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To date,most transcriptome studies of schizophrenia focus on the analysis of protein-coding genes. Long noncod-
ing RNAs (lncRNAs) are emerging as key tissue-specific regulators of cellular and disease processes. The amyg-
dala brain region has been implicated in the pathophysiology of schizophrenia. We performed unbiased whole
transcriptome profiling of amygdala tissues from 22 schizophrenia patients and 24 non-psychiatric controls
using RNA-seq. We reconstructed amygdala transcriptome and employed systems biology approaches to anno-
tating the functional roles of lncRNAs. As a result, we identified 839 novel lncRNAs in amygdala. We found in
amygdala lncRNAs aremore subtype-specific than protein-coding genes. We identified functional modules asso-
ciated with “synaptic transmission”, “ribosome”, and “immune responses” which were related to schizophrenia
pathophysiology that involved lncRNAs. Integrative functional analyses associating individual lncRNAs with
specific pathways and functions further show that amygdala lncRNAs are connected with all of these pathways.
Our study presents the first systematic landscape of lncRNAs in amygdala tissue from schizophrenia cases.
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Research in Context

Evidence Before this Study

The etiology of schizophrenia remains unknown. Most previous
studies focus on the roles of protein-coding genes (mRNAs) in
the disease. In the recent advance, long non-coding RNAs
(lncRNAs), a kind of transcripts larger than 200 nt but without
protein-coding potential, have been illustrated to play important
biological roles, especially in the neural system. Some lncRNAs
such as Gomafu are found to contribute to schizophrenia. The
amygdala is the region of the brain that has been considered to
play a primary role in the processing of emotional response, and
pathophysiology of schizophrenia.Added Value of this Study

To identify amygdala specific lncRNAs relevant to schizophrenia,
we conducted a systematic analysis of lncRNAs in amygdala by
usingRNA-seq datawith high sequencing depth and characterized
their functions and roles in schizophrenia. We constructed novel
amygdala lncRNAs, and amygdala lncRNAs are found to be more
subtype-specific than protein-coding genes. We annotated
functional roles of lncRNAs in amygdala using a systems biology
approach. We demonstrated that lncRNA are involved in dysregu-
lated gene pathways “synaptic transmission”, “ribosome”, and
“immune responses” in schizophrenia.Implications of All the Avail-
able Evidence

Our study presented the first systematic landscape of lncRNAs in
amygdala tissue from schizophrenia cases, and proposed bio-
markers of lncRNAs in schizophrenia that areworthy experimental
validation in the future.

1. Introduction

Schizophrenia (SCZ) remains one of themost mysterious and costli-
est mental disorders in terms of human suffering and societal expendi-
ture [1]. Thus, it's important to improve our understanding of its
molecular mechanisms of schizophrenia for developing effective thera-
pies. RNA-Seq has been widely used to profile schizophrenia tran-
scriptome in recent years for this purpose. Most of these studies have
focused on differential expression analysis of protein-coding
genes [2, 3] and somehave analyzed allele-specific expression in schizo-
phrenia [4].

Long non-coding RNAs (lncRNAs), the transcripts of larger than 200
nt but without protein-coding potential [5, 6], have received much at-
tention in recent years. Though not fully understood, lncRNAs are con-
ceived to play important roles in a variety of biological functions
throughmolecule functions such as signals, decoys, guides and scaffolds
[7]. LncRNAs are generally expressed at low level, andmany of them are
unknown. This makes it difficult to detect and quantify thesemolecules.
The emergence of RNA-Seq provides the exact technology as needed for
studying lncRNAs. RNA-Seq has been used to investigate lncRNAs in
neurons [8]. Previous studies have demonstrated that lncRNAs can
have a profound impact on gene regulations, especially in neurons
[9–14]. However, limited information exists on the roles of lncRNAs in
schizophrenia. In addition, many lncRNAs, especially tissue-specific
lncRNAs, remain to be discovered or are involved with biological func-
tions that are complex or poorly defined and remain to be annotated.

The main obstacle to characterize lncRNAs is their low expression
levels. It requires very high sequencing depth for RNA-Seq, which is
generally lacking in many previous transcriptome studies. Conse-
quently, although many transcriptome studies of schizophrenia have
been conducted, most of them don't investigate lncRNAs, partially due
to the high sequencing depth requirement and the poor annotation of
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lncRNAs currently available [2, 3, 15–22]. Liu et al. demonstrated
dysregulation of non-coding RNA in the amygdala region of schizophre-
nia patients [23], but a systematical demonstration of functional roles of
lncRNAs in schizophrenia is lacking. Through its important role in the
processing of emotions, amygdala region has been involved in the path-
ophysiology of schizophrenia. Currently, emotional perturbations are
common symptoms of schizophrenia, suggesting that dysfunction in
neurons within the amygdala region may contribute to the dysregula-
tion and altered behavior of schizophrenia patients. To identify amyg-
dala specific lncRNAs relevant to schizophrenia, we performed
unbiased whole transcriptome profiling of human amygdala region
using RNA-seq with high sequencing depth. We report the systematic
identification of lncRNAs, and characterize their functions and roles in
schizophrenia via systems biology approaches.

According to DSM-IV, schizophrenia can be divided into five
subtypes: paranoid, disorganized, catatonic, undifferentiated and resid-
ual schizophrenia [24]. The clinical characteristics of each subtype can
vary. It is interesting to investigate gene dysregulations in different
subtypes that account for their distinct diversities. Unbiasedwhole tran-
scriptome profiling would help to identify these dysregulations and
interplay of these abnormally expressed genes systematically. In
this study, we used amygdala tissue from 22 schizophrenia patients
including three subtypes: paranoid, undifferentiated and disorganized,
and 24 non-psychiatric controls. We profiled their amygdala whole
transcriptomes with ~100 millions of 100 nt short reads per sample on
average. To our knowledge, this is the first comprehensive characteriza-
tion of lncRNAs in amygdala tissue from schizophrenia patients. The
lncRNA landscape characterized here provides novel insights into the
transcriptomic variations seen in the amygdala across subtypes of
schizophrenia patients.

2. Materials and Methods

2.1. Experimental Design

We obtained 45 amygdala samples from postmortem brain from the
Lieber Brain bank (http://www.libd.org), including 9 undifferentiated,
7 disorganized, 5 paranoid, and 24 controls without psychiatric diagno-
ses. The PMI, age and gender of cases and controls were well matched
(Supplementary Table S1), as indicated by their no association with
the phenotype (non-parametric Kruskal-Wallis rank sum test p-value
of 0.2, 0.5 for PMI and age respectively; Chi-square test p-value of 0.67
for gender). The sample description and RNA-Seq data are available at
https://www.ncbi.nlm.nih.gov/bioproject/379666.

2.2. RNA-Seq of Amygdala Tissue

RNA-Seq libraries were constructed using Illumina (RS-122-2001)
TruSeq RNA sample Prep Kit following the manufacture instruction.
The poly-A containing mRNA molecules were purified from 300 to
500 ng DNAse treated total RNA using oligo (dT) beads. Following the
purification, themRNAwas fragmented into small pieces using divalent
cations under elevated temperature (94 degree) for 2 min. Under this
condition, the range of the fragments length is from 130 to 290 bp
with a median length of 185 bp. Reverse transcriptase and random
primers were used to generate the first strand cDNA from the cleaved
RNA fragments. The second strand DNAwas synthesized using DNA Po-
lymerase I and RNaseH. These cDNA fragments then went through an
end repair process using T4 DNA polymerase, T4 PNK and Klenow
DNA polymerase, and the addition of a single ‘A’ base using Klenow
exo (3′ to 5′ exo minus), then ligation of the illumine PE adapters
using T4 DNA Ligase. An index was inserted into Illumina adapters so
that multiple samples can be sequenced in a single lane. These products
were then purified and enriched with PCR to create the final cDNA
library for high throughput DNA sequencing using Highseq2000. The
concentration of RNA-seq libraries was measured by Qubit (Invitrogen,

http://www.libd.org
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CA) and quantified with qPCR. The quality of RNA-seq library wasmea-
sured by LabChipGX (Caliper, MA) using HT DNA 1K/12K/Hi-sensitivity
LabChip. The libraries are multiplexed and loaded on a flowcell for clus-
ter generation on cBot (Illumina). While on sequencing run, the
Illumina Real Time Analysis (RTA) module was used to perform image
analysis, base calling, and the BCL Converter (CASAVA v1.8.2) were
followed to generate FASTQ files which contain the sequence reads.
The current sequencing depth is over 80 million (2x100bp 40 million
paired-end) mappable sequencing reads.

2.3. Transcriptome Assembly and Novel lncRNAs Discovery

We followed the standard protocol of the transcript-level expression
analysis of RNA-seq experiments [25]. We obtained an average read
depth of 116M reads per sample (Supplementary Table S8). The first
step is quality and adapter trimming. Trimming was done by Trim
Galore - a wrapper script to automate quality and adapter trimming as
well as quality control (https://www.bioinformatics.babraham.ac.uk/
projects/trim_galore). Adapter sequences and fragments with less
than quality score 20 in raw reads were removed. The processed reads
were then aligned to human reference genome version hg38 (reference
chromosomes only) by HISAT2 [26]. Common SNPs recorded in
dbSNP144 and splice sites from Ensemble (download from HISAT2
website) were taken into account to improve alignment accuracy.
Only concordant read pairs were set to be reported. The output SAM
files were converted to BAM files, then sorted and indexed by SAMtools
[27]. Following alignment and filtering an average of 108 million reads
were obtained per sample with an average alignment rate of 95% (Sup-
plementary Table S8). After reads alignment, we applied the median
transcript integrity number (medTIN) [28] score to assess the RNA qual-
ity of each sample. As a result, we obtained themedTINs in the range of
47.4 to 78.3, with a median of 70.8, which indicated a high level of RNA
integrity (Supplementary Table S8). Obtained BAM files were used as
input by assembler StringTie [29] (reference annotation was
GENCODE v24 [30] + stringent Human Body Map lncRNAs set from
Broad Institute [31]), default parameters were used, that means geno-
mic regions with at least reads coverage 2.5 will be considered as tran-
scripts. The resulting GTF files were combined by StringTie with –merge
mode with GENCODE v24 + stringent Human Body Map lncRNAs as
reference annotation. The merging took a consensus of individual
transcriptomes, that could improve the reliability of novel loci and iso-
forms. After obtainingmerged GTF file, we compared it with annotation
of GENCODE v24 + stringent Human Body Map lncRNAs, by using the
gffcompare tool from GFF utilities (https://ccb.jhu.edu/software/
stringtie/gff.shtml), to identify novel transcripts (whose class code
were labeled as “i”, “u” and “x” by gffcompare). As a result, we obtained
5924 novel transcripts. Then these novel transcripts were used to
discover novel lncRNAs as the input of slncky software [32] to filter
out potential unknown protein-coding genes or gene duplication
events. We used slncky's novel lncRNAs report as our novel lncRNAs
set. Then we added these lncRNAs annotation to the GENCODE v24+
stringent Human Body Map lncRNAs to do the following analysis.

2.4. Differential Expression and Pathway Enrichment Analysis

Differential expression analysis and summarization of expression
levels were done based on read counts. All BAM files were first proc-
essed by the “prepDE.py” (https://ccb.jhu.edu/software/stringtie/dl/
prepDE.py) script from stringTie to extract read count information in
each RNA-Seq sample. The reference annotation GTF file we used was
GENCODE v24 + stringent Human Body Map lncRNAs + our novel
identified lncRNAs. After obtaining the read counts table, we conducted
differential expression analysis and produced normalized counts using
DESeq2 [33]. Reads Per Kilobase Million (RPKMs) were obtained by
the normalized counts divided by gene lengths. Only expressed genes
(i.e. the genes' 50th-percentile RPKM value is larger than 0, and the
genes' 95th-percentile RPKM value is larger than 0.05) were selected
to conduct differential expression analysis. P-values of DESeq2 were
corrected using the Benjamini-Hochberg procedure [34] for multiple
testing adjustment. To do pathway enrichment analysis, we calculated
z-scores by using p-values and signs of log fold change from the output
of DESeq2. These z-scores were used to rank genes, followed by pre-
ranked GSEA [35]. Significantly enriched pathways were selected
based on GSEA FDR q-values.

2.5. Expression Profile in Subtypes

We used an extended method described by Cabili et al. [14, 31] to
quantify the SCZ subtype specificity of each lncRNA, mRNA, and
pseudogene. For each gene, let vij be the RPKM value of the gene in
the ith sample of the jth subtype, where i ranges from 1 to nij, the num-
ber of samples in subtype j, and j ranges from 1 to J (J=4 in this study)
in this study (Here “subtype” also contains controls).We first transform
expression level by log2 transformation: xij = log2(vij + 1). Then we
took the average of gene's expression levels across subtype: xj ¼ ð∑nij

i¼1
xijÞ=nij. Ideally, if one genewas perfectly subtype-specific, thenxj should
be equal to zero in all subtypes except one. Next, we calculated an
expression profile that normalizes the gene expression in various
subtypes. Formally:

E ¼ e1; e2;…; eJ
� � ¼ x1P

xj
;…;

xJP
xj

� �
:

Each ej is the proportion of the total expression that in the jth
subtype. Third, we defined the idea expression profile in each subtype:

E1 ¼ 1;0;…;0ð Þ; E2 ¼ 0;1;…;0ð Þ;…; E J ¼ 0;0;…;1ð Þ

That is to say, Ej represents that a gene only expressed in the jth sub-
type. Finally, we calculated the distance between observed gene expres-
sion profile with the idea expression profile Ej by the Jensen-Shannon
divergence. The Jensen-Shannon divergence is defined as:

JS EE j
� �

¼ H
E þ E j

2

 !
−

H Eð Þ þ H Ej
� �

2
; j ¼ 1;2;3;4;

where H is the Shannon entropy. Then we defined our subtype-
specific score as:

S Eð Þ ¼ 1− min
j¼1;…; J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JS EE j
� �r

:

The larger score means more subtype-specificity observed, and a
score 1 means the gene expressed in only one subtype.

2.6. Quantification of lncRNAs and lncRNA-Pathway Association

First, RPKMs were obtained by DESeq2. RPKMs were calculated by
the normalized counts divided by gene length. In order to make the
result more reliable, we only selected highly expressed genes, namely,
the genes with 50th-percentile RPKM values larger than 0 and 95th-
percentile RPKM values >0.25. Then RPKM value of each lncRNA locus
was correlatedwith all highly expressedmRNAs loci (log2 transformed:
log2 (RPKM+1)). All 45 samples were used to calculate correlations.
Then for each lncRNA, a list of correlation-based (Pearson correlation)
ranked mRNAs was constructed and subject to GSEA to do pre-ranked
analysis [35]. An association matrix of lncRNAs and GO terms was
made: if a GO term was enriched in one lncRNA with FDR threshold
0.01, then we would assign 1 or −1 based on positive or negative
enriched, otherwise 0 will be assigned.

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore
https://ccb.jhu.edu/software/stringtie/gff.shtml
https://ccb.jhu.edu/software/stringtie/gff.shtml
https://ccb.jhu.edu/software/stringtie/dl/prepDE.py
https://ccb.jhu.edu/software/stringtie/dl/prepDE.py
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Heatmap was generated based on the association of lncRNAs with
GO terms, and hierarchical clustering was applied to both rows and
columns.We cut lncRNAs into 10 clusters based on hierarchical cluster-
ing. Then we used Fisher exact test to rank GO terms in each cluster to
determine the enrichment level of associated GO terms of each cluster
with respect to other clusters.

2.7. Gene Co-Expression Network Analysis

Co-expression networks of highly expressed genes were identified
by WGCNA according to the methods described previously [36, 37]. All
45 samples were used to construct WGCNA network. First, normalized
RPKM values of highly expressed genes were quantified by DESeq2.
Then a matrix of correlation (Pearson correlation) between all pairs of
highly expressed genes was generated and further converted to an ad-
jacency matrix with a power value β. The value of power value β was
20, as determined by the function pickSoftThreshold provided by
WGCNA that met the scale-free fitting threshold of 0.9. Co-expression
modules were found by the dynamic hybrid tree cut algorithm, with
the parameter settings: height cutoff = 0.95, deepSplit = 4 and mini-
mum cluster size = 20. If the correlation between the eigenvalues of
two modules is >0.85, the two modules were considered as so similar
that they were merged. The module-trait correlation was defined as
the correlation between the module eigenvalue and the trait.

After identifying co-expression networks modules, we exported the
modules, which were used as input to Cytoscape [38] for visualization.
ARACNE (Algorithm for the Reconstruction of Accurate Cellular Net-
works) [39] was applied to identify significant interactions between
genes in each module based on their mutual information and remove
indirect interactions through data processing inequality (DPI). The
arguments for ARACNE were set to be DPI tolerance of 0 and mutual
information threshold of 0.5.

3. Results

3.1. Identification of a Stringent Set of Novel Amygdala lncRNAs

To discover novel lncRNAs, we first assembled transcriptome from
RNA-Seq data of all 45 samples (clinical information of samples was
summarized in Supplementary Table S1), followed by a stringent pipe-
line to remove transcripts with protein-coding potential or low-quality
data (Method).We identified a set of 839 novel lncRNA genes with high
quality (Supplementary Table S2, the names of novel lncRNAs begin
with “MSTRG”). We found that a dominant majority of these novel
lncRNAs (>80%) were intergenic, falling entirely in intergenic regions.
About 10%were divergent, being transcribed in the opposite orientation
of a coding gene with which they share a promoter. We found very few
lncRNAs that were miRNA host genes or snoRNA host genes. To further
evaluate the reliability of these novel lncRNAs, we applied the same
protocol to assemble transcriptome from the RNA-Seq dataset of 79
GTEx normal amygdala tissues [40]. As a result, we recovered 215 of
the novel lncRNAs completely, namely, with all exons found in the
GTEx transcriptomes, and 106 of the novel lncRNAs recovered partially
in GTEx dataset (Supplementary Table S2). We applied the RPKM satu-
ration module from RSeQC [41] to evaluate that the current sequencing
depth was saturated for these 839 novel lncRNAs (Fig. S1).

3.2. Amygdala lncRNAs are Shorter, Less Complex, and Expressed at Low
Levels

We first compared the structure, expression level and coding poten-
tials of our assembled transcriptome (Fig. 1). All comparisons were
done using one-sided Wilcoxon test. We found that novel lncRNAs,
compared with protein-coding genes (we use the term mRNA to indi-
cate protein-coding gene in this paper), have significantly shorter tran-
script length (Fig. 1a, 1477 bp vs. 1727 bp, p-value = 7.566e-06),
shorter ORFs (Fig. 1b, 192 bp vs. 390 bp, p-value< 2.2e-16), and longer
exons (Fig. 1c, 766 bp vs 238 bp, p-value < 2.2e-16). These properties
were consistent with the lower estimated number of exons for lncRNAs
compared with mRNAs (Fig. 1d, 2 vs. 5, p-value < 2.2e-16). Taken
together, we conclude that amygdala lncRNAs are shorter and less
complex than mRNAs.

We thenmeasured protein-coding potential of lncRNAs and mRNAs
using the CPAT [42], which was a logistic regression model built with
four sequence features: open reading frame size, open reading frame
coverage, Fickett TESTCODE statistic and hexamer usage bias. We
found that both known lncRNAs and novel lncRNAs had comparable
low protein-coding potential, which was significantly lower than that
of mRNAs (Fig. 1e, median of 0.023, 0.023, 0.75 for known lncRNAs,
novel lncRNAs and mRNAs, p-value < 2.2e-16 for both known lncRNA
vs mRNAs and novel lncRNAs vs mRNAs). This suggests that our algo-
rithm to identify novel lncRNAs is reliable. Notably, SCZ lncRNAs were
expressed on average at about 10-fold lower levels than mRNAs, with
the median expression level of 0.018, 0.057 and 0.21 RPKM for known
lncRNAs, novel lncRNAs, and mRNAs, respectively (Fig. 1f, p-value <
2.2e-16 for both known lncRNAs vs mRNAs and novel lncRNAs vs
mRNAs). Similar findings were observed in other human tissues
[31, 43]. Novel amygdala lncRNAs exhibited similar characteristics as
known lncRNAs. Therefore, in the following sections, we combined the
novel and known lncRNAs for further functional analysis.

3.3. Identification of Differentially Expressed Genes and Pathways

After obtaining the assembled novel lncRNAs, we appended these
lncRNAs definitions together with the Broad Institute's lncRNAs set to
the GENCODE v24 annotation. As a result, we have 19,815 mRNAs and
18,805 lncRNAs. To rule out the potential unreliability of lowly
expressed genes, we define a gene as expressed if, [1] the genes' 50th-
percentile RPKM value is larger than 0, and [2] the genes' 95th-
percentile RPKM value is larger than 0.05. Among all SCZ and control
samples, there were 14,570 expressed mRNAs, and 4596 expressed
lncRNAs (of which 697 were novel). For the three subtypes of SCZ
samples, 14,331 mRNAs and 4336 lncRNAs on average were expressed.
Of those, 13,737 mRNAs and 3407 lncRNAs were detected in all three
subtypes of SCZs, respectively, suggesting a high level of diversity of
lncRNA expression across the three subtypes (Fig. 2a).

To characterize schizophrenia-associated dysregulation of gene
expression, we performed four differential expression analyses of the
schizophrenia subtypes in comparison with normal control samples:
(1) all SCZs vs control, (2) disorganized SCZs vs controls, (3) paranoid
SCZs vs controls, and (4) undifferentiated SCZs vs controls, in search
for both common SCZ related genes as well as SCZ subtypes specific
genes (in the set of expressed genes). Under the cutoff of adjusted
p-value < 0.05, there are 345, 182, 2 and 541 differentially expressed
genes for these four comparisons, respectively (Supplementary
Table S3). The comparison of differentially expressed mRNAs across 3
subtypeswas summarized (Fig. 2b, c). Among them, we uncovered sev-
eral protein-coding genes significantly differentially expressed in all SCZ
samples thatwere reported in previous studies [18, 19, 21, 22]. These in-
clude HBA1, HBA2, HBB, IFITM1, GBP1, IFITM2, SERPINA3. These results
were identical to the previous study focusing on protein-coding genes
in the amygdala of schizophrenia patients [20].

To determinewhich functional pathways aremost robustly involved
in schizophrenia pathogenesis, we performed gene set enrichment
analysis (GSEA) for each subtype and all case samples combined.
At FDR level of 0.1 (nominal p-value< 0.005), there were 178, 40, 355
and 123 GO terms positively enriched genes, and 94, 147, 4 and 107
GO terms negatively enriched genes in all SCZ, disorganized SCZ, para-
noid SCZ, and undifferentiated SCZ, respectively. The three subtypes
demonstrated enrichment in many unique gene sets, while some com-
mon ones were identified across all three subtypes (Supplementary
Table S4). When considering all SCZ vs. normal, we found the



Fig. 1. Genomic features of novel lncRNAs. (a) Transcript sizes of lncRNAs and mRNAs. (b) Open reading frame (ORF) sizes of lncRNA and mRNAs. (c) Exon sizes of lncRNAs and mRNAs.
(d) Numbers of exons per lncRNA andmRNAs. (e) Coding potential (CPAT scores) of known lncRNAs, novel lncRNAs, andmRNAs. (f) Expression levels (RPKM values) of known lncRNAs,
novel lncRNAs, and mRNAs. (a), (b), (c), (e), (f) are standard boxplots, which display the distribution of data by presenting the inner fence (the whisker, taken to 1.5× the Inter Quartile
range, or IQR, from the quartile), first quartile, median, third quartile and outliers. The means are marked as tan diamonds.
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dysregulated pathways came from four main categories: “immunity”,
“blood vessel development” and “ribosome and protein synthesis”
were up-regulated; and “neuron and synapse” were down-regulated
(Fig. 2d). We also found the gene pathway from “immunity”, “ribo-
some”, and “neuron and synapse” categories in all three subtypes of
SCZ (Supplementary Table S4). These results agreedwith previous stud-
ies on dysregulation of functional pathways in SCZ especially in amyg-
dala tissue [20]. We concluded that in the amygdala tissues of
schizophrenia patients, gene pathways related to immune response,
blood vessel development and ribosome were upregulated in expres-
sion, gene pathways related to synaptic transmission and behavior
were suppressed. We want to further identify the potential roles of
lncRNAs relating to these functional pathways in the following sections.

At FDR level of 0.05, we detected 110, 45, 0, 171 differentially
expressed lncRNAs in all SCZ samples, disorganized SCZ samples, para-
noid SCZ samples and undifferentiated SCZ samples, respectively (Sup-
plementary Table S3). Venn diagrams and percentages of differentially
expressed lncRNAs in the three subtypes were presented (Fig. 2b, c).
Previous studies have reported lncRNAs associationwith schizophrenia,
including MIAT, DLX6-AS1, and BDNF-AS [12, 44]. We didn't find these
lncRNAs significantly differentially expressed in our dataset.

3.4. Expression Profiles of lncRNAs in Schizophrenia Subtypes

To determine whether amygdala lncRNAs are subtype-specific in
schizophrenia, we characterized the expression profiles of lncRNAs and
mRNAs across the three schizophrenia subtypes in comparisonwith con-
trols. A larger number of lncRNAs exhibited subtype-specific expression
patterns thanmRNAs based on the unsupervised clustering of expression
profiles (only expressed genes were analyzed, Fig. 3a). Furthermore, we
calculated subtype specificity score for each geneusing an entropy-based
metric that relies on Jensen-Shannon (JS) divergence [31] (Materials and
Methods). The expression of lncRNAs was found to be more subtype-
specific than mRNAs significantly, with median specificity score of
0.302 and 0.282 for lncRNAs and mRNAs, respectively (Fig. 3b). To rule
out the possibility that this effect was caused by increased noise from
low expressed genes, we also calculated the specificity scores of only
highly expressed genes (i.e., 50th-percentile RPKM values >0 and
95th-percentile RPKM values >0.25). There were 7382 and 530 highly
expressed mRNAs and lncRNAs, respectively. Again, we observed these
highly expressed lncRNAs showed a higher subtype specificity than
mRNAs (Fig. 3b, with median specificity score of 0.291 and 0.279 for
lncRNAs and mRNAs, respectively).

3.5. Functional Annotation of Amygdala lncRNAs Through Expression
Correlation

The lack of annotated features makes it a challenging task to assign
functions to lncRNAs. However, “guilt-by-association” analysis helps
to predict roles of mammalian lncRNAs [31, 43, 45, 46]. Because genes
with similar co-expression patterns tend to have similar functional
coherency [47], we conducted gene set enrichment analysis (GSEA) to
associate GO terms and lncRNAs by analyzing the correlation between
the expression dynamics of each lncRNAwith the expression dynamics
of each mRNA across all 45 SCZ and normal samples using the highly
expressed 530 lncRNAs and 7382 mRNAs (Materials and Methods). As
a result, 529 lncRNAs were identified to have significantly associated
GO terms (Fig. 4a).We grouped lncRNAs into 10 clusters by hierarchical



Fig. 2. Dysregulation of expression of mRNAs, lncRNAs and gene pathways. (a) Venn diagrams of expressed protein-coding genes (left) and lncRNAs (right) in three subtypes. (b) Venn
diagrams of upregulated/downregulated mRNAs and lncRNAs in three subtypes. (c) Percentages of dysregulated mRNAs and lncRNAs. (d) Enrichment map for significant GO terms in
schizophrenia (all SCZs vs normal), nominal p < 0.005 and FDR q value <0.1. Nodes represent gene sets that are significantly up or down regulated, as determined by GSEA, where the
node size corresponds to the size of the GO term. Edges indicate overlap between gene sets, where the thickness indicates the overlap coefficient. Red nodes indicate up-regulation
and blue nodes indicate down-regulation.
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clustering (Supplementary Table S5). We found that several clusters
were associatedwith protein-coding gene sets of distinct functional cat-
egories, such as ribosome and protein synthesis (cluster A), blood vessel
development (cluster C), nervous system and synaptic transmission
(cluster H) and immune system (cluster I) (Fig. 4b). These pathways
were found dysregulated in schizophrenia.

Interestingly, by focusing on differential expressed lncRNAs (all SCZ
vs. controls), we observed that these lncRNAswere associatedwith pro-
tein synthesis, blood vessel development, nervous system pathways
and immune system pathways (Fig. 4b), and these pathways were dys-
regulated in all of three subtypes of schizophrenia. These observations
indicate that dysregulated amygdala lncRNAs are putative contributors
to the pathogenesis of schizophrenia.
3.6. lncRNA-mRNAs Co-Expression Network

We built co-expression networks over the highly expressed 7912
genes (including 530 lncRNAs, and 7382 mRNAs) using WGCNA [37],
followed by network modules testing (total 45 samples were used).
We identified 23 co-expressed modules (Supplementary Table S6), 7
of which were highly correlated with the schizophrenia trait (Fig. 5a):
turquoise, green, pink, greenyellow, salmon, darkred and darkturquoise
(correlation p-value < 0.05). To identify functions of each module, we
performed a hypergeometric test on mRNAs to detect enriched GO
terms in each module. We found that turquoise module was enriched
with neuron related pathways, the green module enriched with ribo-
somal pathways, and the salmon module enriched with immune



Fig. 3. Subtype specificity of lncRNAs and mRNAs. (a) Heatmaps of normalized expression levels of 14,570 mRNAs (left) and 4596 lncRNAs (right). (b) Distributions of maximal subtype
specificity scores for all expressed lncRNAs and protein-coding genes (left) and highly expressed ones (right).
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response related pathways (Fig. S2). Our previous GSEA analysis
showed these pathways were dysregulated in schizophrenia. The num-
bers of genes (including both mRNAs and lncRNAs) of these modules
varied. We then ran the Fisher exact test to determine the enrichment
level of associated GO terms for lncRNAs in eachmodule. The associated
functions of lncRNAs (GO terms associated with lncRNA were deter-
mined in the Section “Functional annotation of amygdala lncRNAs
through expression correlation”) are consistent with their coding coun-
terparts in eachmodule: lncRNAs in the turquoisemodule are primarily
associated with neuronal and synaptic pathways, lncRNAs in the green
module are primarily associatedwith ribosomal pathways, and lncRNAs
in the salmon module are primarily associated with immunity path-
ways (Fig. 5b).

Following [48], we defined 5% of nodes with highest intra-modular
connectivity as hub genes (Supplementary Table S6). Connectivity re-
flects how frequently a node interacts with other nodes in a co-
expression module. Hub genes, which had the highest connectivity,
were usually considered as key regulators in gene co-expression net-
works since they intended to interact with more genes than others
[49–51]. The turquoise module was enriched by genes from neuron
pathways and many of their members were observed as hub genes.
We did find lncRNA “ENSG00000225465.8” (RFPL1S) as a hub gene in
turquoise (Fig. S3), which suggested that this lncRNA might play as a
key regulator in this functional module. Interestingly, the gene path-
ways positively correlated with “ENSG00000225465.8” included axon,
synapse, dendrite as well as other similar pathways (Supplementary
Table S7). There were 20 lncRNAs directly connected to the hub genes
in the turquoise module. We found most of them were positively asso-
ciated with synapse pathways (Supplementary Table S7). In contrast, in
the green and salmonmodules, no lncRNA was identified as hub genes,
but there were several lncRNAs directly connected with the hub genes
(Fig. 5c, d). In the green module, there were 23 lncRNAs connected to
the hub genes directly. GSEA showed that all of these lncRNAs were as-
sociated with ribosome pathways (Supplementary Table S7). In the
salmon module, we identified one lncRNA connected to the hub genes
directly: “ENSG00000235501.5” (RP4-639F20.1), which was associated
with immune pathways (Supplementary Table S7) as indicated by
GSEA. To take all these results together, by gene co-expression network,
we identified seven co-expression modules correlated with SCZ trait.
We found three of these seven modules were themed by neuron and
synapse, ribosome and immunity respectively. In particular, we noticed
that lncRNAs existed in all of the 3 modules, acting as the hub gene in
the turquoise module while connecting to the hub genes directly in
the other two modules. GSEA analysis of lncRNA-mRNA correlations



Fig. 4. Prediction of lncRNA functions. (a) Expression-based association matrix of 529 highly expressed lncRNAs and functional 1623 GO terms (left). Rows are lncRNAs, columns are GO
terms. In heatmap, red, blue, and white dots represent positive, negative, and no correlation respectively. Top 5 most enriched GO terms in cluster A, C, H, and I are showed (right).
(b) Association heatmap of dysregulated lncRNAs in all SCZs (all SCZs vs controls).
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showed that the lncRNAs were significantly associated with several
pathways in each module (Supplementary Table S7). All these results
suggested the potential involvement of lncRNAs in schizophrenia-
related functional pathways.

4. Discussion

There is growing evidence that non-coding RNAs, particularly
miRNAs and lncRNAs are involved in the pathogenesis of schizophrenia.
For instance, the lncRNA MIAT (Gomafu), is acutely regulated in
response to neuronal activation and involved in schizophrenia-
associated alternative splicing [12]. However, they found MIAT was
down-regulated in schizophrenia samples, whereas we didn't find sig-
nificance difference of this lncRNA in schizophrenia and normal tissues.
The tissue used in their studywas brain cortex ofmice, but herewe used
human amygdala tissue. The difference of tissuemay account for thedif-
ference of expression change.

The GENCODE v24 annotation dataset contains 15,941 lncRNAs and
we found about 24.5% of them were expressed in the amygdala under
our study. Although GENCODE was presumably the most compressive
gene annotation [52], we still identified 5924 novel transcripts not pre-
viously annotated. Our library preparation was based on the polyA
tailed method, so the transcripts we found were all polyA tailed. We
would expect more transcripts which were not polyA tailed. Among
them, we defined a stringent set of 839 novel lncRNAs, which include
lincRNAs (long intergenic non-coding RNAs), intronic overlapping
lncRNAs, and exonic antisense overlapping lncRNAs. Our novel lncRNAs
document the first novel long noncoding transcripts in amygdala tissue.
To further validate these novel lncRNAs, we investigated if they can be
found in other amygdala RNA-Seq data sets such as GTEx [40]. Due to
the high heterogeneity of lncRNAs, we only recovered 321 novel
lncRNAs completely or partially in GTEx amygdala data set. Neverthe-
less, read coverage was shown to be saturated for these 839 novel
lncRNAs. With high numbers of reads support, these novel transcripts
are expected to be bona fide. Based on this finding, we would expect
that many more lncRNAs remain to be identified, and the next genera-
tion sequencing data from other tissue types will uncover these in the
near future.

Consistent with previous RNA-Seq studies, our results showed that
lncRNAs expressed about 10-fold lower than coding genes in bulk tis-
sues. The recent single-cell RNA-Seq (scRNASeq) technology makes it
possible to profile gene expression in each individual cell. It has been re-
vealed using scRNASeq that many lncRNAs are abundantly expressed in
individual cells and are cell type-specific [53]. We expect the better
characterization of lncRNAs in the amygdala with the accumulation of
single-cell transcriptomics data of this tissue.

A well-known feature of lncRNAs is their tissue specificity. Here we
also observed high specificity of lncRNAs among different subtypes of
schizophrenia even in a single tissue – i.e., amygdala. The interpretation
of this is that lncRNAs may vary much more across different patients
when compared with mRNAs even in a single tissue. To our knowledge,
this is the first study to show that lncRNAs demonstrate substantially



Fig. 5. Co-expression network of lncRNAs and mRNAs. (a) Module-trait relationships. Each row represents a module, the column is the trait (schizophrenia or normal). Each cell contains
corresponding correlation coefficient and p-value in the bracket. Numbers of mRNAs and lncRNAs in eachmodule are also shown. (b) Enriched lncRNA-correlated GO terms in turquoise,
green and salmon module. (c, d) Graphic view of lncRNA-mRNAs co-expression network of (c) green and (d) salmon module. Node size represents corresponding intramodular
connectivity degrees, blue and red nodes represent mRNAs and lncRNAs respectively, hub genes are displayed in triangles. Connection lines between nodes indicate direct interactions
determined by ARACNE. Only hub genes and genes directly connected to hub showed.
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more variation between disease subtypes in schizophrenia than do
mRNAs.

In an effort to understand potential roles of lncRNAs in schizophre-
nia pathophysiology, we first identified differentially expressed
lncRNAs across SCZ patients and healthy controls. Many mRNAs are
known to be dysregulated in schizophrenia, whereas dysregulation of
lncRNAs hasn't been analyzed in any considerable depth before, espe-
cially in amygdala tissue specimens. By a rigid statistical significance
of FDR < 0.05, we observed 45, 0 and 171 lncRNAs that were
differentially expressed in disorganized SCZs, paranoid SCZs and undif-
ferentiated SCZs, respectively. We also observed 110 differentially
expressed lncRNAswhen comparing all SCZs cases vs. controls.We gen-
erated a co-expression network using all highly expressed lncRNAs and
protein-coding genes. Seven modules that were correlated with SCZ
were identified, and three of them were themed by the gene pathways
identified to be dysregulated in SCZ. We pinpointed one lncRNA in the
turquoise module (themed by neuron and synapse) as a hub gene.
While no lncRNAs in the green (themed by ribosome) and salmon
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modules (themed by immunity) were identified as hub genes, we
observed that lncRNA connected directly with hub genes in all of the
three modules, which implies that lncRNAs may involve as regulatory
factors in these modules.

We subsequently annotated all expressed lncRNAs through their
correlation with protein-coding genes. In the context of co-expression
of protein-coding genes and GSEA functional predictions, our data sug-
gest that lncRNAs may play diverse roles in amygdala tissue. The main
pathways dysregulated in schizophrenia involve immune response,
ribosome, blood vessel development and synaptic transmission. Our re-
sults show that lncRNAs are involved in all of these pathways. This is an
intriguing possibility and suggests that lncRNAs may be involved in the
pathogenic dysregulation of schizophrenia. These potential functional
roles of lncRNAs in schizophrenia etiology as determined by bioinfor-
matics analysis are worthy further experimental validation in the
future.

Due to the difficulty to collect human post-mortem samples, we
were not able to obtain a very large size of samples, which put a
power limit to the statistical tests. We alleviated this small sample size
issue by focusing on pathway-level analysis and illustrated potential
roles of lncRNAs in the pathogenic pathways of schizophrenia. Pathway
analysis was proved to be more robust than single-gene analysis, and
could mitigate the small sample size issue [35, 36]. Nevertheless, cau-
tion should be used that some subtle but important signals may still re-
main undetectable given this sample size. The current promising results
call for recruiting a large cohort of samples for more comprehensive
analyses in the future. In addition, it is noted that in the recent DSM-5
diagnostic criteria, DSM-IV subtypes have been omitted, and improved
to a new scale, the Clinician-Rated Dimensions of Psychosis Symptom
Severity (C-RDPSS), for characterizing patients [54]. In this study, the
subtype information was collected following previous clinical practice
but not C-RDPSS. We expect better results be obtained when using the
new severity-based characterization of patients in future studies with
the implementation of DSM-5.

Taken together, our study provides evidence that multiple novel
lncRNAs reside within the amygdala region in schizophrenia patients
whose function is differentially involved in the regulation of numerous
gene expression networks in different subtypes of schizophrenia. These
findings suggest that lncRNAsmay havemultiple roles in schizophrenia
that is highly differential between different subtypes of schizophrenia,
which is to be explored further in future genetic and mechanistic
studies.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.07.022.
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