receptor clusters with molecular area confinement. Dark blue: double-valence receptor clusters with contact patch confinement. Maroon: double-
valence receptor clusters with molecular area confinement. Green: single valence receptor clusters but with double the receptor cluster site density
and contact patch confinement. Gold: single valence receptor clusters but with double the receptor cluster site density and molecular area
confinement. (A) Non-transformed pause time data. (B) Non-transformed skip distance data. (C) Linear transform for Poisson-distributed pause times.
(D) Linear transform for Poisson-distributed skip distances shows two distinct regions.
doi:10.1371/journal.pcbi.1000612.g008
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ligand density, a roughly 25% reduction in the long skip distance

was observed with the ‘‘slip only’’ bonds. The results emphasize

the difference between molecular tether formation and pausing.

The differences due to the assumed off-rate model suggest that

when interaction is mediated by a small number of bonds, the

dissociation kinetics influence the ability to initiate a pause. A

reasonable explanation for the observed decrease in the long-skip

distance with the removal of the catch component is that the catch

component increased the dissociation rate of transient molecular

tethers before they could rotate out of the contact patch, become

stressed, and effectively pause the microsphere.

The difficulty in making deductions about molecular confine-

ment from skip distances with the selected particle size and

dissociation parameters suggested another experimental metric

was necessary. Therefore, we investigated whether motion

perpendicular to the flow direction, wobble, carried information

regarding two-dimensional formation kinetics. The probability

distribution function for VS,Y was identical at a given ligand

concentration, regardless of the assumption of the functional form

of the molecular formation or dissociation rate (data not shown).

The identical probability distribution functions for VS,Y suggested

diffusive motion obscured the analysis. The persistence of a

wobble was investigated using autocorrelation. It was reasoned

that bond-directed rather than diffusive-directed motion should

correlate over short time intervals as a bond became stressed. The

autocorrelation of VS,Y yielded informative results and is presented

in Figure 9B. At low ligand concentrations, the wobble

autocorrelation grouped very well by the assumed confinement

model. Confinement-sensitive biomolecules wobbled the sphere

less, as their tether anchor points on the sphere were more likely to

be more proximal to the center of the sphere’s planar projection.

As ligand concentration increased, the dissociation model also

played a role, although smaller, in the particle wobble.

The role of surface separation in initial capture and recapture

events was investigated. The results from the simulations

investigated in Figure 9 were pooled. A capture bond was defined

as a bond that formed when there were no existing bonds in the

previous time step. The distribution of gap sizes during the first

capture bond and subsequent recapture bond events is presented

in Figure 10A. The distribution was pooled from 60 simulations,

and the result for the first capture bond agreed relatively well with

the Boltzmann distribution governing the separation at equilibri-

um. Therefore, at the site densities employed, the PSGL-1/

P-selectin pair effectively reached across the 90 nm gap to mediate

initial bond formation. There was not a detectable requirement for

the sphere to undergo a thermal excursion closer than the

molecular contour length to form a bond. Bond recapture events,

which would roughly correspond to ‘‘long skips’’ in Figure 9B,

were observed to occur at smaller separation distances. The result

suggested that subsequent bond formation events should occur

more quickly than the initial because more receptors would be

within an unstressed molecular contour length of the wall, as

suggested by (1,2). In Figure 10B, the time until the first capture

event is plotted as well as the interval between bond breakage and

recapture. Indeed, recapture occurred more quickly than initial

capture.

Relative motion effects
The lateral motion of the stationary and moving surface relative

to each other, as observed in the rolling of leukocytes, can affect

the rate of reaction in some situations and merits specific

consideration. A departure from the previous analysis of lateral

relative motion [54] would need to be implemented for the process

investigated presently for two reasons. First, a small number of

bonds with significant changes in their relative number can be

observed in Figures 4A–C, demonstrating the present process is

not near steady-state and is therefore inconsistent with the

assumptions of the previous analytical model [54]. Secondly, the

appropriate diffusivity model for molecular binding pockets firmly

attached to an immobile anchor point on a surface by a tether is

qualitatively different than one in which the tether attachment

point is also free to diffuse in a membrane. To better elucidate

Figure 9. Long-skip distances and wobble differentially reflect molecular activity. Reactive spheres were simulated with S = 50 s21,
R = 4.9 mm, 16nLu= 90 sites/mm2, and nRu= 95 sites/mm2. Association kinetics were governed by (1) or (2). Catch-slip parameters regressed from
Marshall et al. [5,32] were used in the catch-slip model, (4), or the just the high-impedance pathway parameters were entered into the slip model, (3).
(A) The long-skip distance calculated from the two-parameter Poisson regression at a variety of ligand concentrations. Black circles: the catch-slip
model was assumed with contact patch confinement. Blue triangles: the catch-slip model was assumed with molecular area confinement. Red
squares: the slip model was assumed with contact patch confinement. Green diamonds: the slip model was assumed with molecular area
confinement. Error bars show the 95% confidence interval estimate from the nonlinear regression. Surprisingly, the dissociation model had a
moderate effect on the skip distance at low site densities but the confinement model had little effect. (B) The sample-normalized autocorrelation of
the velocity component perpendicular to the flow direction (wobble velocity autocorrelation) was calculated and averaged together for the three
simulated beads at each condition. The colors indicate the same reaction assumptions as in the previous graph. Heavy dashed lines: results from
4690 sites/mm2 ligand density. Intermediate dot-dashed lines: results from 1690 sites/mm2 ligand density. Light solid lines: results from K690 sites/
mm2 ligand density. Colors represent the same cases as in (A). The confinement model had the largest effect on the wobble autocorrelation.
doi:10.1371/journal.pcbi.1000612.g009
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these points, consider the general equation for convective and

diffusive transport:

LC

Lt
~D+2C{~vv . +C: ð9Þ

For initial biomolecular bond formation, or for the case where

there are significant fluctuations in the free ligand density due to

the stochastic nature of bond formation, the time derivative of the

concentration will not be zero as assumed in the previous relative

motion analysis [54]. The transition from no bonds to at least one

bond, as during initial tethering, is not a steady-state process, and

it will be desired to accurately capture this step. Secondly, it is not

intuitively clear what the diffusivity constant in (9) represents if the

reactive end groups are free to diffuse about a tether point but the

surface attachment point is not mobile in a membrane. As the

sphere rotates, receptors that have formed bonds or are engaged in

encounter complexes must dissociate for the sphere to move

forward because the receptor attachment points are fixed on the

sphere’s surface. A more detailed treatment is presented in

Protocol S2. Therefore, relative motion cannot enhance bond

formation by lateral transport effects when the receptors are

immobilized to a point on the surface of the sphere and ligands are

also immobilized on a surface, as in the present case.

It is possible that relative motion might decrease bond

formation. If the sphere moves fast enough such that the receptor

and ligand binding pocket, once they happen upon a suitable

encounter, cannot complete reorientation of residues in the

binding pocket to complete the bond, no bonds can form. The

requirement for bond formation introduced by the consideration

of relative motion is:

l

VXYslip,R
§

1

rz
: ð10Þ

This portion of the motion analysis is similar to previous studies

[54,55]. VXYslip,R is the slip velocity a receptor on the sphere

relative to the surface, and VXYslip,R is less than the sphere’s

velocity due to the rotation of the sphere. The reaction rate, r+, is

similar to previously described intrinsic reaction rates [1,54,55],

except an additional transport step can be removed and made

explicit, as discussed in Protocol S2 and shown in Figure S6. The

intrinsic bond formation rate should be very fast, and the timescale

has been projected to be around 10 ms or less from simulations

[54]. The quantity on the left in (10) should be around 1,000 ms for

the shear rates employed here. A decrease in reaction due to

relative motion would not be expected for the shear rates

employed.

Discussion

Several key findings were made in the present investigation. The

first two of these were especially apparent through a detailed

analysis of sphere’s motions in the simulation. First, the grouping

of molecules into load-sharing clusters is critical for function.

Single bond formation events cannot pause the sphere at the wall

shear rates investigated because a single receptor-ligand bond

cannot withstand the force. Secondly, the wobble autocorrelation

may serve as an indicator of confinement enhancement in the

molecular formation kinetics. Finally, it was also observed

experimentally measured P-selectin kinetics and densities are able

to effectively capture a particle as long as the particle is within a

molecular contour length of the surface. Furthermore, recapture is

enhanced by the proximity to the wall.

The simulation method presented here differs in several

important fundamental ways from previous computational models

of adhesive interactions in flow. A theoretical framework for

modeling the vertical and lateral diffusion of microspheres under

flow was previously developed [56], but the previous investigation

did not incorporate biomolecular bond formation. The imple-

mentation presented here also adds rotational motion and

rotational diffusion, since they were needed to track the position

of individual receptors and molecular tether attachment points.

Previous work developing adhesive dynamics simulations provided

an invaluable reference and a presentation of many of the

components of the physics employed [57]. The inclusion of

Figure 10. Molecular capture spans the gap and enhances recapture events. The simulation results from Figure 9 were pooled to obtain 60
events for each capture bond. (A) An analysis was conducted to investigate the separation of the sphere from the surface when bonds form in the
absence of pre-existing bonds. First capture bonds formed efficiently across the range of gap sizes. Solid black line: equilibrium distribution for the
gap size. Red circles: distribution of separation distances when the first bond formation event occurs. Green diamonds: distribution of separation
distances observed when the first recapture, e.g. second capture, bond forms. Blue dashed line with triangles: distribution of separation distances
when the second recapture, e.g. third capture, bond forms. (B) Once the sphere captured to the surface once, the first and second recapture bonds
formed more quickly. The characteristic binding times describing the first linear segment (inset) for the initial capture bond, the first recapture bond,
and the second recapture bond were 0.143 s, 0.081 s, and 0.085 s, respectively.
doi:10.1371/journal.pcbi.1000612.g010
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thermal motion enabled the investigation of the effects of surface

separation on capture and direct comparison to experiment. Many

adhesive dynamics simulations aim to discern how more complex

factors integrate to influence cellular rolling behaviors (for

example: [32,58,59]). The model presented here did not

incorporate cellular factors to try to integrate all of the influences

on leukocyte rolling. Rather, the present goal was to answer

questions about biomolecular reaction. The effects of surface

separation and molecular characteristics governing bond forma-

tion on two-dimensional biomolecular kinetics are fundamental

questions of biomolecular function. Although the present investi-

gation focuses on the selectins, which are very important to a

variety of vascular homing processes, the methodology and results

may be applicable to additional classes of two-dimensional

bimolecular interactions.

Good simulated pausing and skipping results were achieved using

physiologic site densities [14] and recently published reaction rate

data [60]. Our initial attempt to model rolling behavior using the

previously published kf value of 1.7 mm2/s [20] did not result in

rolling: the sphere formed too many bonds to move. The sphere

exhibited good rolling behavior when we employed a kf of

4.861024 mm2/s, which was extrapolated from the ,AC kf
o.

recently reported [60]. It is very likely the estimation of the site

density was improved in the more recent study. It is also of note that

the two different formation rate estimates come from two different

measurement methods: the biomembrane force probe and the laser

trap. The configuration of the two experiments was different. With

the biomembrane force probe study, the two surfaces were held some

small distance apart, whereas with the laser trap the two surfaces

were pushed together. It is possible an increased confinement of the

reactive groups increased the bond formation rate in the

measurement with the laser trap. However, it does not seem likely

confinement would account for a 3,500-fold increase in reaction rate.

The simulation method might be employed in the future to

investigate the influence of bond formation rates and contour

lengths on pausing and skipping behaviors, given the observed

sensitivity to the bond formation rate, kf, and vertical transport. A

state diagram of their influence may be informative [34]. A direct

comparison individually trading each molecular parameter

measured for L-selectin and P-selectin should better elucidate

the impact of their molecular adaptations in capture and rolling.

Although only one model of confinement effects was investigated

here, the molecular area confinement model described by (2), the

simulation can be employed to investigate other functional

relations describing the confinement effect.

The simplified assumptions of the forces governing z-motion in

the simulation may also miss interesting behaviors. An interesting

potential result of adding a repulsive layer is that a bond might not

simply drive the sphere to the wall as in the present work.

Subsequent binding events might ratchet the sphere further into

the layer due to the highly damped nature of the vertical diffusion.

The recapture time could decrease much more substantially with

subsequent binding events. Such an effect might effectively couple

an increase in shear rate with an increased force pushing the

sphere into the repulsive layer, enhancing recapture with

increasing shear. Experimental progress has been made to analyze

the near-wall vertical motion of microbeads in low ionic strength

solutions using total internal reflection microscopy (TIRM) [61].

Future experimental efforts might utilize TIRM methods to

analyze more physiologic conditions with higher ionic strength

buffers and protein coatings. In silico and in vitro glycocalyx

analogues could be constructed [9].

Investigations have found an increase in apparent selectin-

mediated cell and microbead capture with increasing shear

[29,39,62,63]. Several explanations have been proposed: increased

force increases the molecular bond formation rate [39,62], the

motion of the two surfaces relative to each other increases reaction

through lateral transport [54,63], and an increase in cell flattening

with increased shear may enhance tethering [49]. Here, it was

discovered recapture is enhanced by vertical transport closer to the

wall, independent of cell deformation [51]. The simulation results

suggest an additional factor that may contribute to enhanced

adhesion under flow conditions.

The lack of an enhancement in the bond formation rate due to

lateral relative motion transport for the present simulation system

is not in conflict with previous computational studies [54]. The

physical configuration of the previous system was substantially

different. Most significantly, the points where the receptors and

ligands were attached to their respective surfaces were free to

move in the membrane. A receptor and ligand pair could therefore

remain in the contact patch if they happened to find each other as

the sphere rolled. The lack of an enhanced effective bond

formation rate due to lateral relative motion transport in the

present analysis does appear to be in conflict with the conclusion of

an experimental study employing immobilized receptors [63]. The

conclusion that particle sliding, lateral transport, enhances the

binding rates is consistent with the presented experimental scaling

data and implies that a lateral transport mechanism governs the

formation rate. However, other mechanisms that enhance the

bond formation rate and scale similarly with shear and size could

also account for the result. For example, inter-particle hydrody-

namic interactions can influence vertical transport to the wall

[47,64]. Notably, the frequency of inter-particle interactions would

increase with increasing shear. Vertical cell or bead mixing with

the surface might increase with increasing shear by inter-particle

interactions. Also, force increases with increasing shear, and other

studies have suggested increasing force might increase the bond

formation rate [39,62].

The analysis developed in Protocol S2 suggests transport in the

form of lateral sliding should not enhance formation rates when

the receptors and ligands are attached to their respective surfaces

by an immobile anchor point. An experimental microbead study

suggested molecular bond formation rates might be force

dependent [39]. This was a bold assertion given the implications

for biomolecular reaction theory. The discrepancy in the

conclusions between published microbead studies [39,63] suggests

the simulation developed here be employed with L-selectin

parameters and coupled with experiment. It is likely vertical

transport plays an even more significant role in systems with L-

selectin than was observed in the present results. L-selectin has

fewer repeated subdomains and is shorter than P-selectin, which

should enhance the importance of vertical transport. Also, the

microbeads used in these experimental studies [39,63] were

smaller than 10 mm. In Figure 3, it is apparent the smaller spheres

diffuse away from the wall more frequently. Therefore, with these

experimental systems [39,63], a more significant effect of the

confinement model might be observed. Directly coupling a

computational methodology with experimental observations of

selectin-mediated particle interactions with TIRM or total internal

reflection fluorescence microscopy (TIRFM) would facilitate direct

observations of vertical fluctuations and a conclusive analysis [65].

If the reaction rate enhancement in both microbead studies

[39,63] is due to the same mechanism and is truly biomolecular in

nature, rather than due to transport, the rate enhancement could

be interpreted as a macromolecular version of collision or

transition state theory as originally developed for covalent bond

formation kinetics. The energy scales involved are interesting.

From Figure 3B, the modal velocity for a 6 mm-diameter bead at
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50 s21 is roughly 90 mm/s. At 100 s21, near the peak tethering

rate in the study [63], a 6 mm-diameter bead would have a modal

kinetic energy equivalent to 0.5 kBT. The kinetic energy of the

particle could be coupled to the reaction efficiency of the binding

pocket through the molecular tether.

It has been suggested that apparent increases in the cellular

tethering rate with shear [29] may be due to increased flattening of

the cell [49]. Cell morphology is much more complicated than the

rigid sphere case we have considered here. Sedimentation effects

on the microvillus length scale may play a role as cellular

protrusions bump into the functionalized surface [17]. Addition-

ally, it has been illustrated here that bond dissociation properties

may influence measures designed to test bond association. Another

factor could be a small lift effect [66,67]. Lift should not be

important based on the wall proximity criterion. However, even

nano-scale vertical displacements have functional binding conse-

quences due to the molecular nature of the capture events.

The molecular loading rates observed in Figure 6 begin near the

higher limit of the range employed in the biomembrane force probe

study of dissociation pathway switching in P-selectin (0.02–40 pN/

ms) [22]. It was therefore interesting that there was still an observable

effect of the off-rate on the observed long-skip distance in Figure 9A,

likely because the bonds were unstressed for a brief period.

Interestingly, a study with (poly)ethyleneglycol linkers found

thermodynamic fluctuations in the molecular tether allowed

receptors to extend, bind, and then exert an attractive force between

the two surfaces [68]. The assumption that molecular tether points

must be brought within the molecular contour length and exert no

force upon binding serves as a simplifying first approximation.

Measurements of catch-slip bonding do exhibit a striking numerical

relationship with previous molecular measurements of length and

force. Force at the non-deformed molecular length of 92 nm was

56 pN, as calculated from the freely-jointed chain model parameters

[21]. For a dimer, this force distributes as 28 pN per binding head,

very close to the reported catch-slip optimum for P-selectin [5]. The

peak loading rates in Figure 6 agree with those deduced for

neutrophils tethering in a flow cell [29]. Simulations have shown how

dissociation of a receptor from the cytoskeleton and microvillus

extension can decrease the load on a tethering biomolecular

complex, and it was noted clustering plays an important role in

cellular bond lifetime [49]. Here, it was observed that in rigid

microbead flow assays, the bond loading might be higher but

clustering still can explain the discrepancy in the results between

measurement methods. Indeed, comparing Figures 7C,E, it might be

difficult to make observations of single-molecule bond formation

events in a flow cell without a careful experimental design.

Although the present study suggests molecular confinement is

not important to enhancing the function of molecular pairs

mediating transient interactions, confinement has been suggested

to play a role for molecular pairs that must mediate longer-lived

interactions [7]. Although flow cell techniques have frequently

been used to investigate interactions involving selectins, they have

been applied to more classes of molecules such as antibodies,

cadherins, and T-cell surface molecules [69–71]. The wobble

autocorrelation measurement should be broadly applicable to

more classes of molecular interactions than the P-selectin/PSGL-1

interaction explicitly explored here, where it might better indicate

adhesive function.

The implementation of a new modeling methodology to

investigate the important qualitative and quantitative character-

istics of molecular systems mediating two-dimensional interactions

was reported here. In addition to exploring the molecular

characteristics and parameters important for other closely related

adhesion systems, such as L-selectin/PSGL-1, we anticipate the

computational method will be extended to entirely new molecular

systems. For example, polyethylene glycol tethers have a

pronounced influence on particle interactions with immobilized

ligands [72]. Properties such the effective tether extension and the

compressibility of the surrounding polyethylene glycol coat might

be designed using computational modeling for optimized vascular

binding to molecular targets. Although the present focus has been

on understanding dynamic interaction, e.g. biomolecular tethers

arresting particles, the technique should be entirely applicable to

new classes of molecules. The investigation of confinement was

inspired by a study of CD2/LFA3 interaction, an important

component of extended adhesion and signaling between T-cells

and antigen presenting cells [7]. The technique should therefore

be broadly applicable to additional classes of inter-cellular

interactions. The importance of confinement in mediating long-

lived interactions has been suggested to be a result of the closely-

controlled intermembrane distance, which is not fixed in dynamic

adhesion. For example, the diffusion of individual receptors might

be added into a discrete receptor model to watch how molecules

assemble into the synapse at the interface during the extended

adhesive interaction. Furthermore, the computational methods

might be used to optimize the molecular properties, such as length

and flexibility. Intercellular bond formation could be linked to

intracellular signaling cascades and the spatial localization of

signaling scaffolds. This could facilitate the design of functionally-

enhanced dendritic cells for immunotherapy or re-engineering

dendritic cell subpopulations to elicit a desired T-cell (usually TH1)

differentiation pathway [73].

Supporting Information

Protocol S1 Additional microsphere motion modeling and

analysis details. An in-depth description of the model assumptions

and calculations is given. The statistical analysis of the simulation

results and the implications of noise in the acquisition system are

discussed further.

Found at: doi:10.1371/journal.pcbi.1000612.s001 (0.16 MB

DOC)

Protocol S2 Additional lateral transport considerations. The

negligible effect of lateral transport on the bond formation rate

under the simulated experimental conditions is discussed further.

An alternative model of encounter complex and bond formation

that could be used to incorporate lateral transport effects is

presented.

Found at: doi:10.1371/journal.pcbi.1000612.s002 (0.03 MB

DOC)

Table S1 Compilation of simulation results.

Found at: doi:10.1371/journal.pcbi.1000612.s003 (0.31 MB

DOC)

Figure S1 Assumed models of force extension. The employed

models of molecular elongation with force are compared to

experimental data and alternatives.

Found at: doi:10.1371/journal.pcbi.1000612.s004 (0.06 MB

DOC)

Figure S2 P-selectin/PSGL-1 bond lifetimes with alternative

force dissociation models, parameters, and valencies. The bond

dissociation rate as a function of force is shown for several

published measurements of P-selectin/PSGL-1 bonds.

Found at: doi:10.1371/journal.pcbi.1000612.s005 (0.08 MB

DOC)

Figure S3 Velocities using the Bell model dissociation param-

eters of Park et al. Instantaneous velocity results from simulations
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utilizing the dissociation kinetics reported by Park et al. are

presented as a function of time.

Found at: doi:10.1371/journal.pcbi.1000612.s006 (0.84 MB

DOC)

Figure S4 Velocities using the five-parameter catch-slip model

dissociation parameters derived from the experiments of Marshall

et al. Instantaneous velocity results from simulations utilizing the

dissociation kinetics from the study by Marshall et al. are

presented as a function of time.

Found at: doi:10.1371/journal.pcbi.1000612.s007 (0.94 MB

DOC)

Figure S5 Velocities using the five-parameter catch-slip model

dissociation parameters of Evans et al. Instantaneous velocity

results from simulations utilizing the dissociation kinetics from the

study by Evans et al. are presented as a function of time.

Found at: doi:10.1371/journal.pcbi.1000612.s008 (0.65 MB

DOC)

Figure S6 A model of encounter complex formation and bond

formation. A model accounting for the role of both the molecular

tether and binding pocket chemistry in bond formation is

presented. The model can be employed with the assumption that

the receptor and ligand are each confined by an immobile tether

anchor point to a separate surface.

Found at: doi:10.1371/journal.pcbi.1000612.s009 (0.16 MB

DOC)

Video S1 Movie showing a selected 1 s of interactions for the

microsphere in Figure 4A.

Found at: doi:10.1371/journal.pcbi.1000612.s010 (1.32 MB

MPG)

Video S2 Movie showing a selected 1 s of interactions for the

microsphere in Figure 4B.

Found at: doi:10.1371/journal.pcbi.1000612.s011 (1.24 MB

MPG)

Video S3 Movie showing a selected 1 s of interactions for the

microsphere in Figure 4C.

Found at: doi:10.1371/journal.pcbi.1000612.s012 (1.30 MB

MPG)
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