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Colorectal cancer (CRC) is one of the most prevalent cancers in the world, especially in
developed countries. In different studies, the association between CRC and dysbiosis
of gut microbiome has been reported. However, most of these works focus on the
taxonomic variation of the microbiome, which presents little, if any, functional insight
about the reason behind and/or consequences of microbiome dysbiosis. In this study,
we used a previously reported metagenome dataset which is obtained by sequencing
156 microbiome samples of healthy individuals as the control group (Co), as well as
microbiome samples of patients with advanced colorectal adenoma (Ad) and colorectal
carcinoma (Ca). Features of the microbiome samples have been analyzed at the level of
species, as well as four functional levels, i.e., gene, KEGG orthology (KO) group, Enzyme
Commission (EC) number, and reaction. It was shown that, at each of these levels,
certain features exist which show significant changing trends during cancer progression.
In the next step, a list of these features were extracted, which were shown to be able to
predict the category of Co, Ad, and Ca samples with an accuracy of >85%. When only
one group of features (species, gene, KO group, EC number, reaction) was used, KO-
related features were found to be the most successful features for classifying the three
categories of samples. Notably, species-related features showed the least success in
sample classification. Furthermore, by applying an independent test set, we showed
that these performance trends are not limited to our original dataset. We determined
the most important classification features at each of the four functional levels. We
propose that these features can be considered as biomarkers of CRC progression.
Finally, we show that the intra-diversity of each sample at the levels of bacterial species
and genes is much more than those of the KO groups, EC numbers, and reactions
of that sample. Therefore, we conclude that the microbiome diversity at the species
level, or gene level, is not necessarily associated with the diversity at the functional
level, which again indicates the importance of KO-, EC-, and reaction-based features
in metagenome analysis. The source code of proposed method is freely available from
https://www.bioinformatics.org/mamed.
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INTRODUCTION

Human microbiome consists of 10–100 trillion symbiotic
microbial cells which are harbored by each person (Turnbaugh
et al., 2007; Ursell et al., 2013; Magnúsdóttir et al., 2017),
which in turn affects the human physiologic aspects such as
metabolism, drug interactions, and a variety of diseases. Analysis
metagenomic data are a popular approach to obtain insights on
the host–microbiome interactions (Bermúdez-Humarán, 2016).
Based on metagenomic sequences, it is estimated that about
500−1000 different bacterial species live in the human gut
(Sommer and Bäckhed, 2013), which include approximately
3.3 million different bacterial genes. Some international consortia
such as MetaHIT (Qin et al., 2010) and the Human Microbiome
Project (HMP) (Huttenhower et al., 2012) have put intensive
investments on microbiome research, which highlights the
importance of the topic.

Gut microbiota plays a central role in the human digestive
system, including digestion of food (Hooper et al., 2002),
empowerment of the human immune system (Sommer and
Bäckhed, 2013), protection of intestinal mucosa (Kaiko
and Stappenbeck, 2014), and protection against pathogens
(Lawley and Walker, 2013). For treating microbiome-related
diseases, different methods have been proposed, including fecal
microbiome transplantation (Bakken et al., 2011), prescribing
probiotics (Gareau et al., 2010), and changing the diet in the form
of probiotics to manipulate the microbiome (Cani et al., 2009).

With the increasing expansion of studies in the field of
the human microbiome, advanced statistical and computational
methods are used for analyzing such high-dimensional data,
including the metagenomic sequences of gut microbiome
(Waldron, 2018). Taxonomic profiling and functional profiling
are the two major approaches that have been used for analyzing
the microbiome data (Dhariwal et al., 2017).

Several different studies have been performed in the field
of Taxonomic profiling on the association between colorectal
cancer (CRC) and microbiome. In Feng et al. (2015), by using
156 samples, 10 bacteria with the most significant differential
changes are recognized and introduced as the markers of CRC.
In another study, two bacterial species, namely Fusobacterium
nucleatum and Peptostreptococcus stomatis, were found to be
over-represented in CRC samples (Yu et al., 2017). In another
work, 18 bacterial genera have been found to have significant
frequency changes in CRC compared to control samples
(Alomair et al., 2018). Similar studies have been done on the CRC
metagenomic sequences, resulting in different bacteria genera to
be identified as CRC markers (Balamurugan et al., 2008; Sobhani
et al., 2011; Wang et al., 2011; Chen et al., 2012; Ahn et al., 2013;
Wu et al., 2013; Xu and Jiang, 2017; Mori et al., 2018) (see also
Table 2). In another work on 156 healthy and CRC samples at
different stages, 22 species were identified at the taxonomic level
with a detection rate of AUC > 0.75 (Zeller et al., 2014).

In contrast to the taxonomic profiling approach, in
some studies, functional variations in the genetic content
of metagenomic samples are also taken into account.
FishTaco, for example, uses an analytical and computational
framework for integrating taxonomic and functional variations

TABLE 1 | The statistical summary of the metagenomic sequences used in
the present work.

Total number of paired reads 4,109,778,973

Average number of paired reads in each sample 26,344,737

Average read length 91.3 bp

Average GC content 46.4%

(Manor and Borenstein, 2017). Another functional study
highlighted 20 microbial genes as the CRC biomarkers (Yu et al.,
2017). In another similar work, over 130,000 genes have been
found for which a significant difference was found between two
of the three sample categories (control, advanced colorectal
adenoma, and colorectal carcinoma) (Feng et al., 2015). In
another study, metagenomic data obtained from 52 healthy and
52 CRC samples were analyzed. This study was performed at
the taxonomic and functional level to identify several bacteria,
genes, modules, and pathways in the samples which can be used
for CRC detection. Furthermore, when an independent dataset
was used for the same purpose, 39% of the markers, including
genes, modules, and pathways, were identified again as important
factors for CRC detection (Vogtmann et al., 2016).

In the present work, we present an alternative approach, which
relies on the functional annotation of metagenomic sequences. In
this approach, the contribution of genes, KEGG orthology (KO)
groups, enzymes, and reactions are quantified, and consequently,
used for detecting features which are useful for classifying
different samples. Using this approach, we investigated how
taxonomic changes are reflected in biochemical characteristics of
microbiome at the functional level.

MATERIALS AND METHODS

Metagenomic Colorectal Cancer
Datasets
In this work, we used the metagenomic sequences reported in
Feng et al. (2015). This dataset (in this study, we say “Dataset1”)
includes 156 metagenomic shotgun-sequenced fecal samples,
including 63 controls (Co), 47 advanced colorectal adenomas
(Ad), and 46 colorectal carcinomas (Ca) samples. These samples
had been sequenced using the Illumina platform and paired-
end sequencing method (with average read length = 100 bp
and insert size = 350 bp) (Feng et al., 2015). Personalized
data, including lifestyle and diet, age, gender, BMI, blood
pressure, blood glucose, and some other clinical information
of the patients are also available (Feng et al., 2015). Also,
“Dataset2” was used, as an independent data set, to evaluate the
performance of the constructed models. This dataset (named
originally “cohort1”) contains 80 samples of the human fecal
metagenome, from 24 control, 27 colorectal adenoma, and 29
colorectal carcinoma individuals (Thomas et al., 2019). The
number of paired reads of these samples is very different
among the samples (min: ∼7 M paired reads, mean: ∼23.6 M
paired reads, and max: ∼91 M paired reads). Therefore, we
chose 60 samples of this data, such that 20 samples were
selected for each of the control, adenoma, and carcinoma groups
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TABLE 2 | The bacterial genera with a significant difference in control and CRC.

Present study Alomair et al.,
2018

Xu and Jiang,
2017

Mori et al.,
2018

Balamurugan
et al., 2008

Sobhani et al.,
2011

Chen et al.,
2012

Wang et al.,
2011

Ahn et al.,
2013

Wu et al.,
2013

Ruminococcus X

Bifidobacterium X

Eubacterium X X

Bacteroides X X X X X

Blautia X

Faecalibacterium X

Escherichia X X X X X

Collinsella X X

Dorea X

Klebsiella X

Alistipes X X

Streptococcus X X X

Roseburia X X

Clostridium X

Prevotella X X

Parabacteroides X

Anaerostipes X

Dialister X

Barnesiella X

Enterococcus X

Oscillibacter X

Bilophila X X

Megasphaera X

Porphyromonas X X X X X

Odoribacter X

Paraprevotella X X

Fusobacterium X X X X X

Acidaminococcus X

Slackia X

Anaerotruncus X X

Peptostreptococcus X X X X

Sutterella X X

Shigella X X

Gemella X X
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(min = ∼10.7 M, mean = ∼21.3 M, and max = ∼49.2 M).
Details of the selected samples from Dataset2 are provided in
Supplementary Table S10.

Metagenome Analysis
To evaluate the data quality, we used FastQC v0.11.5. This
software receives the file with the FASTQ format and presents its
different properties including the number of reads, read lengths,
GC content, and some different quality-control parameters.

To identify the bacterial taxa in each sample, we used
MetaPhlAn v2.0 software (Truong et al., 2015). This software
can determine the percentage frequency of the bacteria, viruses,
and the archaea at different taxonomic levels. In the present
study, both files of the paired-end sequences in each sample have
been separately used for recognizing the present bacteria, and the
results were averaged.

The Reference Gene Catalog
In the original work, Feng et al. (2015) have used the
assembly approach, following gene prediction, to determine
the frequency of genes. In contrast, in the present study,
read mapping to a reference gene catalog was used for
obtaining the frequency of each gene in a metagenome.
For this purpose, a previously reported human gut gene
catalog, IGC, was used (Li et al., 2014). This gene catalog
was obtained by combining the metagenomic sequences of
1018 previously reported samples from different European,
American, and Chinese individuals, together with 249 newly
sequenced metagenomic samples. In this catalog, 9.88 × 106

genes, together with their corresponding proteins have been
reported (Li et al., 2014). To construct this gene catalog,
two previously existing gene catalogs [namely, the MetaHIT
catalog (Qin et al., 2010), and the gene catalog reported by
Human Metagenome Project (Consortium, 2012)] had been
used. The metagenomic sequences had been used for producing
this gene catalog by using the MOCAT pipeline (Kultima
et al., 2012). Finally, they have been integrated by CD-HIT
clustering algorithm by finding potential sequence redundancies
(Li and Godzik, 2006).

Mapping Reads to the Gene Catalog
MOSAIK mapping tool v2.2.3 was used for obtaining the
frequency of the genes (Lee et al., 2014). This program maps
the paired-end reads to a gene catalog by using hash tables for
a chosen word length (which is equal to 15 in this work). In
this mapping process, one of the following cases can occur: (i)
both of reads are mapped to the same gene; (ii) a read is mapped
to one gene but the other read is mapped to another gene; (iii)
one read is mapped to one gene, while the other read is not
mapped to any gene; (iv) neither of the two reads are mapped. In
the first three cases, the frequency of the mappings is separately
counted for every gene in the catalog. Mapping score is computed
based on the default values of MOSAIK, with match score = 10,
mismatch score =−9, gap opening penalty =−15, gap extension
penalty = −1. A read is considered to be mapped to a gene when
its mapping score was greater than or equal to zero.
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Mapping Genes to KEGG Database
After computing the frequency of each gene, one should assign
each gene to a certain KO groups. For this purpose, we
used GhostKOALA tool which belongs to the KEGG database
(Kanehisa et al., 2016). GhostKOALA is an automatic server for
metagenome sequence annotation. This tool obtains amino acid
sequences as the input and, if possible, returns the KO identifier,
i.e., a primary KO number and potentially, some secondary KO
number. However, there might be several EC numbers for a KO
group, or alternatively, one EC number for several KO groups.

By using this KO identifier, the Enzyme Commission (EC)
numbers related to each KO group were obtained. In this
stage, there might be no annotated enzyme in the KEGG for a
certain KO group. Alternatively, their several enzymes might be
associated with a certain KO group.

In the next step, using the EC numbers from the previous step,
we get the reactions related to each EC number in the KEGG
database. Each EC number might be associated with multiple
reactions. In this study, we used only those reactions which are
confirmed by IUBMB.

Data Normalization
Before starting the normalization process, we removed those
genes whose abundance was less than five mapped reads in
all samples (Best et al., 2015). Then, we divided the number
of reads mapped to each gene to the length of the gene, as
we compute the “frequencies” of genes with different lengths
to calculate KO, EC number, and reaction frequencies. Since,
in most cases, the metagenomic data are sparse, we used
the cumulative sum scaling (CSS) algorithm to compositional
correction and normalization (Kumar et al., 2018). CSS corrects
the bias detected in differential abundance data using total-sum
normalization (TSS) (Paulson et al., 2013). The implementation
of CSS algorithm in R (i.e., metagenomeseq1) has been shown
to have a higher performance than similar algorithms on sparse
data (Lee et al., 2017). To normalize our gene frequency data, we
used the same implementation of CSS algorithm. Furthermore,
this algorithm was applied to correct the compositional bias on
taxonomic data at the genus and species level.

To obtain the normalized values of KOs, EC numbers,
and reactions, we used normalized values of the genes in
each sample. Suppose KOi =

{
g1, g2, . . . , gk

}
includes k genes,

which means that genes g1, g2, . . . , gk are associated with KOi.
In this case, the normalized frequencies of these genes are
summed in each sample to compute the KOi frequency. We
perform the same procedure to compute the frequencies of EC
numbers and reactions.

Feature Selection
After computing the normalized frequencies of genes, KO
groups, EC numbers, and reactions in each sample, one may
exploit these features to classify samples to different categories.
Two strategies can be considered for feature selection. The first
strategy is unsupervised feature selection. In this strategy, feature
selection is done regardless of data labels and only by considering
the separating power of features (Du and Shen, 2015).

The second strategy is supervised feature selection, where
features are selected based on the data labels such that the
samples are classified in the best way (Chandrashekar and Sahin,
2018). In the present work, the data labels are known. Therefore,
it is possible to use these labels in the feature selection process.

For selecting features from the existing sets (namely gene, KO
groups, EC numbers, and reaction), we used the multi-cluster
feature selection (MCFS) algorithm (Cai et al., 2010). MCSF
selects a subset of features so that the selected features preserve
the multi-cluster characteristic of the data. This algorithm, by
default, works as a supervised feature selection method. In the
present work, supervised mode of the MCFS is used.

Statistical Analyses
The non-parametric Kruskal–WallisH test was used to determine
whether two or more samples that follow the same distribution.
This test can be considered as a generalization of Mann–
Whitney U-test, which can be used merely for comparing two
groups of samples. The parametric equivalent of this test is
one-way analysis of variance (ANOVA). To correct for the false
discovery rate we used the Benjamini–Hochberg (BH) method
(Corder and Foreman, 2009).

For pairwise comparison of the normalized reaction
frequencies in different categories of cancer progression (i.e.,
Co vs. Ad and Ad vs. Ca) we used the Mann–Whitney U-test.
Based on these pairwise comparison results, we categorize each
reaction to one of the nine possible trend schemes (Table 5).

Cross-Validation and Classification
Based on Support Vector Machine
The selected features (see above) were used to train a support
vector machine (SVM) to classify the samples. SVM is a
classification technique that was first introduced by Cortes and
Vapnik (Vapnik, 1995). SVM was initially designed for binary
classification but was later generalized for multi-class modes. This
technique tries to minimize the classification error by maximizing
the distance between the hyperplanes and data points (Borah and
Gupta, 2017). To evaluate the performance of trained SVM, 100
repeats of 10-fold cross-validation were used.

RESULTS

In the present work, we investigated how the functions encoded
by gut microbiome may change during CRC progression. We
used two previously published datasets. “Dataset1” consists
of 156 samples extracted from feces of 63 healthy (Co),
47 advanced colorectal adenomas (Ad), and 46 colorectal
carcinomas (Ca) individuals (Feng et al., 2015). This dataset
is used to extract features as well as construct prediction
models. “Dataset2” was used, as an independent data set,
to evaluate the performance of the constructed models. This
dataset contains 80 samples of the human fecal metagenome,
from 24 control, 27 colorectal adenoma, and 29 colorectal
carcinoma individuals (Thomas et al., 2019). Then, each gene was
analyzed to determine its related KO group(s), EC number(s),
and reaction(s). Furthermore, the normalized metagenomic
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frequency of each gene, KO group, EC number, and reaction
was calculated.

Data Quality Control
We used FastQC software to control the quality of the dataset.
This dataset had been already preprocessed and no special
qualitative problem was found. Table 1 summarizes the quality
information of the 156 samples. Further details about the
characteristics of the reads in this dataset are presented in
Supplementary Table S1.

Identification of Bacterial Taxa in the
Samples
In this research, using MetaPhlAn, we detected the bacteria at
the genus and species level. The detailed taxonomic profiles
of all samples are presented in Supplementary Table S2.
In the next step, by using Kruskal–Wallis statistical test,
we found those bacteria whose frequencies are changed
significantly among the groups (p-value ≤ 0.05) over the
Co, Ad, and Ca categories at the genus and species level.
Table 2 summarizes the list of those bacterial genera which
are reported as the markers of CRC in other metagenomic
studies. Additionally, Figure 1 shows the top 10 species,
based on the MetaPhlAn2 analysis, in the three categories
of Co, Ad, and Ca.

Mapping Reads to Genes, and Genes to
KO Groups, EC Numbers, and Reactions
By using MOSAIK, we mapped the (paired-end) reads onto
the IGC gene catalog. In general, 84% of the total reads were
mapped to the IGC. More specifically, 64% of the read pairs
have been both mapped to the same gene, while 27% of read
pairs were mapped to separate genes, or, one read has been
mapped to a gene and the other read has not been mapped
to any gene. The remaining 9% of paired reads have not been
mapped to any gene. Finally, we found 5,697,860 genes in
the IGC catalog to which at least one read was mapped. The
number of the mapped reads of each sample is presented in
Supplementary Table S3.

We used the GhostKOALA tool to obtain the KO
groups associated with each gene sequence. At the end,
from among the 5,697,860 genes to which at least one
read has been mapped, for 1,937,738 genes the primary
KO group (and also, for 4,111,878 genes at least one KO
group) were obtained (Supplementary Data Sheets S1, S2,
respectively). Overall, 19,001 unique KO numbers have been
found for all the genes. For these KO numbers, 6,349 KO
numbers have an annotated EC number (Supplementary
Table S4). At this stage, we reached 3,846 unique EC
numbers in KEGG, which corresponds to 1,869,711 genes
(Supplementary Data Sheet S3). From these 3,864 EC
numbers, 3,224 EC numbers have annotated reactions
(Supplementary Table S5). However, there are 3,702
annotated reactions, which correspond to 1,476,691 genes
(Supplementary Data Sheet S4).

The Altered Frequency of Genes Is Less
Pronounced Compared to Their
Assigned KO Group, EC Number, and
Reactions in Metagenome Data of Group
Samples
The Kruskal–Wallis was applied to test the significance of
differences in the normalized frequencies of the gene, KO
groups, EC number, and reaction obtained for each sample. The
normalized frequencies of each gene in each of the samples are
presented in Supplementary Data Sheet S6. Other normalized
frequencies of KO groups, EC numbers, and reactions are
calculated from normalized gene frequencies and are presented
in Supplementary Tables S6–S8.

In each case of the Kruskal–Wallis test, the statistical variable
is considered as a single species, a gene, a KO group, an EC
number, or a reaction. For each of the mentioned variables,
there are 156 samples which belong to the three categories of
Co, Ad, and Ca, and the number of the samples in each group
is, respectively, 63, 47, and 46. For example, according to the
results (Table 3 and Supplementary Table S9), out of 4,706,619
analyzed genes, 612,356 genes showed a significant change (p-
value ≤ 0.05). To correct for the false discovery rate we used the
BH method. After p-value adjustment, 2.1% of 4,706,619 genes
were significant at Kruskal–Wallis test (p-value ≤ 0.05).

Determining Over-Represented Genes,
KO Groups, EC Numbers, and Reactions
In this step, we identified whether each gene (or, their assigned
KO group, EC number, or reaction) with a statistically significant
altered frequency is specifically over-represented in each category
of samples, i.e., Co, Ad, and Ca. A gene is considered to be
“present” in a metagenome sample if (i) at least one read is
mapped to it, and (ii) the frequency of its mapped reads is among
the 90% of the top-ranking frequencies of the reads mapped to
the other genes of that sample. To claim if a gene is specific
to a sample group, a threshold of b was defined. For example,
when b = 0.95 it means that a gene is assumed to be “special”
in that sample group if it is present in the metagenome of 95% of
individuals of that sample group. The same criteria were applied
for determining the presence and special of KO groups, EC
numbers, and reaction in each sample group.

Figure 2A shows the number of specific genes in each
sample category, for different b-values (i.e., if a gene is solely
present in one of the three categories and is not special in
any of the other categories). Figure 2B shows the percentage
of present genes (as shown in Figure 2) whose frequencies
are significantly changed over sample categories (p ≤ 0.05
in Kruskal–Wallis test). Similarly, the number of present KO
groups, EC numbers, and reactions of the three categories
are represented in Figures 3A, 4A, 5A, respectively. The
percentage of significantly changed specific KOs, enzymes, and
reactions in each sample group is represented in Figures 3B, 4B,
5B, respectively.

Note that based on Figures 2A, 3A, 4A, 5A, when b is
increasing, the number of special genes is generally decreasing,
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FIGURE 1 | Top 10 bacterial species (with the highest normalized frequency values) in control (Co), adenoma (Ad), and carcinoma (Ca) groups with p-value ≤ 0.05 in
Kruskal–Wallis test.

TABLE 3 | The results of the Kruskal–Wallis test for significance level (p-value ≤ 0.05) at different levels (species, gene, KO group, EC number, and reaction).

Test level Total sample Number of
significant cases
(p-value ≤ 0.05)

Percentage of
significantly

changed cases

Percentage of significantly
changed cases after p-value

adjustment

Species 496 87 17.54 5.04

Gene 4,706,619 612,356 13.01 2.10

KO group 19,001 2,492 13.11 0.44

EC number 3,864 422 10.92 0.50

Reaction 3,702 409 11.05 0.52

FIGURE 2 | (A) The number of specific genes in each sample group with different b-values. (B) The percentage of specific genes in each sample group with
significantly altered frequencies at the level of p-value ≤ 0.05 according to the Kruskal–Wallis test.

while the number of special KO groups, EC numbers, and
reactions in that range generally show an ascending trend.

Figure 6 presents a different state of the specific genes for
the different sample group of Co, Ad, and Ca. All the Venn
diagrams of Figure 6 are drawn for b = 1 (meaning that the

given specific gene, KO group, EC number, or reaction is present
in all individual of the corresponding sample category). The
Venn diagram in Figure 6(A1) illustrates the 4,706,619 genes to
which at least five reads have been mapped at all samples. Out
of 7278 present genes (sum of 5524, 775, and 979 gene), there
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FIGURE 3 | (A) The number of specific KO groups in each sample group with different b-values. (B) The percentage of specific KO groups in each sample group
with significantly altered frequencies at the level of p-value ≤ 0.05 according to the Kruskal–Wallis test.

FIGURE 4 | (A) The number of specific EC numbers in each sample group with different b-values. (B) The percentage of specific enzymes in each sample group
with significantly altered frequencies at the level of p-value ≤ 0.05 according to the Kruskal–Wallis test.

FIGURE 5 | (A) The number of specific reactions in each sample group with different b-values. (B) The percentage of specific reactions in each sample group with
significantly altered frequencies at the level of p-value ≤ 0.05 according to the Kruskal–Wallis test.

are 58% of genes whose frequencies were significantly changed
among different groups (p ≤ 0.05 in Kruskal–Wallis test). On
the other hand, the values at the right side of Figure 6 have
been obtained by dividing the number of the present genes of
each sample group (green area) by the number of genes which

are present in the intersection (purple area). For example, the
result of dividing the number of present genes in Co by the
number of genes in the intersection is 0.79. In Figure 6(B2),
Venn diagram has been drawn for the 19,001 KOs obtained from
KEGG database. Here, only 21% of the present KO groups of
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FIGURE 6 | Comparison of specificity of the genes in different forms of the gene, KO, enzyme, and reaction. The green area in each of the Venn diagrams represents
the special section for each of the sample groups, while the purple region is the common area among all the sample groups.
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each category have a p ≤ 0.05 according to the Kruskal–Wallis
test. For example, the ratio of control-specific KO groups (green
area) to shared KO groups (purple area) is only 0.011, which is
considerably smaller compared with the value of present genes in
Figure 6(A1). As shown in Figure 6(B1) Venn diagram, 4,111,878
genes in KEGG have assigned annotated KO. Consequently, one
may argue that the specific genes of Figure 6(A1) may be missed
in Figure 6(B2) (due to lack of KO annotation). By comparing
the percentages related to the genes in Figure 6(A1) and (B1),
no egregious difference is observed. The ratio for present EC
numbers in Figure 6(C2) is even lower. This diagram has been
drawn for the 3864 enzymes which have an annotation in KEGG.
Among the specific EC numbers of each sample category, only
13% have a p ≤ 0.05 (Kruskal–Wallis test). However, Venn
diagram of Figure 6(C1) has been drawn for the 1,869,711 genes
which have an annotated EC number in KEGG. By comparing
the percentages related to the genes in Figure 6(C1), one again
observes that there is no considerable difference between the
Venn diagram related to the genes in the two previous section.
Finally, in Figure 6(D2) Venn diagram has been drawn for
the 3702 reactions annotated in KEGG and among the specific
reactions of each group, only 11% of them have a p-value ≤ 0.05
in Kruskal–Wallis test. The ratio of the specific reaction of each
group to the joint section is lower compared to the corresponding
value for the gene. However, Venn diagram of Figure 6(D1) has
been drawn for the 1476,691 genes which have an annotated
reaction in KEGG. The pattern observed in this diagram does
not have a significant difference with the gene diagrams in the
previous sections, either.

Identity of Changed Reactions in
Different Categories
To determine the functional changes at the level of reactions in
the metagenome of individuals among Co, Ad, and Ca groups,
we compared the normalized frequencies of reactions between Co
and Ad, and also between Ad and Ca categories. For this purpose,
we used the Mann–Whitney U-test with the significance level of
p ≤ 0.05. In this case, nine cases can occur (Table 4). The results
of this statistical test are presented in Supplementary Table S11
in detail. Interestingly, there is only one reaction that shows a
monotonically decreasing frequency trend, while there is another
reaction that shows a monotonically increasing frequency trend.

Classification Based on Selected Marker
Features
As explained above, we obtained five normalized datasets, i.e.,
bacterial species, gene, KO group, EC number, and reaction. Now,
by using this data, we try to select those features which accurately
classify the samples into three Co, Ad, and Ca categories.

We use the MCFS algorithm to select the features (Cai et al.,
2010). Table 5 presents the optimum number of features selected
for the five datasets in supervised manners.

The selected features in Table 6 were used to classify
samples by SVM. Next, we used 100 repeats of 10-fold
cross-validation for execution of SVM classifier. Tables 6, 7
represent the values of accuracy, specificity, sensitivity, and

TABLE 4 | The nine conditions obtained for the reactions by using the
Mann–Whitney U-test.

State of changing abundance of
reaction between three groups

Number of reactions

(1) Co = Ad and Ad = Ca 3267

(2) Co = Ad and Ad < Ca 140

(3) Co = Ad and Ad > Ca 184

(4) Co < Ad and Ad = Ca 75

(5) Co < Ad and Ad < Ca 1*

(6) Co < Ad and Ad > Ca 14

(7) Co > Ad and Ad = Ca 15

(8) Co > Ad and Ad < Ca 6

(9) Co > Ad and Ad > Ca 0

For example, in the second row, “Co = Ad and Ad < Ca” means that the abundance
of 140 reactions in this state is constant from control to adenoma and increased
from adenoma to carcinoma. *The only reaction here is: L-glutamate + L-aspartate
4-semialdehyde <=> 2-oxoglutarate + L-2,4-diaminobutanoate.

TABLE 5 | The number of the features selected by the MCFS algorithm.

Number of features in the supervised method

Bacterial species 64

Gene 1387

KO group 130

EC number 106

Reaction 124

TABLE 6 | The average results of the 100 repeats of 10-fold cross-validation and
execution of SVM for selected features.

SVM with selected features on first dataset

Number of
features

Accuracy Sensitivity Specificity AUC

Species 64 0.752 0.579 0.818 0.741

Gene 1387 0.788 0.677 0.841 0.782

KO group 130 0.854 0.762 0.899 0.849

EC number 106 0.812 0.705 0.862 0.814

Reaction 124 0.773 0.645 0.832 0.783

The training and test data are selected from the Dataset1.

TABLE 7 | The results of SVM classification for independent dataset.

SVM trained with first dataset and tested with second dataset

Number of
features

Accuracy Sensitivity Specificity AUC

Species 64 0.641 0.446 0.738 0.593

Gene 1387 0.652 0.464 0.747 0.592

KO group 130 0.733 0.600 0.800 0.706

EC number 106 0.680 0.510 0.765 0.668

Reaction 124 0.653 0.455 0.753 0.597

The training data are selected from the Dataset1 and the test data from the
second Dataset2.
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the area under the ROC curve (AUC) of classification. The
AUC measure was calculated using the Wilcoxon rank sum
test. Table 6 shows the results of SVM, for which, both
the training and the test sets were selected from Dataset1.
In contrast, Table 7 shows the results of SVM when the
training set is obtained from Dataset1, while the test set is
selected from Dataset2.

According to the results presented in Table 6, KO-
based features are better than species-, gene-, EC-, and
reaction-based features at predicting the sample categories.
Table 6 suggests that classification by genus- or species-
based features, which have been used for classification of
samples in previous studies (classification accuracy of 75.2%
and AUC of 74.1%; see Table 2) has the lowest accuracy
among the features presented in Table 6. Here, we reached
the classification accuracy of 85.4% and AUC of 84.9% in KO-
based features.

Tables 6, 7 indicate that classification by species- and gene-
based features has the lowest accuracy among the studied
features. Gene-based features have been the basis of decision
making in some previous studies (Yu et al., 2017). Our results
suggest that the difference in relative abundance at the species
level and gene count does not have the same group-associated
differences in Co, Ad, and Ca samples.

We also use Dataset2, as an independent dataset, to
evaluate the performance of the model constructed using
Dataset1. This dataset contains 80 healthy, adenoma, and
carcinoma samples but we use 60 samples of Dataset2 (see
the section “Materials and Methods”). We then used the
same data processing procedure that was previously applied
on Dataset1 to compute the normalized frequency of different
features in Dataset2.

Finally, the same features as those selected for the Dataset1
in Table 5 are extracted from Dataset2. The trained SVMs using
the features extracted from Dataset1 are then evaluated with the
features extracted from Dataset2. Table 7 shows the results of
this evaluation. The results in Table 7 also confirm that KO-
based features have the highest classification power among the
five specified feature categories.

Tables 6, 7 indicate that classification by species- and gene-
based features has the lowest accuracies among the selected
features. Gene-based features have been the basis of decision
making in the previous study (Yu et al., 2017). Our results suggest
that the change in the frequencies of the bacterial species and
genes do not have the same association with functional changes
of the microbiome.

Comparison of Over-Represented Genes
With Previously Reported CRC
Biomarkers
We compared the list of genes obtained in this research with
the list of previously reported CRC biomarkers (Yu et al.,
2017). In that study, 20 genes have been reported as CRC
markers. Furthermore, among these CRC markers, four genes
had been confirmed by the results of an independent work (Yu
et al., 2017). The sequence data of these 20 biomarker genes

are presented in Supplementary Data Sheet S5. We blasted
these 20 genes to the dataset of genes in Table 6 to find
if there is any correspondence between these two gene sets.
The results of this analysis are presented in Supplementary
Table S12. Overall, 13 out of 20 genes were found to be
present among the results of our study. More specifically, all
of the four genes which were reported to be confirmed in
Yu et al. (2017) were among the genes that were selected
in our work.

DISCUSSION

In this research, we reanalyzed metagenomic sequences of 156
control, advanced colorectal adenoma, and colorectal carcinoma
samples (Feng et al., 2015). The sequence reads were mapped
to a catalog of 9.88 million genes (Li et al., 2014). Then,
by using the comprehensive annotation information of the
KEGG database, we extracted further functional features at
the levels of KO groups, EC numbers, and reactions. From
these functional features, we selected those features which
could separate Co, Ad, and Ca samples with an accuracy of
85.4% and AUC of 84.9%. However, our results suggest that
the accuracy of classification by using species- and gene-based
features is far less than those of KO-, EC-, and reaction-
based features. From these results, one can conclude that the
differences between the frequency of bacteria and genes are
not fully reflected in the differences at the functional levels. In
other words, taxonomic and genetic changes in metagenome
are not necessarily associated with functional changes. Similar
conclusions have been mentioned previously in the literature
(Flores et al., 2014; Tian et al., 2017). In the present study, we used
a computational quantitative approach to identify the relative
importance of features at various functional levels, including
gene, KO, EC, and reaction.

Also, according to Figures 2–5, when b is closer to one
(meaning that the components are specified in all sample groups),
a descending trend is observed for the gene level. However, at
the level of functional features, i.e., KO group, EC number, and
reaction, the trends are ascending.

Another important observation of this work is that the ratio
of carcinoma-specific genes to the common genes in Figure 6 is
higher compared to that ratio for adenoma-specific and control-
specific samples. This observation suggests that the microbiome
dysbiosis in colorectal carcinoma results in an increased gene
diversity among the carcinoma samples. Related observations
have been previously reported in the literature (Burns et al.,
2015), but the precise role of the increase in bacterial diversity
in CRC is yet to be understood.

In the present work, we used the IGC gene catalog (Li et al.,
2014) as a comprehensive list of genes reported to be present in
the human gut microbiome. In any gene catalog, including the
one used in the present work, two or more different genes may
be in the same KO group. As a result, grouping genes of the same
KO group can increase the accuracy of decision-making about
the healthy and patient samples. This is presumably the reason
behind the success of KO-based features in classification.
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In this study, from the 156 samples, we obtained about 5.7
million genes with non-zero frequency, while for 4.1 million
genes at least one KO number is specified. Furthermore, for 1.9
million genes, at least an EC number is found in KEGG. This
value decreases to 1.5 million genes with annotated reactions.
Therefore, one may argue that when we use KO groups, EC
numbers, or reactions for classification, some of the KO groups,
EC numbers, or reactions may be discarded, simply due to
missing annotations in KEGG. However, according to Figure 6,
it can be concluded that in case of the genes which show a
significant difference, the significance level decreases by moving
from KO group to EC number, and the reaction. Note that the
data of KO-based features alone have the highest importance
and can detect the healthy and patient samples with an accuracy
of 85.4%. A possible explanation for the highest classification
accuracy of KO is that for certain KO groups, there is no
annotated EC numbers or reactions.

We also classified the samples of Dataset2 using the features
selected from Dataset1. When the predictive power is evaluated,
we observed that although classification accuracy for Dataset2 is
lower than that of Dataset1, the same trend is observed again, as
the best performance is obtained by applying KO-based features
(accuracy = 73.3% and AUC = 70.6%).

In this study, we found 26 bacterial genera and 10 bacterial
species which showed significant differences among the control,
advanced adenoma, and carcinoma groups. Some of these
bacteria have been reported as CRC biomarkers in previous
studies (Table 2).

In this research, we calculated the changes in the frequency
of all the gut microbiome-related reactions which have been
annotated in KEGG from the healthy state to the adenoma, and
from adenoma to the carcinoma state. Also by using statistical
test, we have determined that which of the 3702 annotated
reactions have had significant frequency changes. In general, we
have specified nine states for these reactions and all of these
reactions are presented in Supplementary Table S11 in detail.
For example, the only reaction which always shows an increasing
trend (shown by ∗ in Table 4) is R06977. In this reaction, aspartate
and glutamate amino acids are consumed. This reaction shows an
increasing trend from healthy to adenoma states, and also, from
adenoma to carcinoma states. In previous works, increased level
of aspartate and glutamate amino acids in CRC has been reported
(Okada et al., 1993). On the other hand, it has been reported that
the levels of these two amino acids are correlated to the growth
of the colorectal tumors (Yoshioka et al., 1992). Therefore,
one can conclude that microbiome activities, and especially its
glutamate metabolism, play an important role because of its
strong correlation with the metabolism of colorectal cancer cells.

In the same context and as other representative, two other
reactions used as feature were R01080 and R02353 (rows 2 and
8 of Table 4, respectively), which showed significant increment
in their frequency in colorectal carcinoma. R01080 is a reaction
for hydrolysis of uridine to uracil and belongs to the pyrimidine
metabolism pathway. It has been shown that the recycling of
uracil is vital for the growth of strains with inability of de
novo pyrimidine synthesis (Kurtz et al., 2002). On the other
hand, nucleotide metabolism is of great importance in cancer.

For example, capecitabine, which is a fluoropyrimidine drug,
is used in chemotherapy of several cancers including CRC and
act by inhibition of nucleoside metabolism, and consequently,
cell division. Our findings suggest that the microbiome of a
patient in the advanced CRC stage may pave the way for the
progression of cancer by providing tumor with further uracil,
which is necessary for cell growth (Walko and Lindley, 2005).
Reaction R02353 represents the conversion of 17beta estradiol
to the estrone, which is catalyzed by 7 beta-hydroxysteroid
dehydrogenase (17HSD). It has been shown that there is
an association between the activity of this enzyme and cell
proliferation, and additionally, migration ability of breast cancer
cells (Vihko et al., 2005; Aka et al., 2012, 2017). On the other
hand, R00618 (Row 7 of Table 2) shows a decrease in adenoma
and carcinoma samples compared to the normal ones. This
reaction is catalyzed by thiamine triphosphatase, which convert
thiamin triphosphate to the thiamin diphosphate (active form
of Vitamin B1). Interestingly, it has previously been shown that
high doses of Vitamin B1 may reduce the proliferation of cancer
cells (Hanberry et al., 2014). The observed decrements of this
reaction in patients with adenoma and carcinoma suggest that in
these patients microbiome functionality is changed in a way that
produce less active form of Vitamin B1, which means that cancer
cell proliferation is not inhibited.

CONCLUSION

In the present study, our goal was to understand, at the
functional level, how microbiome changes are associated with
diseased states in CRC. Using a rigorous secondary data analysis
approach (Longo and Drazen, 2016), we tried to find the relevant
taxonomic and functional features that can predict the disease.
We used the MOSAIK tool to map the metagenomic reads
to the comprehensive IGC gene catalog. Then, for each gene,
its associated bacterial species, as well as its KO group, EC
number, and reaction were extracted when possible. We showed
that species- or gene-based features alone are not especially
good at classifying control and the disease samples, compared
to KO-, EC-, and reaction-based features, which are suggested
to be used in the present study. Moreover, using a machine
learning method, we showed that it is possible to achieve >85%
prediction accuracy.
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