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Abstract: Air quality monitoring has traditionally been conducted using sparsely distributed,
expensive reference monitors. To understand variations in PM2.5 on a finely resolved spatiotemporal
scale a dense network of over 40 low-cost monitors was deployed throughout and around Pittsburgh,
Pennsylvania, USA. Monitor locations covered a wide range of site types with varying traffic and
restaurant density, varying influences from local sources, and varying socioeconomic (environmental
justice, EJ) characteristics. Variability between and within site groupings was observed. Concentrations
were higher near the source-influenced sites than the Urban or Suburban Residential sites. Gaseous
pollutants (NO2 and SO2) were used to differentiate between traffic (higher NO2 concentrations) and
industrial (higher SO2 concentrations) sources of PM2.5. Statistical analysis proved these differences to
be significant (coefficient of divergence > 0.2). The highest mean PM2.5 concentrations were measured
downwind (east) of the two industrial facilities while background level PM2.5 concentrations were
measured at similar distances upwind (west) of the point sources. Socioeconomic factors, including
the fraction of non-white population and fraction of population living under the poverty line, were not
correlated with increases in PM2.5 or NO2 concentration. The analysis conducted here highlights
differences in PM2.5 concentration within site groupings that have similar land use thus demonstrating
the utility of a dense sensor network. Our network captures temporospatial pollutant patterns that
sparse regulatory networks cannot.

Keywords: lower-cost sensor network; PM2.5; near-source

1. Introduction

Poor air quality has deleterious health effects. Particulate matter with a diameter of less than
2.5 µm (PM2.5) dominates the human health burden from environmental exposures. PM2.5 is linked
to cardiovascular disease and decreased life expectancy [1–3]. Other pollutants, including nitrogen
dioxide (NO2), and sulfur dioxide (SO2) have health effects distinct from PM2.5. Exposure to NO2 and
SO2 contributes to increases in cardiopulmonary mortality, cardiovascular disease, and respiratory
disease [4]. SO2 and NO2 can be used to help attribute local enhancements in PM2.5 to emissions from
coal-burning industries and traffic, respectively [5,6]. To quantify risks associated with exposure to these
pollutants, it is necessary to measure and monitor their concentrations in the ambient environment.

Air quality monitoring has traditionally been conducted using sparsely distributed, expensive
reference monitors. Traditional networks are good for capturing long-term temporal trends and
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inter-city differences [7], but they are generally too sparse to capture fine-scale within-city spatial
variations [8]. Though there can be pollutant spatial variations at the sub-km scale [9], within this
study, we define “fine-scale” as variations between different neighborhoods (~1 km2) throughout a
large urban area. One way to improve spatial coverage of air pollutant monitoring is to deploy large
networks of lower-cost sensors [10].

High spatial density networks of lower-cost monitors can be used to inform small-scale spatial
variations in air pollution by providing real-time, on-the-ground measurements of air pollutants.
However, previous studies using lower-cost sensors have usually focused on calibration or on
calibration plus the deployment of a few nodes [11–14]. Many fewer papers demonstrate results from a
large network of low-cost sensors [15,16]. In this study, we present results from a one-year deployment
of a network of lower-cost monitors in Pittsburgh, PA, USA, focusing on 42 sensors in the network.

Widespread deployment of low-cost sensor networks also enables the investigation of
environmental justice within a city. Environmental justice (EJ) is the fair treatment and meaningful
involvement of all people regardless of race, color, national origin, or income with respect to the
development, implementation and enforcement of environmental laws, regulations and policies [17].
The state of Pennsylvania defines a census tract with greater than or equal to 20% of the population
living below the poverty line and/or greater than or equal to 30% of the population belonging to a
minority group as an “EJ area” [18]. According to this definition, EJ areas are not necessarily areas
that are currently experiencing environmental injustice. Rather, they are areas that have a high risk of
experiencing environmental injustice as indicated by their socio-economic status.

In this study, we utilize our dense network of air quality monitors to investigate whether the EJ
areas in Pittsburgh do in fact have lower air quality in comparison to non-EJ areas. This definition
of environmental injustice fits most closely with disparate exposure inequality. Disparate exposure
inequality occurs when people belonging to a specific social group are more exposed to one or more
environmental pollutants than they would be if the group was randomly distributed among the rest of
the population [19].

Clark et al. used land-use regression (LUR) models to show that in the U.S. non-white (minority)
populations often live in areas with higher air pollution [20,21]. They used a national LUR for NO2 to
show that non-white populations are exposed to about 31% (3 ppb) higher mean concentrations of
NO2, than white populations, primarily due to traffic emissions [21]. However, the exposure inequality
trends identified by Clark et al. may not be identical in every city, as emission sources, land use,
and population distributions might be idiosyncratic.

In this study, we use the RAMP (Real-time Affordable Multi-Pollutant sensor package) [22–24],
a lower-cost monitor consisting of electrochemical gas sensors and PM2.5 nephelometers, to investigate
spatial patterns in air pollution and exposure inequality in Pittsburgh. Sensor sites were distributed in
such a way as to assess the variability in pollutant concentrations near known point sources and across
urban and suburban/background locations. Using the low-cost sensors, we show that it is possible
to detect enhancements of criteria pollutants that can be attributed to local sources like industry
and traffic.

We also use the RAMP data to investigate exposure inequality in EJ and non-EJ areas as defined
by the state of Pennsylvania. Previous work assessing air quality in EJ areas has typically used either
national models that may not account for specific intra-urban pollutant variations [20,21] or used
short-term (e.g., 1–3 week) intra-city measurements [25]. The expansiveness of our dense, low-cost
sensor network, which was deployed for over a calendar year, captures pollutant measurements
over various socio-economic areas within a city, allowing us to compare measurements taken in
different EJ and non-EJ communities over a significant amount of time. The measurements lead us to
conclude that socio-economic (EJ) factors do not necessarily determine PM2.5 exposures in different
parts of Pittsburgh.
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2. Materials and Methods

2.1. Measurement Locations

This paper focuses on data from forty-two RAMPs that were deployed throughout the greater
Pittsburgh area in western Pennsylvania over April 2017–May 2018. Figure 1 shows the locations of
RAMP sites throughout Pittsburgh and surrounding Allegheny County. RAMP sites cover a range of
areas with varying land use and proximity to nearby emissions sources such as traffic, food cooking,
and industry. The RAMP sites range from suburban residential sites with low traffic and low restaurant
density, to downtown sites with high traffic and high restaurant density, to industrially influenced
sites. RAMP sites also encompassed both EJ and non-EJ communities. While all of the RAMPs were
nominally deployed for a year, the sites experienced various amounts of downtime due to sensor
failures, power loses, and occasional returning of RAMPs to the Carnegie Mellon University campus
for calibration [22]. Figure S1 in the Supplementary Information shows data coverage by season for
each site.
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Figure 1. Map of the sampling domain. Dots indicate locations of 42 Real-time Affordable
Multi-Pollutant sensor package (RAMP) monitors that were deployed throughout Pittsburgh. The sites
were categorized into 2 Downtown sites, 20 Urban Residential sites, 10 Suburban Residential sites,
1 Near Highway site, 3 Near Steel Mill sites, 3 sites West of a Coke Plant, and 3 sites East of a Coke
Plant based on traffic density, restaurant density, and proximity to industrial point sources (shown
as pink squares). The prevailing wind direction is also shown; a wind rose is displayed in the
Supplementary Information.

The 42 sites were classified into seven categories: Downtown (N = 2 sites), Urban Residential
(N = 20), Suburban Residential (N = 10), Highway (N = 1), Near Steel Mill (N = 3), West of Coke
Plant (N = 3), and East of Coke Plant (N = 3). In Figure 1, similar RAMP locations, representative
of particular micro-environments, are indicated with different colors. Sites were classified based on
known land use. For Downtown, Urban and Suburban Residential, and Highway sites, the vehicle
density within a 100-m radius and restaurant density within a 500-m radius of the site were used for
classification. Values of vehicle and restaurant density were normalized by dividing the densities at
each site by the maximum value across the entire sampling network for each variable. Downtown sites
are located in the central business district and were in the top 30% of vehicle and restaurant densities.
Urban Residential sites were located within the city limits and had moderate traffic density (below the
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60th percentile) along with low restaurant density (within the first quartile). Suburban residential sites
were those sites that were located outside of the city limits and experienced low vehicle and restaurant
densities (within the first quartile). As the names suggest, the Urban and Suburban Residential sites
were located in residential and mixed-use neighborhoods, typically at private residences or public
schools. The Highway site was located 10 m from the edge of a limited-access highway.

Sites classified as Near Steel Mill, West of Coke Plant, and East of Coke Plant were defined by
proximity to industrial point sources. The Near Steel Mill and East of Coke Plant sites were all within
1500 m of a steel mill and metallurgical Coke plant, respectively. These sites were east, and therefore
generally downwind of, the respective point sources. West of Coke Plant sites were within 2000 m of
the Coke plant in the generally upwind direction of the Coke plant.

The sites are listed in Table S1 in the Supplementary Information. Each site is assigned a numerical
identifier that is used in subsequent figures. The site groupings are as follows: Downtown (Site 1–2),
Urban Residential (3–22), Highway (23), Suburban Residential (24–33), Near Steel Mill (34–36), West of
Coke Plant (37–39), and East of Coke Plant (40–42). The three sites Near the Steel Mill, three West
of the Coke Plant, and the two Downtown sites are all classified as EJ communities by the state of
Pennsylvania. To identify locations as EJ or not, census data was obtained. The latitude and longitude
for each RAMP location were extracted and input into the EPA environmental justice screening tool,
EJSCREEN. EJSCREEN was created by the U.S. EPA as a preliminary step in evaluating environmental
justice issues [26]. The tool works in such a way that given a latitude and longitude it can output
different socio-economic factors for the census block group in question. The census block group where
each RAMP was located was identified and the percent of the population living below the poverty
line and the percent of the population belonging to a minority group was extracted for each identified
census block group.

2.2. Measurement Devices and Calibration

The Real-time Affordable Multi-Pollutant (RAMP) sensor package was used for this study.
RAMPs were developed in a partnership between Carnegie Mellon University and SenSevere Limited
Liability Company. Details about the RAMP monitoring package, including communication and data
storage, are provided in Zimmerman et al. [24]. The RAMP data are recorded at a resolution of one
data point approximately every 15 s, but for this study the data have been down-averaged to hourly
mean concentrations. The RAMPs can measure up to four gaseous pollutants using electrochemical
sensors from AlphaSense Ltd. The gaseous pollutants considered in this study are nitrogen dioxide
(NO2, NO2-B43F) and sulfur dioxide (SO2, SO2-B4). NO2 and SO2 measurements were used as tracers
for different PM2.5 sources (traffic and industrial point sources respectively). The RAMPs also included
electrochemical sensors for measuring total oxidants (Ox, Ox-B431) and carbon monoxide (CO, CO-B41),
as well as a nondispersive infrared (NDIR) CO2 sensor (SST CO2S-A) which also provided temperature
and relative humidity data. Measurements from these additional three gaseous pollutant sensors are
not used directly in this study.

Electrochemical gas sensors are commonly used in low-cost monitors because of their low cost
to manufacture, selectivity, and simplicity [27,28]. These sensors consist of four electrodes. A redox
reaction occurs between the working and counter electrodes when the sensor is exposed to the target
pollutant. The reaction generates a potential difference which then can be correlated with concentrations
of the pollutant. An auxiliary electrode in this four-electrode unit accounts for temperature and relative
humidity effects. However, numerous studies have shown that assuming a linear relationship between
sensor signal and concentration is insufficient to account for impacts of temperature, humidity,
and sensitivity to species other than the target pollutant [10,11,13,22,24,29].

In this work, we follow the calibration method of Zimmerman et al. for NO2 [24]. This method
uses (1) ambient collocation of RAMPs with EPA-grade reference monitors and (2) supervised machine
learning algorithms to convert electrochemical sensor response to pollutant concentrations. Zimmerman
et al. showed that a random forest machine learning algorithm provided the best performance for
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determining NO2 concentrations from RAMPs. The random forest calibrations yield precision and
bias of ~25% for NO2. It has recently been shown that similar performance can be achieved using
generalized calibration models rather than developing a unique calibration model for each RAMP [22].
Therefore, general calibration models were used for all of the RAMP NO2 data in this study.

To calibrate the SO2 sensors, we collocated sixteen RAMPs with a reference grade SO2 monitor
(Model 100A, Teledyne-API, San Diego, CA, USA) for three months at site 41. This site is <1 km east
of the Coke plant and is often impacted by SO2 emissions from the plant. From the collocation a
multi-linear regression calibration model was developed and applied to the SO2 sensors [23]. Details of
the SO2 sensor collocation and calibration can be found in the Supplementary Information.

Each RAMP includes an optical PM2.5 monitor. Thirty-nine of the RAMPs used a Met-One
Neighborhood PM Monitor (NPM) (Met One Instruments, Grants Pass, OR, USA) and the remaining 3
RAMPs used PurpleAir PA-II monitors. Table S1 in the Supplementary Information lists which sensor
was placed at each site. These low-cost particulate matter sensors employ light scattering optical
techniques instead of the traditional EPA regulatory PM monitoring techniques which include tapered
element oscillating microbalances (TEOMs) and beta attenuation monitors (BAMs). Light scattering
(also called nephelometry) is used in lower-cost sensors because they are cheap to manufacture,
have low power requirements to operate, and have fast response times [30–32]. Light scattering
devices typically are made up of an infrared emitting diode (IRED), a phototransistor, and focusing
lens. When the particles pass through the sensor, they scatter light. The intensity of the scattered light
is measured by a phototransistor and correlated with PM mass. Drawbacks to the light scattering
technique include sensitivity to changes in temperature, relative humidity, particle composition,
and size distribution [33–35].

To account for these effects, primarily the humidity artifact, we correct the as-reported PM2.5

mass concentrations to “BAM-equivalent” PM2.5 mass concentration. A detailed explanation of the
correction method used here can be found in Malings et al. [36]. Briefly, we first correct for aerosol
hygroscopic growth using temperature and relative humidity measured by each RAMP and the
average particle composition measured in Pittsburgh. We then adjust the hygroscopic growth-corrected
concentration to “BAM-equivalent” (values that can be directly compared to U.S. EPA standards) to
account for aerosol size distribution effects by using a linear regression obtained by collocating the
RAMPs with regulatory BAM monitors at sites 5 and 41.

This study considers data collected over a period of one year at each sampling site. However,
the same RAMP was not deployed at each site for the entire study period. RAMPs are routinely brought
back to our central reference site at the Carnegie Mellon University campus either for maintenance or
for periodic calibration checks. As noted by Malings et al., the calibrations for gases measured by the
RAMPs are robust for approximately 6–12 months, so the data used here are within the bounds for
normal operation of these low-cost sensors [22]. In a separate paper, Malings et al. demonstrated that
the PM2.5 measurements are robust for yearlong deployments [36].

3. Results and Discussion

3.1. Intraurban PM2.5 Variability and the Impact of Point Sources

Although PM2.5 is largely regional [37], local point sources can be responsible for generating
local spikes in PM2.5 mass. An example of pollution spikes due to local sources is shown in Figure 2,
which compares 12 h of PM2.5 measurements at all 42 sites. PM2.5 concentrations are elevated relative
to other sites at the three East of Coke Plant sites (40–42) starting at 2:00 a.m. on January 14th, 2018.
PM2.5 concentrations at these sites increase from ~10 µg/m3 to as much as 100 µg/m3 over the course of
several hours.

Prior to 8:00 a.m. the winds were blowing from the southwesterly direction; however, at 8:00 a.m.
the winds shifted and began to blow from the northeasterly direction. This is accompanied by a drop
in PM2.5 at sites 40–42 and a concurrent increase in PM2.5 at the West of Coke Plant sites (37–39), which
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were then downwind of the emissions source. The spikes measured at sites 37–42 were not observed at
any other sites in the network, suggesting that this was a local enhancement due to emissions from the
Coke plant.
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periods of time throughout the study period when sites surrounding the Coke plant (indicated by thick
lines) experienced elevated PM2.5 concentrations due to plant emissions while all other sites (thin lines)
maintained background PM2.5 concentrations.

Repeated instances of these types of spikes increase the long-term average concentrations at sites
40–42 which are predominately downwind of the Coke plant. Similarly, the Near Steel Mill sites, which
are predominately downwind (east) of the steel mill (sites 34–36) also have higher long-term average
PM2.5 concentrations than the sites that are upwind (west) of the steel mill in the suburban residential
area (sites 27, 28, and 31). Figure 3 compares the PM2.5 measurements across the sampling network.
The annual average concentration at each site ranges from 7.5 to 25.8 µg/m3, with the majority of sites
having an average concentration less than the U.S. EPA annual standard of 12 µg/m3.
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Figure 3. Average PM2.5 concentrations across the RAMP network. The bars show the fraction of
hourly averaged PM2.5 measurements within each of four concentration ranges based on EPA and
WHO regulatory cutoffs. Mean PM2.5 concentration is indicated within each bar as a white diamond.
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The bar plot of each location in Figure 2 is subdivided into four categories: measurements where
the hourly averaged PM2.5 concentration was (1) less than 12 µg/m3 (2) 12–25 µg/m3 (3) 25–35 µg/m3

and (4) greater than or equal to 35 µg/m3. These cutoffs were chosen based on EPA and World Health
Organization (WHO) daily and annual average PM2.5 standards. The 25 µg/m3 level is the WHO
24-h exposure standard; if concentrations are above this threshold for more than 24 h, that would
be hazardous according to the WHO. With the exception of site 2, which is described in more detail
below, all sites had PM2.5 lower than 12 µg/m3 for over 57% of hours, and concentrations were less
than 25 µg/m3 for over 91% of all hourly data.

Sites that had relatively higher percentages of hours with measured PM2.5 above 25 µg/m3

were further investigated. Sites with elevated annual average PM2.5 are generally impacted by local
enhancements, and therefore experience concentrations exceeding 25 µg/m3 more often than sites that
are far from either point sources or areas of high traffic density. Site 2 has the highest percent of hours
above 25 µg/m3 (25.9%). This anomalously high occurrence of elevated PM2.5 concentrations can be
attributed to the fact that site 2 is located downtown in a street canyon approximately ten meters away
from the exhaust of a restaurant with a wood-fired pizza oven. These cooking emissions drive the
elevated PM2.5 concentrations for site 2.

The three East of Coke Plant sites (40–42) also experienced elevated frequencies of hourly
PM2.5 concentrations exceeding 25 µg/m3. They are located within 1500 m of the coke plant, in the
predominantly downwind direction. These sites experienced PM2.5 concentrations over 25 µg/m3

for 4.8%, 8.2%, and 6.9% of the sampling period. In contrast, across all other sites (excluding site 2),
concentrations above 25 µg/m3 occur only 3.2 ± 1.7% of the time. Sites 41 and 42 were more than two
standard deviations higher than this average, while site 40 was on the upper end of that range.

Two of the sites East of the Coke Plant (41 and 42) experience higher PM2.5 concentrations than
the third site. The presence of these differences points to the utility of dense lower-cost networks of air
quality monitors, as a single, expensive regulatory monitor would be incapable of capturing this level
of fine-scale spatial variability.

Large differences in PM2.5 concentration exist between different site groupings. The difference
in PM2.5 concentrations upwind and downwind of the Coke plant illustrate sharp PM2.5 gradients
that can result from industrial point sources. The three West of Coke Plant sites (37–39), which are
similarly close (1–2 km) to the Coke plant as the East of Coke Plant sites, have PM2.5 greater than
25 µg/m3 only 2.7%, 2.6%, and 2.7% of the time, respectively. This is similar to the Urban and Suburban
Residential sites.

We can also use Figure 3 to assess how the frequency of elevated PM2.5 concentration varies in
EJ versus non-EJ communities. Sites 37–39 are classified as EJ communities, whereas sites 40–42 are
non-EJ communities. However, sites 40–42 experience a higher frequency of hours with elevated PM2.5

concentrations than sites 37–39. The low-cost sensor network in this region is able to detect influences
from point sources on a finely resolved spatial scale in a way that illuminates differences in EJ and
non-EJ communities.

Figure 3 shows all of the data collected during our study period at each site. Additional
plots separating the data by season are shown in Figure S2 in the Supplementary Information.
PM2.5 concentrations vary seasonally, with lower concentrations in the spring than in the other
three seasons; mean PM2.5 concentration in the fall, winter, spring and summer were 11.2, 10.5,
8.7, and 13.9 µg/m3 respectively. Across the network, PM2.5 concentrations exceeded 25 µg/m3 for
only 1.5% of hours in the spring, versus 5.25%, 4.35%, and 5.00% in the summer, fall, and winter,
respectively. The spatial pattern of high PM2.5 concentrations, however, remains consistent from season
to season, largely driven by local emissions. The restaurant impacted site 2 always has the highest
PM2.5 concentration, and sites 40–42 East of the Coke Plant have more frequent instances of PM2.5

greater than 25 µg/m3 than West of Coke Plant or Residential sites.
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The coefficient of divergence (COD) is a metric that can be used to determine the significance of
PM2.5 concentration differences between sites. The COD is computed using Equation (1) for each pair
of sites.

COD =

√√√
1
N

N∑
i=1

(
xiA − xiB
xiA + xiB

)2

(1)

N is the number of paired observations, xiA is the measurement at time period i for site A, and xiB
is the measurement at the time period i for site B, where each time period i is one hourly averaged
PM2.5 measurement. A threshold of 0.2 is typically used to identify pairs of sites that are significantly
different (COD > 0.2) from sites that are similar (COD < 0.2) [25,38].

During our evaluation of these low-cost sensors by collocation with a reference monitor,
the majority of the sensor pairs showed a COD below 0.2. Figure S3 in the Supplementary Information
shows the results of analysis conducted on 48 RAMPs that were collocated at site 7. While 6 pairs of
RAMPs at the collocation had CODs over 0.2, the remaining 1122 pairs of RAMPs showed a COD less
than 0.2. Hence, we expect that when the sensors are deployed, CODs greater than 0.2 signify actual
differences in PM2.5 concentration and are not due to sensor noise.

Figure 4 shows the COD for hourly averaged PM2.5 concentrations between each pair of sites.
The COD suggests that there is significant spatial heterogeneity across the RAMP network on an
hour-to-hour basis. More than half of the pairwise COD values are greater than 0.2. The analyses
of Figures 2 and 3 above focused on the most extreme differences (e.g., site 2 versus all other sites).
However, the COD matrix in Figure 4 shows that there are also subtle, but meaningful, differences
between many more sites, even those within a site class.
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Figure 4. Pairwise hourly coefficients of divergence (COD) for PM2.5. As the COD for the majority of
pairs is greater than 0.2 there exists heterogeneity on an hourly basis between the sites.

Although we are not able to quantify all of the sources of variability that drive CODs to be greater
than 0.2 between site pairs, one source of variability is emissions from local point sources. The CODs
between the East of Coke Plant sites and sites not impacted by point sources are for the most part
greater than 0.2. As shown in Figure 2, emissions plumes can impact different sets of sites at different
times, depending on meteorological conditions. Plumes can also advect downwind, and there are
examples in our dataset of plumes starting near the Coke plant that eventually impact some, but not
all, of the Urban Residential sites. This time lag (in addition to dilution) while plumes travel from one
area to another can cause differences in PM2.5 concentrations measured on an hourly basis between
sites and thus lead to significant differences in hourly averaged PM2.5.
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3.2. Multi-Pollutant Patterns

The gaseous pollutants measured by the RAMPs offer insight into the sources driving the inter-site
differences in PM2.5 concentrations. In this section, we use NO2 as an indicator for traffic emissions
and SO2 as a marker for industrial emissions to aid in describing the PM2.5 trends at various site types.

Figure 5a shows the average diurnal pattern of PM2.5 for each site group. The diurnal
patterns at each of the seven study areas (Downtown, Urban Residential, Highway, Near Steel
Mill, Suburban Residential, West of Coke Plant, and East of Coke Plant) were determined by averaging
the measurements taken at each respective hour of the day for all of the locations within each study area.
For the Downtown PM2.5 diurnal we ignored site 2, and therefore only site 1 was used. As described
above, site 2 is heavily impacted by emissions from a nearby restaurant and therefore may not be
representative of the broader downtown area. For the rest of the site groups all sites within the group
were included in calculating the diurnals.

Some common trends are observed across the sampling domain. PM2.5 concentrations increase in
the morning at most sites (~7–9 a.m.). This general trend is mirrored by NO2 (Figure 5b), which also
exhibits a domain-wide increase during the morning rush hour. The concurrent morning peaks in
PM2.5 and NO2 are indicative of rush hour traffic emissions, combined with low atmospheric mixing
height. PM2.5 concentrations reach a minimum around 3–4 p.m. as the atmosphere becomes more well
mixed. There is no early evening PM2.5 enhancement during the evening rush hour at most of the sites.
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Figure 5. (a) Hourly averaged diurnal patterns of PM2.5 within each site group. Downtown site 2,
which is impacted by emissions from a nearby restaurant, is not included. (b) Mean diurnal patterns of
NO2 for each of the site groups. All sites were used because the restaurant near site 2 is not a major
NO2 source.

Figure 5 shows that multi-pollutant concentration patterns, and therefore exposure, change
throughout the day. In the evening through early morning the East of Coke Plant and Near Steel Mill
sites have the highest mean PM2.5 concentrations. People who live in these areas are presumably at
home during these times, and therefore likely to be exposed to elevated PM2.5 relative to other areas
in our study domain. However, during the day, Downtown has the highest PM2.5 concentrations.
This means that someone who lives in one of the areas East of the Coke Plant or Near the Steel Mill but
works Downtown could have higher exposures than someone who both lives and works in one of the
industrially influenced areas. This has important implications for public health; it may not be enough
to incorporate one’s residence in exposure assessment, since workday exposures in downtown or other
commercial areas may be significantly different than in residential neighborhoods.

There are differences in the diurnal trends and in the absolute concentrations between site groups.
For example, all of the sites except for Downtown exhibit a sharp drop in PM2.5 concentrations after
the morning rush hour. This is driven by a decrease in the traffic source and an increase in atmospheric
mixing height. In Downtown; however, PM2.5 concentrations decrease more gradually throughout the
workday. This can be attributed to elevated traffic emissions throughout the day relative to other areas,
along with contributions from street canyon effects and restaurant cooking [39]. The measured NO2
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concentrations suggest that traffic is a driver for the excess PM2.5 in downtown. NO2 in Downtown
remains high during the day compared to other site groups and is the only site group (with the
exception of the Highway site) that shows an afternoon rush hour peak in NO2.

The East of Coke Plant sites and Near Steel Mill sites experience some of the highest PM2.5

concentrations at all times of the day. The enhancements in mean PM2.5 concentration at the East of
Coke Plant sites and Near Steel Mill sites are larger in the late evening through early morning than the
enhancements observed at any of the other sites. The individual contributions of micrometeorology and
higher industrial emissions at night cannot be separated with this dataset and should be investigated
in future work. In contrast to the elevated PM2.5, NO2 concentrations at these sites during the day
are similar to the Urban and Suburban Residential sites; hence, unlike Downtown, traffic is likely not
a significant contributor to the higher PM levels in the area. On the other hand, SO2 concentrations
at the Near Steel Mill and East of Coke Plant sites are frequently elevated above background levels.
This suggests that industrial emissions play an important role.

SO2 measurements were used as a tracer for industrial emissions. Figure 6 shows the number of
hours for which SO2 concentrations exceeded 50 ppb (99.8th percentile of SO2 measurements) at the
nine sites near the steel mill and Coke plant. Instances of high SO2 were most frequent at the East of
Coke Plant and Near Steel Mill sites (which are usually downwind), suggesting that emissions from
these sources contribute to the occasions of high PM2.5 shown in Figure 3.
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Figure 6. Frequency of high SO2 concentrations. Bars show the number of hours with SO2 greater than
50 ppb from November 2017 through May 2018 at the nine sites located near the coke plant and steel
mill. Sites downwind of the coke plant have the most frequent occurrences of high SO2.

We investigated correlations between background-corrected PM2.5 concentration and SO2

concentration to test whether these pollutants have a common source. The background-corrected
PM2.5 concentration was obtained by subtracting the PM2.5 measured at Urban Residential site 5
from the measured PM2.5 concentration at the source influenced sites. Background-corrected PM2.5

concentration and SO2 concentrations were normalized for each site and scatter plots for each site are
shown in the Supplementary Information (Figure S4). The mean R2 value for correlation between
PM2.5 and SO2 for the nine source impacted sites is 0.32 (ranging from 0.16–0.56), compared to near
zero correlation at the background sites (R2 at site 5 = 0.03). In particular, variations in SO2 explain
about 40% of the variation in PM2.5 at sites 41 and 42 (East of the Coke Plant sites), which is significantly
higher than any of the other source impacted sites. As observed earlier, these two sites also saw
significantly higher PM2.5 than the Urban and Suburban Residential sites. This suggests that the
elevated PM2.5 concentrations at sites East of the Coke plant are more heavily influenced by emissions
from the Coke plant when compared to the other source impacted sites in the area, and even among
sites east (downwind) of the Coke plant, there can be differences that are revealed by a high-density
sensor network.
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The West of Coke Plant sites have lower SO2 than the East of Coke Plant sites, echoing the results
for PM2.5 because these sites are often upwind of the source. Furthermore, a regulatory SO2 reference
monitor located at site 5 (Urban Residential) recorded zero hours of SO2 concentration above 50 ppb
during the study period. The overall story is that the industrial emissions drive the elevated PM2.5

concentrations in the areas downwind of the Coke and steel plants, not traffic.
Figure 6 also shows that there is heterogeneity within the site classes. One of the Near Steel

Mill sites (site 34) never experienced SO2 greater than 50 ppb during the study period. Likewise,
site 42 had fewer instances of high SO2 than sites 40 and 41. Although there are broad similarities in
sites with similar land use and nearby sources, there is variability even within site classes. The COD
for SO2 for all site pairs between the nine sites near industrial facilities was greater than 0.2. A plot
of the pairwise COD for SO2 at these nine sites is found in the SI, Figure S5. The heterogeneity
between SO2 concentrations within site groupings further demonstrates the utility of a high-density
multi-pollutant network.

3.3. Exposure Inequality and Environmental Justice

Figure 7 examines exposure inequality and environmental justice of PM2.5 and NO2 as a function
of two socio-economic variables: percent of the population living below the poverty line and percent
of the population belonging to a minority group. Although there are numerous socio-economic
factors available for assessing environmental justice, this study only analyzes these two factors as
they are the indicators for environmental justice regions in the state of Pennsylvania. The mean PM2.5

concentration for all of the non-EJ sites is 10.3 µg/m3 (standard deviation = 1.5 µg/m3) and the mean
PM2.5 concentration for all of the EJ sites is 10.6 µg/m3 (standard deviation = 1.0 µg/m3), which suggests
no significant difference in PM2.5 concentrations based on EJ status of the census block group.Int. J. Environ. Res. Public Health 2019, 16, x 12 of 16 

 

  
(a) (b) 

 
(c) (d) 

  
  
  
  

 

a b 

 c d 
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increasing EJ indicators.  

Figure 7. Environmental justice analysis showing mean (yellow diamond) and standard deviation
(whiskers) at each site. Site 2 was not included in the PM2.5 analysis due to the impact of the local
restaurant emissions at that site. (a,b) show the lack of correlation between PM2.5 concentrations and
percent of the population who (a) belong to a minority group or (b) are living below the poverty
line. (c,d) similarly show the lack of correlation between NO2 concentrations and the same two
socio-economic variables.
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Spearman’s rho, a non-parametric measure of rank correlation, can be used to test the relationship
between two variables. A Spearman’s rho with an absolute value of less than 0.20 is indicative of
very weak correlation between the variables, only above 0.60 is the correlation considered strong.
The Spearman’s rho between mean PM2.5 concentration at a site and percent of the population living
below the poverty line in the census block group is 0.05. The Spearman correlation between mean
PM2.5 and percent of the population belonging to a minority group is similarly low (0.01). This means
that the relationship between mean PM2.5 concentration and socioeconomic (EJ) variables cannot be
described by a monotonic function; PM2.5 concentration does not increase with increasing EJ indicators.

The Spearman’s rho between the mean NO2 concentrations at the RAMP sites and the
socio-economic variables is similarly low; 0.01 and 0.06 when comparing mean NO2 at a site to percent
of the population living under the poverty line and percent minority group, respectively. The mean
NO2 for EJ sites was 8.85 ppb (standard deviation = 1.58 ppb) while the mean NO2 concentration for
non-EJ sites was 8.32 ppb (standard deviation = 2.00 ppb). In other words, NO2 concentrations are not
systematically higher in EJ communities than non-EJ communities within our study domain.

In contrast to our findings, Clark et al. showed strong correlation between EJ communities and
elevated NO2 concentrations and reported that on a national scale the population weighted mean
NO2 concentrations for non-whites were 5 ppb higher than for whites in 2000 and 2.9 ppb higher
in 2010 [21]. There are several possible explanations for the disagreement of our results with those
of Clark et al. One potential explanation is methodological. Clark et al. used a national land use
regression model estimate of NO2 whereas we use a dense network of sensors within the county.
We have 42 monitors running in the relatively small study domain, while Clark et al. used a model that
was trained on the national EPA monitoring system that only includes two monitors in our domain.
Additionally, Clark et al. reported on average trends throughout the nation. There is no requirement
that each individual city follow these trends; due to different socio-economic factors, Pittsburgh may
not follow the national average trend. For example, several of the Urban Residential sites are located
in neighborhoods that are a mix of middle to upper income families and college students. The student
population increases the percent of non-white population while decreasing the average income of the
areas. There may also be nuanced differences with the ways that minority populations were defined in
each study that may have impacts on the results. For example, in our study we simply defined percent
minority population as the non-white portion of the population. If we were to break the non-white
portion of the population into different subgroups there may be different patterns that arise in our
results. Furthermore, many of the EJ areas, as defined by race and income, are typically upwind of
industrial facilities and thus less impacted by these emissions.

4. Conclusions

A dense network of over 40 lower-cost monitors was deployed within the city of Pittsburgh and
surrounding areas in Allegheny County. The dense sensor network was able to detect significant
differences in PM2.5 concentration between groups of sites within the study domain, and also
between sites within a site group with similar characteristics. NO2 was used as a tracer for traffic
emissions and SO2 was used as a tracer for industrial emissions. Downtown and near Highway
sites experienced elevated PM2.5 and NO2 concentrations that were dominated by traffic emissions.
Sites downwind of industrial sources such as the Near Steel Mill sites and East of Coke Plant sites
experienced elevated PM2.5 concentrations influenced by industrial point sources, indicated by higher
SO2 levels. No relationship was found linking two socio-economic variables to elevated PM2.5 or NO2

concentrations within our sampling network.
Our analysis demonstrates the value of a dense sensor network. Our network is able to capture

temporospatial pollutant patterns that cannot be resolved by the sparse network of regulatory
monitors. We grouped our sensors into seven categories and observed significant variations both
within and between categories. Even if the regulatory monitoring network had one site in each of our
seven land-use-based categories (and it does not), it would not be able to capture all of the spatial
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variations that we present here. Coupling measurements of PM2.5 and gases allows us to attribute the
observed temporospatial pollutant patterns to specific source classes, which demonstrates the benefit
of multipollutant sensor networks.

The approach we use here could easily be replicated in other cities. While the mix of sources may
be different—for example, the coke plant is somewhat unique to our sampling domain—networks
of multi-pollutant sensors should be capable of capturing pollutant patterns and attributing them to
traffic versus other sources.
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