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Cardiovascular Safety Assessment in Early-Phase
Clinical Studies: A Meta-Analytical Comparison of
Exposure-Response Models

DJ Conrado*, D Chen and WS Denney

Exposure-response analysis of QT interval in clinical studies has been proposed as a thorough QT study alternative. Many
exposure-response model structures have been proposed for cardiovascular (CV) safety markers, but few studies have
compared models across multiple drugs. To recommend preferred drug-effect exposure-response models on vital signs and
electrocardiogram (ECG) intervals, an individual-level model-based meta-analysis (39 studies and 1,291 subjects) compared 90
model structures. Models were selected to describe the data and cross-validate studies on the same drug. The most commonly
selected baseline model was an unstructured model (estimation of a value at each study nominal time) for all measures but
blood pressure. The unstructured model estimated a better cross-validated drug-effect when considering all markers. A linear
model was the most commonly selected to characterize drug-effect on all markers. We propose these models as a starting point
assisting with CV safety exposure-response assessment in nondedicated small studies with healthy subjects.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 324–335; doi:10.1002/psp4.12086; published online 18 June 2016.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Different exposure-response models have been pro-

posed for CV safety markers, but few studies compared

models predictions across multiple drugs.
WHAT QUESTION DID THIS STUDY ADDRESS?
� What are the preferred models assessing exposure-

response on vital signs and ECG intervals in phase I

studies?
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� The preferred baseline model was an unstructured

model (estimation of a placebo-value at each study

nominal time) for all CV markers but BP. The unstruc-

tured model provided a better cross-validated drug-

effect when aggregating CV markers. A linear model
was the most commonly selected to characterize drug-
effect on all CV markers.
HOW THIS MIGHT CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS
� The model structure comparison supports and
extends ongoing efforts to update the International
Conference on Harmonisation E14 guidance with a
model-based assessment of exposure-response. By
prespecifying preferred and alternative models in the
phase I analysis plans and criteria for model selection,
we hope to reduce the need for dedicated studies on
CV safety marker assessment (for example, the thor-
ough-QT study).

Cardiac safety concerns are a leading cause for the with-

drawal of marketed drugs and discontinuation of drug

development programs regardless of their indication.1 QT

interval, heart rate (HR), and blood pressure (BP) are well-

established markers of cardiovascular (CV) events. Abnor-

mal BP and HR are risk factors for stroke, heart failure, and

myocardial infarction.2–7 QT interval prolongation is a risk

factor for torsade de pointes.8,9

Given the potential for unwanted CVeffects, early characteri-
zation of the drug-exposure relationship on QT interval, HR,
and BP in phase I studies can be influential in: (a) decision-
making for continuing development; (b) establishing electrocar-
diogram (ECG) monitoring requirements for late-phase clinical
studies; and (c) defining label recommendations.10,11 Recently,
a prospective study by the International Consortium for Innova-
tion and Quality in Pharmaceutical Development-Cardiac

Safety Research Consortium provided evidence that intense

ECG assessment with simultaneous pharmacokinetic (PK)

sampling in single ascending dose (SAD) and/or multiple

ascending dose (MAD) studies can serve as an alternative to

the thorough-QT study.12

Despite SAD and MAD studies being well-suited for CV

safety assessment, there are limited published studies on

the topic. Moreover, modeling of CV effects for non-CV

drugs often focuses on QT interval prolongation,13–20 and

reported exposure-response or PK-pharmacodynamic anal-

ysis of drug-effects on BP, HR, or QT interval mostly

involves drugs for which these CV markers are a target

pharmacological action (e.g., antihypertensive and antiar-

rhythmic agents).21–37 Nevertheless, a wide range of non-

CV drugs have evidence of off-target CV effects and,

hence, risk.3,13
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To recommend a suite of exposure-response models

assessing drug-effect on QT interval, HR, and BP in SAD and

MAD studies and determine if one structure was most often

selected, we conducted an individual-level model-based meta-

analysis evaluating a variety of mixed-effects models. Models

were compared for ability to describe the observed data and

cross-validate drug-effects across different studies on the

same drug. To our knowledge, this is the largest and most com-

prehensive meta-analysis on exposure-response modeling for

assessment of CV safety.

METHODS
Studies data
We selected drug-development programs with two or more

SAD and/or MAD phase I studies that ran in the Pfizer clini-

cal research units between 2006 and 2012, following the

steps outlined in Figure 1. All studies followed Good Clinical

Practice, adhered to the Declaration of Helsinki, received

institutional review board or ethics committee approval, and

all subjects had documented informed consent before initiation
of study procedures. An initial pool of 1,591 phase I studies
resulted in 43 SAD/MAD studies meeting the study inclusion
criteria. An additional three studies were excluded as they
were the only study available for the respective investigational
drugs, and one study was excluded because of the presence
of add-on therapy. Therefore, 39 SAD or MAD phase I studies
remained for analysis, encompassing 18 parent drugs, 2 active
metabolites, and a total of 1,291 subjects (Table 1). PK data
was obtained from the Pfizer electronic Non-Compartmental
Analysis database. Vital signs, ECG, demographics, and dos-
ing information were downloaded from the Pfizer phase I man-
agement system database using the Pfizer Automated
Monitoring of Phase I tool.

SAD studies typically were dosed in the fasted state with
water restrictions immediately before and 1–2 hours postdos-
ing, and in SAD studies, the subjects were typically supine for
�4 hours postdosing. SAD studies typically have many
assessments on day 1 with sparse measurements on subse-
quent days, and the subjects were typically inpatients for 3–4
days after dosing. MAD studies typically were dosed in the fed
state with water restrictions immediately before and 1–2 hours
postdosing, and the subjects were typically not restricted to be
supine postdosing. MAD studies were typically 14 days in dura-
tion with many assessments on days 1 and 14 and sparse
measurements on intermediate days. Subjects in MAD studies
were typically inpatients through day 16 after the first dose.
General procedures for ECG, vital signs (BP and pulse rate
(PR)) and PK assessments were similar across studies.
Intense ECG/vital signs assessment along with PK sampling
were performed in each study with a median of 17 (range, 5–
77) simultaneous PK and vitals or ECG interval measurements
per subject in a given treatment. When simultaneous, the order
of assessments was ECG, then vital signs, and then PK.

Electrocardiogram assessments
Scheduled 12-lead ECG assessments were performed after
the subject rested quietly �10 minutes in a supine position.
Triplicate 12-lead ECGs were obtained �2–4 minutes apart.

Blood pressure and pulse rate assessments
BP and PRs were recorded after resting supine for 5
minutes. BP was measured with the subject’s arm sup-
ported at the level of the heart and recorded to the nearest
mm Hg. The same arm (preferably the dominant arm) was
used throughout the study. Recordings were typically
obtained in single or triple measurements pre-dose and as
single assessments at other protocol-specified times. Each
BP measurement used the same size cuff, properly sized
and calibrated. Automated devices for measuring BP and
PR were typically used; when manual, PR was measured
in the brachial/radial artery for �30 seconds.

Pharmacokinetic assessments
PK assessments and sampling methods varied by protocol
and compound. Typically, blood samples (4–5 mL) to pro-
vide 1.5–2 mL of plasma or serum for PK analysis were
collected into appropriately labeled tubes with or without
anticoagulant at specified times. Sample collection within
10% of the nominal time from dosing was not a protocol
deviation, as long as the exact time of collection was

Figure 1 Study selection metrics. PK, pharmacokinetic.
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recorded. Samples were analyzed using validated analytical

methods.

Meal schedule
Typically, breakfast was consumed �30 minutes before

dosing (if dosed in the fed state), a standard lunch was pro-

vided at �4 hours after the first drug dosing, and a stand-
ard dinner was provided at �9–10 hours after morning
dosing. A post-dinner evening snack may have been per-
mitted. Meal schedules may have been altered from the
typical schedule. The first drug dosing typically occurred at
approximately 8:00 AM.

Table 1 Single ascending dose and multiple ascending dose phase I studies included in the analysis (n 5 39).

Study ID Parent drug Metabolite Pro-drug Indication

Exclude

metabolite?

Reason

Total no.

of subjects

No. of subjects

who received

placebo

A8121001 PF-00868554 – – Hepatitis C virus – 16 16

A8121003 PF-00868554 – – Hepatitis C virus – 33 8

A8341001 PF-02400013 – – Schizophrenia – 25 25

A8341002 PF-02400013 – – Schizophrenia – 32 8

A8641001 PF-03084014 – – Alzheimer disease – 26 26

A8641002 PF-03084014 – – Alzheimer disease – 51 14

A8811003 CP-70.429 – PF-03709270 Antibacterial – 35 15

A8811008 CP-70.429 – PF-03709270 Antibacterial – 24 0

A9131001 PF-03463275 – – Schizophrenia – 28 28

A9131002 PF-03463275 – – Schizophrenia – 24 6

A9541001 PF-03049423 – – Stroke – 24 24

A9541002 PF-03049423 – – Stroke – 48 14

B0011001 CP-70.429 – PF-04064900 Antibacterial – 9 9

B0151001 PF-04236921 – – Rheumatoid arthritis – 33 12

B0151004 PF-04236921 – – Rheumatoid arthritis – 10 0

B0171001 PF-03882845 – – Diabetic nephropathy – 33 18

B0171002 PF-03882845 – – Diabetic nephropathy – 10 2

B0581001 PF-04287881 – – Antibacterial – 79 19

B0581002 PF-04287881 – – Antibacterial – 39 7

B0861001 PF-04308515 – – Rheumatoid arthritis – 27 25

B0861002 PF-04308515 – – Rheumatoid arthritis – 58 10

B0911001 PF-04802540 PF-04831035 – Schizophrenia – 28 25

B0911002 PF-04802540 PF-04831035 – Schizophrenia – 40 8

B0961001 PF-04620110 – – Type 2 diabetes mellitus – 27 26

B0961002 PF-04620110 – – Type 2 diabetes mellitus – 73 18

B0961010 PF-04620110 – – Type 2 diabetes mellitus – 60 35

B1071001 PF-04455242 – – Bipolar depression – 18 18

B1071002 PF-04455242 PF-04831035 – Bipolar depression Yes. Metabolite is

not analyzed

across other

studies on the

parent drug.

36 9

B1171001 PF-02341272 PNU-101603 PNU-101244 – Tuberculosis – 19 19

B1171002 PF-02341272 PNU-101603 PNU-101244 – Tuberculosis – 59 10

B1521001 PF-04971729 – – Type 2 diabetes mellitus – 24 24

B1521002 PF-04971729 PF-05217539 – Type 2 diabetes mellitus Yes. Metabolite is

not analyzed

across other

studies on the

parent drug.

40 8

B1701001 PF-04958242 – – Schizophrenia – 24 24

B1701002 PF-04958242 – – Schizophrenia – 20 4

B1701007 PF-04958242 – – Schizophrenia – 39 8

B2911001 PF-05161704 PF-05200145 – Type 2 diabetes mellitus – 18 18

B2911002 PF-05161704 PF-05200145 – Type 2 diabetes mellitus – 32 8

B3301001 PF-05190457 – – Type 2 diabetes mellitus – 35 32

B3301002 PF-05190457 – – Type 2 diabetes mellitus – 35 11

Excluded compounds are highlighted in gray.
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Model building
In total, 90 models were tested for each study and each

endpoint. The baseline models (5 structures), drug effect

models (3 structures).

Independent and dependent variables
The independent variable of the exposure-response analysis

was the plasma/serum concentration of the parent drug.

When present, the plasma/serum concentration of the active

metabolite was also used (separately) as the independent

variable. The dependent variables were RR interval, QT

interval, Fridericia corrected QT interval (QTcF), systolic

blood pressure (SBP), diastolic blood pressure (DBP), and

PR. RR interval is the time between beats (time between

QRS complexes) and is related to HR, as shown in Eq. 1.

QT interval is related to QTcF, as shown in Eq. 2.

HR beats per minuteð Þ5 60
RR interval secondsð Þ (1)

QTcF millisecondsð Þ5 QT millisecondsð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RR interval secondsð Þ3

p (2)

Investigated fixed-effects model structures
PubMed, OVID MEDLINE, and Embase were surveyed for

model structures investigated to describe changes in SBP,

DBP, PR, RR, QT, and QTcF intervals in the absence

(baseline model) and presence of drug (baseline plus drug-

effect model). For each study, we separately tested each

baseline and drug-effect model pair. The selection of base-

line and drug-effect model structures was based on

exposure-response or PK-pharmacodynamic analyses of

BP, PR/HR, or QT interval published in the scientific litera-

ture before August 2013 (Supplementary Table S1); mod-

els in �2 references were investigated. One additional

baseline model estimating a mean value at each nominal

time after the first dosing (unstructured model) was also

included, as initially described by the authors of ref. 38 and

a modified version is used by Darpo et al.12 The investi-

gated baseline and drug-effect model structures were as

follows.

Baseline models
Time-invariant baseline: estimated pre-dose baseline value

Baseline5E0 (3)

Time-varying baseline: unstructured model, estimated

baseline value at each nominal time after the first dosing:

Baseline tð Þ5
E0;t ;NTAFD55t

0; NTAFD 6¼ t

(
(4)

Time-varying baseline: cosine (12-hour period) function:

Baseline Tð Þ5Mean1Amplitude � Cosine
2 � p � T

12
2Shift

� �
(5)

Time-varying baseline: cosine (24-hour period) function:

Baseline Tð Þ5Mean1Amplitude � Cosine
2 � p � T

24
2Shift

� �
(6)

Time-varying baseline: double cosine (12- and 24-hour

period) function:

Baseline Tð Þ5Mean1Amplitude1

� Cosine
2 � p � T

12
2Shift1

� �
1 Amplitude2

� Cosine
2 � p � T

24
2Shift2

� �
(7)

Drug-effect models
Linear:

Effect5Baseline1Slope � Concentration (8)

Maximum effect (Emax):

Effect5Baseline1
Emax � Concentration
EC501Concentration

(9)

Sigmoidal Emax:

Effect5Baseline1
Emax � Concentrationc

EC50
c
1Concentrationc

(10)

In the above equations, t is nominal time after the first dos-

ing, T is 24-hour clock time, amplitude is the amplitude of
the cosine term, shift is the phase shift of the cosine term,

mean is the average over the cosine period, EC50 is the
concentration yielding 50% of the Emax, and c is the Hill

coefficient.
Data analysis was conducted in R version 2.15.2 using

the nlme library version 3.1-111. Precision of estimated
parameters was assessed based on standard errors calcu-

lated from the variance-covariance matrix of the estimates.

Introducing three levels of random effects
Models were fit by study, and three levels of random vari-
ability were tested: between- and within-subject variability

and between-occasion variability. Between- and within-
subject variability were separable given that multiple meas-

ures of the CV marker and drug concentration over time
were available for each subject. Between-occasion variabili-

ty was tested in studies with more than one period (i.e.,
occasion) per subject. Ninety mixed-effects model struc-

tures, including different baseline (5 structures) and drug-
effect models (3 structures) with or without between-subject

and between-occasion variability (2 to 4 structures depend-

ing on drug model), were tested. Random effects were con-
sidered to be normally distributed given the homeostatic

control mechanisms involved in the regulation of the CV
markers. EC50 and its between-subject variability were esti-

mated on the log scale to constrain the estimates to posi-
tive numbers.

Between-subject variability was tested in virtually all fixed

effect parameters and their combinations. For the cosine
baseline models, between-subject variability was tested for

the mean parameter and dropped for the other parameters
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because of excessive computational time; for the drug-
effect models, between-subject variability was tested for all
parameters, except in the sigmoidal Emax model, in which
between-subject variability was not tested for c.

Between-occasion variability was only tested for baseline
parameters; for the cosine models, it was only tested for
the mean parameter. Between-occasion variability was
dropped when the baseline model was paired with a sig-
moidal Emax drug-effect model with between-subject vari-
ability for the EC50 or Emax parameter because of
excessive computational time without convergence.

Model selection and meta-analysis
For each CV marker and study, the relative best overall
model structure (baseline plus drug-effect model) was
selected based on a modified version of the Akaike’s infor-
mation criterion (AICmod)

39 with a per parameter penalty of
6.635 (AICmod 56:635 � k22 � ln Lð Þ, where k is the number
of estimated parameters and L is the maximized likelihood).
The AICmod was used to select the preferred model as the
AIC does not require nested models; the per-parameter pen-
alty of 6.635 was selected to be equivalent to a one-
parameter, nested-model v2 test with a P value of 0.01.40

Including k 5 6.635 rather than the classical AIC with k 5 2
is more likely to select models with fewer parameters, and
this is included to alleviate concerns about the potentially
large number of parameters in the unstructured baseline
model. The selected model was the one with the lowest AIC-

mod value. For studies with more than one period, the model
selection was conducted separately in the absence and
presence of between-occasion variability; this helped to eval-
uate whether the introduction of between-occasion variability
influenced the selection of the baseline and drug-effect
model structures (i.e., fixed-effects component; Eqs. 3–10).

The baseline models were also evaluated by the pre-
dicted effects’ agreement between studies on the same
compound. Here, we assumed that two studies on the
same compound should yield similar predictions of the
effect on CV markers at a given concentration. For each
baseline model structure (Eqs. 3–7), considered with and
without between-occasion variability, the AICmod was used
to select the model for the drug effect. For a given com-
pound, the concentration was selected similarly to Darpo
et al.12 by computing the geometric mean peak plasma
concentration (Cmax) for each dosage regimen in each
study, selecting the highest geometric mean Cmax in each
study, and then selecting the lowest of these between stud-
ies to prevent model extrapolation; this concentration was
denoted Cmax,common. As the methods tested are attempting
to define concentration- and not dose-response, unlike
Darpo et al.,12 uncertainty in Cmax,common was not incorpo-
rated. Using the selected models, 1,000 simulations of drug
effect at Cmax,common were performed with the multivariate
normal distribution with the mean and variance-covariance
matrix of the parameter estimates from the selected mod-
els. For each combination of CV marker, baseline model,
and absence/presence of between-occasion variability, a
graph of predicted median effect along with the 90% confi-
dence interval (CI) of the simulated effects was generated
for all pairs of studies by compound. For each pair, the ear-

lier study was denoted as study 1. We then calculated the

distance of each intersection (median estimate) from the

unit line and summed them across all compounds using the

following (derived from Euclidean geometry):

Xn

i51

�
median effectstudy 1;i 2median effectstudy 2;i

2

� �2

1

�
median effectstudy 2;i 2median effectstudy 1;i

2

�2�1=2
(11)

where n is the number of compounds and i represents the

compound. There were three compounds with three studies

each, and for each of these compounds, a pair of studies

was randomly selected.
The cumulative distance divided by the number of com-

pounds was calculated to yield the average between-study

disagreement for each CV marker. We also calculated the CI-

normalized distance from each coordinate from the unit line

and summed them across all compounds using the following:

Xn

i51

�
median effectstudy 1;i 2median effectstudy 2;i

23CIstudy 2;i

� �2

1
median effectstudy 2;i 2median effectstudy 1;i

23CIstudy 1;i

�2�1=2
 (12)

where CI is the 5th to 95th percentile of simulated effects

divided by two. The preferred baseline model structure was the

one minimizing CI-normalized distance (i.e., better between-

study agreement). Although the CI-normalized distance may

favor a model with high imprecision, its comparison to the afore-

mentioned (non-normalized) distance minimizes that bias.

Diagnosis of drug-effect delay
Diagnosis for anticlockwise hysteresis (drug-effect delay) was

performed in order to evaluate the appropriateness of the

direct-link exposure-response analysis. For the model with the

lowest CI-normalized distance for each marker in each study,

the first derivative of the drug concentration with respect to

time was numerically calculated. The concentration derivative

(horizontal-axis) was plotted vs. standardized (Pearson) resid-

uals from the nlme model (vertical-axis). A linear regression

analysis was performed and the 99% lower confidence bound

for the slope was calculated. If the lower confidence bound for

the slope was greater than zero, then the presence of a drug-

effect delay was inferred while acknowledging the sensitivity of

this method to increasing amount of data.

Analysis of meal effect on baseline
As CV changes have been reported after a meal,41–44 a

post-hoc analysis was conducted to evaluate whether meal

intake is able to explain some of the temporal changes in

the baseline CV markers. The model structure (Eq. 13) was

selected based on the visual inspection of the standardized

residuals (when a time-invariant model structure was fitted)

vs. the time after the last meal (i.e., breakfast, lunch, or din-

ner). For example, for PR and RR, a postprandial “peak”

and “trough,” respectively, was observed with a return to

the preprandial value consistent with published studies on
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Table 2 Counts of AICmod-selected baseline models to describe the different CV markers (in the absence of drug effect) for two different phase I studies on

the same compound (total number of compounds for vital signs 5 20; total number of compounds for ECG-intervals 5 16).

Study 2

Study 1

Estimated

pre-dose

one time

point

baseline (E0) Unstructureda

Cosine

(12-h period)

Cosine

(24-h period)

Double

cosine

(12- and 24-h

periods) Sum

SBP

E0 1 (2) 2 (2) 1 (0) 2 (1) 0 (0) 6 (5)

Unstructureda 1 (0) 1 (1) 1 (1) 3 (4) 0 (0) 6 (6)

Cosine (12-h period) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Cosine (24-h period) 3 (4) 0 (0) 1 (2) 4 (3) 0 (0) 8 (9)

Double cosine (12- and 24-h periods) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Sum 5 (6) 3 (3) 3 (3) 9 (8) 0 (0) 20 (20)

DBP

E0 0 (0) 0 (0) 0 (0) 2 (3) 0 (0) 2 (3)

Unstructureda 1 (1) 0 (0) 1 (1) 2 (2) 0 (0) 4 (4)

Cosine (12-h period) 0 (0) 0 (0) 1 (1) 2 (1) 0 (0) 3 (2)

Cosine (24-h period) 3 (3) 0 (0) 3 (3) 5 (5) 0 (0) 11 (11)

Double cosine (12- and 24-h periods) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Sum 4 (4) 0 (0) 5 (5) 11 (11) 0 (0) 20 (20)

PR

E0 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 1 (1)

Unstructureda 2 (2) 7 (7) 1 (1) 6 (6) 0 (0) 16 (16)

Cosine (12-h period) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Cosine (24-h period) 0 (0) 2 (2) 0 (0) 1 (1) 0 (0) 3 (3)

Double cosine (12- and 24-h periods) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Sum 2 (2) 10 (10) 1 (1) 7 (7) 0 (0) 20 (20)

RR interval

E0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Unstructureda 0 (0) 12 (13) 2 (2) 0 (0) 0 (0) 14 (15)

Cosine (12-h period) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Cosine (24-h period) 0 (0) 2 (1) 0 (0) 0 (0) 0 (0) 2 (1)

Double cosine (12- and 24-h periods) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Sum 0 (0) 14 (14) 2 (2) 0 (0) 0 (0) 16 (16)

QT interval

E0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Unstructureda 1 (1) 14 (13) 1 (0) 0 (2) 0 (0) 16 (16)

Cosine (12-h period) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Cosine (24-h period) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Double cosine (12- and 24-h periods) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Sum 1 (1) 14 (13) 1 (0) 0 (2) 0 (0) 16 (16)

QTcF

E0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Unstructureda 2 (1) 5 (4) 3 (4) 1 (1) 0 (0) 11 (10)

Cosine (12-h period) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Cosine (24-h period) 0 (0) 2 (2) 0 (0) 3 (4) 0 (0) 5 (6)

Double cosine (12- and 24-h periods) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Sum 2 (1) 7 (6) 3 (4) 4 (5) 0 (0) 16 (16)

AICmod, modified Akaike’s information criterion; CV, cardiovascular; DBP, diastolic blood pressure; ECG, electrocardiogram; PR, pulse rate; QTcF, Fridericia

corrected QT interval; SBP, systolic blood pressure.

The results outside of the parentheses are for models without between-occasion variability. The results inside the parentheses are for models that allow

between-occasion variability when the study has more than one period.
aUnstructured model corresponds to the estimation of a baseline value at each study nominal time after the first drug dosing. Values between parentheses rep-

resent the counts when between-occasion variability was incorporated in the respective baseline model for studies with more than one period. Cells highlighted

in gray represent the same baseline model across both studies.
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the topic.41,43 The analysis was conducted in R version

3.1.2 using linear and nonlinear mixed-effects modeling

(with the nlme library), and previous model structures were

rerun with this R version only for comparison of the afore-

mentioned model selection criteria.

Baseline Tmð Þ 5
Intercept � 4

11ekd�Tmð Þ � 11eki �Tmð Þ (13)

where Tm is time after the last meal, intercept is the base-

line value when Tm equals zero, the constant 4 normalizes

the numerator to the denominator when Tm 5 0, and kd

and ki are constants describing the rate with which the CV

marker separates from and returns to the intercept.

RESULTS

The analysis dataset consisted of 39 SAD or MAD phase I

studies, including 18 parent drugs, 2 active metabolites,

and a total of 1,291 subjects. Of the 39 studies, 34 studies
enrolled healthy adult subjects, and 5 studies enrolled oth-
erwise healthy overweight and obese subjects. Of the 18
parent drugs under investigation, 15 (38%) were to treat
neurologic/psychiatric diseases, 11 (28%) were to treat CV/
metabolic diseases, 9 (23%) were to treat infections, and 4
(10%) were to treat chronic inflammation (Table 1). For the
ECG intervals (i.e., RR, QT, and QTcF intervals), observa-
tions from 1,078 subjects (33 studies, 18 compounds) were
retrieved; 2 of 18 compounds had data available for only
one phase I study and ECG results comparing two studies
were only presented for the 16 remaining compounds.
There were �44,590 observations for each of the vital signs
(i.e., SBP, DBP, and PR) and �54,069 observations for
each of the ECG intervals in the analysis dataset; 23.5%
and 27% of the observations, respectively, were from pla-
cebo. Approximately half of the studies in the vitals and
ECG datasets had more than one period.

The selected baseline and drug-effect model structures
based on AICmod are summarized in Tables 2 and 3,

Table 3 Counts of AICmod-selected drug-effect models to describe drug effect on the different CV markers for two different phase I studies on the same com-

pound (total number of compounds for vital signs 5 20; total number of compounds for ECG-intervals 5 16).

Study 2

Study 1
Linear model Emax model Sigmoidal Emax model Sum

SBP

Linear model 14 (14) 3 (4) 0 (0) 17 (18)

Emax model 2 (2) 1 (0) 0 (0) 3 (2)

Sigmoidal Emax model 0 (0) 0 (0) 0 (0) 0 (0)

Sum 16 (16) 4 (4) 0 (0) 20 (20)

DBP

Linear model 16 (16) 1 (1) 0 (0) 17 (17)

Emax model 2 (2) 1 (1) 0 (0) 3 (3)

Sigmoidal Emax model 0 (0) 0 (0) 0 (0) 0 (0)

Sum 18 (18) 2 (2) 0 (0) 20 (20)

PR

Linear model 10 (12) 3 (3) 0 (0) 13 (15)

Emax model 5 (2) 2 (3) 0 (0) 7 (5)

Sigmoidal Emax model 0 (0) 0 (0) 0 (0) 0 (0)

Sum 15 (14) 5 (6) 0 (0) 20 (20)

RR interval

Linear model 7 (9) 3 (2) 0 (0) 10 (11)

Emax model 4 (4) 2 (1) 0 (0) 6 (5)

Sigmoidal Emax model 0 (0) 0 (0) 0 (0) 0 (0)

Sum 11 (13) 5 (3) 0 (0) 16 (16)

QT interval

Linear model 3 (7) 5 (3) 0 (0) 8 (10)

Emax model 7 (3) 1 (2) 0 (0) 8 (5)

Sigmoidal Emax model 0 (0) 0 (1) 0 (0) 0 (1)

Sum 10 (10) 6 (6) 0 (0) 16 (16)

QTcF

Linear model 9 (9) 2 (1) 0 (0) 11 (10)

Emax model 2 (4) 2 (2) 0 (0) 4 (6)

Sigmoidal Emax model 1 (0) 0 (0) 0 (0) 1 (0)

Sum 12 (13) 4 (3) 0 (0) 16 (16)

AICmod, modified Akaike’s information criterion; CV, cardiovascular; DBP, diastolic blood pressure; ECG, electrocardiogram; Emax, maximum effect; PR, pulse

rate; QTcF, Fridericia corrected QT interval; SBP, systolic blood pressure.

Cells highlighted in grey represent the same drug-effect model across both studies.
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respectively, for each CV marker. The overall model selec-
tion was similar between the two sets with and without
between-occasion variability. All baseline models included
between-subject variability; �26% and 23% of the selected
models with linear drug-effect models had between-subject
variability incorporated in the slope parameter for models
without and with between-occasion variability; �67% and
68% of the selected Emax drug-effect models had between-
subject variability incorporated in the Emax parameter for
models without and with between-occasion variability. Very
few selected Emax models had a between-subject variability
component for the EC50 parameter. The most commonly
selected baseline model for SBP and DBP was the cosine

function with a 24-hour period. For PR, RR, QT, and QTcF
intervals, the most commonly selected was the unstruc-
tured baseline model (i.e., estimation of a baseline value at
each study nominal time after the first dosing). A linear
drug-effect model was most commonly selected to charac-
terize drug effect on CV markers. The results were the
same regardless of analyzing all studies, studies 1 and 2
separately, or only pairs of studies with the same selected
model.

The unstructured baseline model yielded the lowest overall
(i.e., sum of all CV markers) CI-normalized distance in the
meta-analysis (Table 4). This was observed within both sets

of models (i.e., with and without between-occasion variability),
and a comparison between the two sets revealed that the
overall CI-normalized distance was lower for that without
between-occasion variability. Using the CI-normalized dis-
tance metric for the individual CV markers, the unstructured
baseline model yielded a better between-study agreement for
PR, QT, and QTcF intervals; PR had a similar normalized dis-
tance value between the unstructured baseline model and the
12-hour cosine model. For SBP, DBP, and RR interval,
respectively, the 24-hour cosine, 12-hour cosine, and E0

model yield a better agreement; in particular, for SBP and RR
interval, the normalized distance values from the respective
24-hour cosine and E0 models were similar to the ones of the
unstructured baseline model. Using the baseline models with
the lowest CI-normalized distance metric for each CV marker,
Figure 2 shows the predicted median change from baseline
effect at Cmax,common for the different compounds. The conclu-
sion was virtually the same for non-normalized distance,
where the unstructured baseline model yielded the best
between-study agreement for RR, QT, and QTcF intervals.
For SBP and DBP, respectively, the 24-hour cosine and 12-
hour cosine model yielded a better agreement (Table 4). For
the PR interval, a 12-hour cosine model yielded a better
agreement, but the distance was similar to that of the
unstructured baseline model. For the RR interval, the

Table 4 Between-study prediction of change from baseline at the maximum drug concentration (Cmax,common).

Surrogate marker

Estimated pre-dose one

timepoint baseline (E0) Unstructureda Cosine (12-h period) Cosine (24-h period)

Double cosine (12- and

24-h periods)

Distance

SBP 19 (21) 24 (21) 21 (22) 20 (19) DNC

DBP 17 (17) 24 (22) 14 (15) 15 (15) DNC

PR 25 (23) 20 (23) 17 (18) 20 (19) DNC

RR interval 360 (356) 196 (256) 377 (504) 386 (397) DNC

QT interval 82 (71) 39 (38) 79 (77) 82 (82) DNC

QTcF interval 45 (45) 19 (17) 29 (34) 37 (39) DNC

Distance divided by number of compounds

SBP 0.95 (1.05) 1.20 (1.05) 1.05 (1.10) 1.00 (0.95) DNC

DBP 0.85 (0.85) 1.20 (1.10) 0.70 (0.75) 0.75 (0.75) DNC

PR 1.25 (1.15) 1.00 (1.15) 0.85 (0.90) 1.00 (0.95) DNC

RR interval 22.5 (22.3) 12.3 (16.0) 23.6 (31.5) 24.1 (24.8) DNC

QT interval 5.13 (4.44) 2.44 (2.38) 4.94 (4.81) 5.13 (5.13) DNC

QTcF interval 2.81 (2.81) 1.19 (1.06) 1.81 (2.13) 2.31 (2.44) DNC

Normalized distance

SBP 38 (80) 37 (76) 43 (49) 35 (76) DNC

DBP 100 (99) 122 (58) 40 (66) 85 (79) DNC

PR 65 (43) 35 (55) 36 (37) 43 (57) DNC

RR interval 28 (37) 34 (42) 53 (66) 47 (56) DNC

QT interval 35 (32) 20 (29) 72 (74) 50 (72) DNC

QTcF interval 43 (96) 22 (26) 28 (81) 34 (76) DNC

Sum 309 (387) 270 (286) 272 (373) 294 (416) –

CV, cardiovascular; DBP, diastolic blood pressure; DNC, did not converge; PR, pulse rate; QTcF, Fridericia corrected QT interval; SBP, systolic blood pressure.

Values represent the summation of the (CI-normalized) distance of each compound coordinate from the unit line (divided by the number of compounds) for the

different baseline models to describe the CV markers. A lower value represents a better between-study agreement, and the lowest (CI-normalized) distance

value for each CV marker is underlined in the cells shaded in grey.
aUnstructured model corresponds to the estimation of a baseline value at each study nominal time after the first drug dosing. Values between parentheses rep-

resent the summation of the normalized distance when between-occasion variability was incorporated in the respective baseline model for studies with more

than one period. Maximum drug concentration was calculated as the geometric mean Cmax for each dosage regimen in each study, selecting the highest geo-

metric mean Cmax in each study, and then selecting the lowest of these between each two studies on the same compound (Cmax,common).
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comparison between non-normalized and CI-normalized dis-
tance reveals a relatively high imprecision for the E0 model,
which reduces the CI-normalized distance value. The relative

range of average disagreement (i.e., ratio of higher and lower
value) across baseline model structures was higher for ECG
intervals (i.e., RR, QT, and QTcF intervals) than for vital signs

Figure 2 Change from baseline of cardiovascular markers at maximum drug concentration (Cmax,common) for different compounds
(1,000 simulations). BOV, between-occasion variability; CI, confidence interval; DBP, diastolic blood pressure; PR, pulse rate; QTcF, Fri-
dericia corrected QT interval; SBP, systolic blood pressure.
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(i.e., SBP, DBP, and PR), which emphasizes the importance
of the model choice for the former.

The drug-effect delay diagnosis (anticlockwise hysteresis)
is summarized in Table 5. For PR, QT, and QTcF intervals,
none of the studies showed evidence of drug-effect delay.
For SBP and DBP, three studies on different compounds
suggested the presence of drug-effect delay, however, the
second study for each of the compounds did not support
the findings. For RR interval, three compounds had evi-
dence of drug-effect delay in both studies, six compounds
had evidence in one study but not the other, and seven
compounds had no evidence in either study.

The time after the last meal (i.e., breakfast, lunch, or din-
ner) explained a portion of the temporal changes in the
baseline CV markers. Based on the AICmod criteria, the
baseline model structure accounting for the time after the
last meal was selected to describe QTcF in four studies,
PR in one study, DBP in seven studies, and SBP in three
studies. All cases were without between-occasion variability.
Interestingly, this baseline model structure yielded a better
between-study agreement for RR, PR, and DBP based on
a CI-normalized distance (22, 15, and 15, respectively;
please refer to Table 4 for comparison with other models).
With regard to the non-normalized distance, this baseline

model structure yielded the lowest distance not only for

RR, PR, and DBP, but also for QT and SBP.

DISCUSSION

The objective of this study was to recommend preferred

exposure-response models—from a pool of previously pub-

lished studies and a new suggested baseline model—to

assess drug effect on ECG intervals and vital signs in SAD

and MAD phase I studies. To this end, we compared a total

of 90 mixed-effects models across several studies and CV

markers (19,440 attempted models in total) for their ability

to: (a) describe the observed data and (b) produce similar

prediction of drug effects at Cmax,common across studies with

the same compound. The most commonly selected base-

line model was the unstructured baseline model for PR,

RR, QT, and QTcF intervals and the cosine function (24-

hour period) for BP. A linear model was the most commonly

selected to characterize drug effect on all markers. Overall,

the unstructured baseline model yielded a better between-

study agreement of predicted drug effect at Cmax,common.

We propose that these preferred models can be a starting

point, and along with the other compiled models, assist

with CV safety assessment using exposure-response analy-

sis in nondedicated small studies with healthy subjects. The

presented modeling work aligns with ongoing efforts to

update the International Conference on Harmonisation

E1410 (in which current methods suggest statistical compar-

ison of the DDQTc by time point—similarly to the unstruc-

tured model—without regard to concentration) with a

model-based assessment of changes in response over a

range of plasma concentration (i.e., exposure-response

analysis) as an alternative to a “by timepoint” approach, as

required for the thorough-QT study.12 Additionally, by pre-

specifying preferred models in the analysis plan for SAD

and MAD along with alternative models and criteria for

model selection, we hope to reduce the need for dedicated

studies on CV safety assessment.
Additional model structures could be tested in practice

during early clinical development, and we believe that the

thorough examination of the model for both hysteresis

(Table 5) and meal effects is warranted to ensure a robust

inference. Within the models tested, the AICmod-selected

baseline models were the same with the best between-

study agreement of drug effects at Cmax,common as meas-

ured by the Euclidean or CI-normalized distance. This

consistency gives us confidence in the reproducibility of our

results, and the feasibility of decision-making using

exposure-response for CV safety markers in phase I stud-

ies. The exception was DBP, in which the AICmod selected

a cosine 24-hour period and the CI-normalized distance

selected a 12-hour period. One surprising result was the

fact that a drug-effect delay was estimated as potentially

significant for RR interval in three studies but not PR;

because the RR delay did not replicate in the second study

for the RR interval, the measurement modalities are differ-

ent (with different error structures and precision), and the

measurement datasets were different, we believe that this

Table 5 Diagnosis of drug-effect delay for two different phase I studies on

the same compound (total number of compounds for vital signs 5 20; total

number of compounds for ECG-intervals 5 16).

Study 2

Study 1

No drug

effect

delay

Drug

effect

delay Sum

SBP

No drug effect delay 17 2 19

Drug effect delay 1 0 1

Sum 18 2 20

DBP

No drug effect delay 17 3 20

Drug effect delay 0 0 0

Sum 17 3 20

PR

No drug effect delay 20 0 20

Drug effect delay 0 0 0

Sum 20 0 20

RR interval

No drug effect delay 7 0 7

Drug effect delay 6 3 9

Sum 13 3 16

QT interval

No drug effect delay 16 0 16

Drug effect delay 0 0 0

Sum 16 0 16

QTcF interval

No drug effect delay 16 0 16

Drug effect delay 0 0 0

Sum 16 0 16

DBP, diastolic blood pressure; ECG, electrocardiogram; PR, pulse rate;

QTcF, Fridericia corrected QT interval; SBP, systolic blood pressure.

Cells highlighted in gray represent the same diagnosis across both studies.
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is likely related to the method of the test for delay rather

than the underlying modeling methods.
The cross-validation between studies and a large dataset

of unique compounds—some with positive and some with

neutral effects—allowed a relatively unbiased assessment

of concentration effects for each endpoint. Potential limita-

tions of the analysis include that: (a) the effect may be

related to a drug concentration site of action other than

plasma; (b) the drug could have tolerance with multiple dos-

ing; (c) unmeasured metabolites may affect the result;

(d) the patient population response could differ from the

healthy subject population; (e) the model structures limit

potential for response shapes in a way that may not be bio-

logically relevant; (f) correlation between replicate response

measurements at the same nominal time for a particular

individual could be taken into account in the model struc-

ture; (g) the variability in the measurements may be hetero-

skedastic, and (h) additional model diagnostic tools could

be used to help with model selection. In this analysis, evi-

dence of anticlockwise hysteresis (drug-effect delay) was

not present for the majority of the CV markers across the

different studies, and perhaps a similar assessment could

be performed for the diagnosis of clockwise hysteresis (tol-

erance). Although a dose-response could alleviate the

potential for alternate compartments or unmeasured metab-

olites, dose-response typically is not able to establish the

time-course postdose, and when a measured drug or

metabolite causes the change to the response, it will be

significantly less precise. Whereas this analysis was con-

ducted in healthy subjects, if there are differences between

healthy subjects and the patient population, identical analy-

ses are possible in the patient population. Last, the model

structures were selected to test those commonly used in

the literature; most drugs are linear in response to these

markers because doses that saturate the effect are not typi-

cally tested because of safety concerns.
We believe that the methods presented for exposure-

response modeling of drug and metabolite effects on vital

signs and ECG intervals aligns well with the recent sugges-

tions from Darpo et al.12 and partially addresses the con-

cerns of Bloomfield45 on the power and potential limitations

of exposure-response analysis from early development

through regulatory decisions on labeling. Further work is

warranted to ensure that both biases are minimized and

that the limitations of prespecified models neither minimize

nor exacerbate the clinical relevance of a signal during drug

development.
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