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The role of cyclonic activity in tropical
temperature-rainfall scaling
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The attribution of changing intensity of rainfall extremes to global warming is a key challenge
of climate research. From a thermodynamic perspective, via the Clausius-Clapeyron rela-
tionship, rainfall events are expected to become stronger due to the increased water-holding
capacity of a warmer atmosphere. Here, we employ global, 1-hourly temperature and 3-hourly
rainfall data to investigate the scaling between temperature and extreme rainfall. Although
the Clausius-Clapeyron scaling of +7% rainfall intensity increase per degree warming roughly
holds on a global average, we find very heterogeneous spatial patterns. Over tropical oceans,
we reveal areas with consistently strong negative scaling (below —40%°C~1). We show that
the negative scaling is due to a robust linear correlation between pre-rainfall cooling of near-
surface air temperature and extreme rainfall intensity. We explain this correlation by
atmospheric and oceanic dynamics associated with cyclonic activity. Our results emphasize
that thermodynamic arguments alone are not enough to attribute changing rainfall extremes
to global warming. Circulation dynamics must also be thoroughly considered.
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ARTICLE

xtreme rainfall can lead to severe natural disasters such as

flash floods and landslides. Such events threaten lives,

infrastructure, and natural ecosystems. This poses a major
threat to our socioeconomic welfarel2. The highest property
damages of weather extreme events are typically caused by tro-
pical cyclones (TCs), making them an object of great interest to
researchers, disaster preparedness organizations, and also the
insurance industry3. Therefore, it is vital to understand how
extreme rainfall will evolve under current and future anthro-
pogenic global warming?-7.

Long-term historical rainfall data are scarce8-19, particularly on
subdaily time scales!!~13. It is, nevertheless, generally argued that
extreme rainfall will intensify as our climate warms!#1>. This is
based on the thermodynamic argument that the atmospheric
moisture-holding capacity increases with temperature at an
exponential rate (~7%°C~!), as inferred from the Clausius-
Clapeyron (CC) relation'®. This thermodynamic relationship has
been widely used as a benchmark to interpret changes in extreme
rainfall due to changes in air temperature®!7-22, Indeed, several
studies have found an approximate 7%°C~! increase in rainfall
rates on a global average, using various analysis methods and
temperature covariates!$-23:24,

However, in observed and simulated data, spatial and seasonal
deviations from the CC relationship for the temperature-rainfall
scaling have been found over many parts of the globe?>. A
number of factors play a role in this context. For example, for
rainfall to scale at the CC rate, relative humidity must remain
constant!7-26:27. In high-temperature regimes (e.g. above 24 °C)
such as the (sub-)tropics, negative scaling rates have been
reported repeatedly, indicating a decrease in rainfall intensity
with warming air temperatures?’-30, seemingly due to limited
relative humidity in the atmosphere?2:2627:3132 This finding,
however, is inconsistent with studies showing a rise in the
intensity and frequency of extreme rainfall in past
observations®?3 and future projections’*3> over most of the
globe. Another important factor to consider when analysing the
temperature-intensity scaling is that rainfall itself has a cooling
effect on the surface air temperature, with higher intensities
resulting in stronger cooling®®-38, Arguably the most important
factor, however, is that at regional and local scales, circulation-
dynamic responses (e.g. TCs or mesoscale convective systems)
can play a pivotal role in the scaling. This makes robust quanti-
fications very challenging39-42,

In this study, we perform a (nearly) global analysis of the
relationship between temperature and extreme-rainfall intensity.
We define extreme rainfall as rainfall events above the 90th
percentile of wet times, i.e. 3 hourly rainfall events with average
rainfall rates above 0.1 mmh~!. We employ gridded 3-hourly
rainfall data from the Tropical Rainfall Measurement Mission
(TRMM%3) and 1-hourly surface-temperature data from the
ERAS reanalysis data** at a spatial resolution of 0.25°. We make
sure to mitigate against effects that could influence the
temperature-rainfall scaling relation in unintended ways,
including: surface cooling by the rainfall events themselves and
effects related to the diurnal and seasonal cycles. We focus on
tropical oceans to quantitatively describe the influence of the
oceanic and atmospheric dynamics associated with cyclones on
the apparent temperature-rainfall scaling.

Results

The following results are based on rainfall events in
July-August-September—-October (JASO), the TC season of the
northern hemisphere. Corresponding results for
December-January-February-March-April (DJFMA)—the TC

season of the southern hemisphere—can be found in the sup-
plementary material.

Global temperature-rainfall scaling factors. We applied an
exponential regression between temperature and extreme-rainfall
intensity for each grid cell of the data covering the globe from
50°S to 50°N; the resulting scaling factors (a-values, in units of
%°C~1, see Methods) are depicted in Fig. 1a and Supplementary
Fig. 1. With a value of 6.0%°C~L, the global median of all a-values
(considering only locations with sufficient data points, see caption
of Fig. la) is close to the thermodynamic CC relationship.
However, pronounced spatial variations are apparent, particularly
when comparing a-values over water bodies (Fig. 1a) with those
over landmasses (Supplementary Fig. 1). Much stronger devia-
tions from the 7% scaling are observed over the oceans, with both
positive and negative a-values (note the differences in colormap
ranges). Approximately 33% of all ocean locations have a negative
o« and about 53% show an « larger than 7%°C~!. The probability
density of a-values over the tropics is depicted in Supplementary
Fig. 2.

Exemplary temperature histories over tropical oceans. An
exemplary temperature history of a set of rainfall episodes
(defined as consecutive 3-hourly rainfall events without inter-
ruption, see Methods) precipitating in JASO over a box in the
Caribbean Sea (cyan box in Fig. 1a) is depicted in Fig. 2a. The
temperatures and rolling 24 h mean temperatures show a very
similar behaviour: for all intensity groups (i.e. rainfall episodes
within a certain percentile range of rainfall intensities), the
temperature and rolling 24 h mean temperature at the beginning
of the history (at t=—48 and t= —24h, respectively) is nearly
the same with ~27.8°C. Towards the onset of the rainfall epi-
sodes, temperatures and rolling 24h mean temperatures drift
further and further apart, and we observe a stronger decline of the
preceding temperatures with increasing intensities of the sub-
sequent rainfall episodes. For the most intense rainfall episodes,
the temperature (rolling 24h mean temperature) falls nearly
0.90 °C (0.35 °C) over the course of the 48 (24) hour history. As a
result, the most (least) intense rainfall occurs at the lowest
(highest) temperatures at the time of the onset. This is also
reflected in the scaling between temperature and extreme-rainfall
intensity (Fig. 2c). Here, we place the rainfall episodes pooled
from the box in the Caribbean Sea into bins according to their
rolling 24 h mean temperature at t =2 hours before their onset
(T7). For each bin, the 90th percentile of rainfall rates (P%9) is
computed, and an exponential regression is applied. A decline in
the intensity by 33.7% +1.2% (SE) per 1°C is observed (with a
Pearson correlation coefficient (PCC) of —0.981), which is nearly
five times the reversed CC rate.

We obtain a quite different result when considering the
temperature history of episodes pooled from a box in the
northern tropical Atlantic (white box in Fig. la), as depicted in
Fig. 2b. The temperatures (rolling 24 h mean temperatures) for
the different intensity groups show a clear separation at the
beginning of the history, which is maintained until around 12
(6) h before the onset of the episodes. From that point onward,
temperature curves start to converge until they almost merge at
t=0. The rolling 24 h mean temperature curves exhibit a weaker
and delayed convergence, and they maintain their separation at
t=0. This leads to the strongest (weakest) rainfall episodes
occurring at the highest (lowest) temperatures, which is
consistent with the scaling between the rolling 24h mean
temperatures and extreme-rainfall intensities (Fig. 2d). We find
an increase in the intensity of 72.4% + 1.3% (SE) per 1°C (with a

2 | (2021)12:6732 | https://doi.org/10.1038/s41467-021-27111-z | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27111-z

ARTICLE

60°E 120°E 180° 120°W 60°W 0° 60°E
a — -~ A BE [ e e ; = ) P
e e 2 % 2 L S §
,ec" = " o % g «
23°N i S 0 - . :
X — gk & ~ v
A VOO SRR S o S~ - PN 2 SR i
o [avt 3 : 0
()
> < s & \
a . 2 t
23°S ki >
- LS & “
A RS ;/..‘ N %k‘ﬁ
Pt gt S 2 fad BEY VR O SN
@ (4 . . 3 E‘ 4, A { W, 2 QN
S 9 C Y % 4.1 S B (B A £ T LA Aad . m Y4 e ra
— ! L — —
—42 —28 —14 0 14 28 42
o [%°C']
60°E 120°E 180° 120°wW 0° 60°E

27.5
average sea surface temperature [°C]

28.0

28.5

Fig. 1 Temperature-rainfall scaling and mean sea surface temperatures. a Spatial pattern of the relationship between temperatures T and rainfall intensities
P90 over water bodies in July-August-September-October (JASO), in terms of fitted a-values (in [%°C~11). The colormap ranges from —6 x CC (—42%°C1,
brown) to +6 x CC (+42%°C~, purple). Pixels over landmasses, and pixels over water bodies with less than 100 data points per bin, are depicted as white.
Pixels with a p-value larger than 5% are shaded with crossed black lines. b Average sea surface temperatures in JASO over the period from 1998 to 2018. The

black line illustrates the 28°C contour line.

PCC of 0.923), more than ten times the rate that would be
expected from the thermodynamic CC relationship.

Correlation between temporal temperature gradients and
extreme-rainfall intensity. Although the temperature histories
for the two boxes result in opposed temperature-rainfall scaling
behaviours, they have one common feature that stands out: they
all show declining temperatures before the onset of the episodes,
and the strength of this decline appears to correlate positively
with the intensity of the episodes. We emphasize here that this
cooling is not caused by prior rainfall, because we have selected
only rainfall events for this analysis for which there was no
rainfall in the 48 hours before their onset. To further investigate
this pre-rainfall cooling, we compute the temporal temperature
gradients for all episodes (via the slope of a linear regression
through the rolling 24 h mean temperatures from 6 to 2 h before
the onset of the episode; see Methods for details), and determine
how they scale with rainfall rates. Figure 2e, f depicts the corre-
lation between the temporal temperature gradient and the rainfall
intensity for the box in the Caribbean Sea and the northern
tropical Atlantic, respectively. They show qualitatively very
similar behavior: highest intensities occur for the strongest pre-
rainfall temperature decline, weakest intensities for unchanging
temperatures. In between, the scaling is linear, with a PCC
between temperature gradients and rainfall rates equal to —0.987
for both the Caribbean Sea and the northern tropical Atlantic
box. For positive gradients, there is no discernible correlation.
To visualize the geographic extent of the validity of this linear
correlation, we carried out the correlation analysis between temporal
temperature gradients and rainfall intensities for each grid cell. As for
the two boxes above, we only consider episodes with negative
gradients (see Methods for details; see also Supplementary Fig. 3 for a
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geographic map of the proportion of episodes preceded by a negative
gradient at each location, Fig. 3a for a map of the average temporal
temperature gradient at each location, and Supplementary Fig. 4 for a
latitudinal profile of temporal temperature gradients). The geographic
map of the slopes of the regression analyses is depicted in Fig. 3b. The
slope quantifies the sensitivity of the rainfall rate P?0 to changes in
the temporal temperature gradient T prior to rainfall onset, in

units of mmh~1/0. 1°Ch~!. The median sensitivity of all locations
over water (with sufficient data points, see caption of Fig. 3b) is
—2.4 mmh~1/0.1°Ch~, i.e. Fifty percent of ocean locations show
an increase in the rainfall rate of more than 2.4 mmh~! per 0.1°Ch
~1 decrease in the temperature gradient. Compared to the
temperature-rainfall scaling (Fig. 1a), we find a substantially more
homogeneous distribution of scaling factors (slopes) over tropical
oceans. Approximately 94% of all locations over oceans have a
negative slope, and 50% of the PCCs of the regressions are smaller
than —0.82 (see Fig. 3c).

Given the wide-ranging validity of the linear correlation
between temporal temperature gradients and rainfall intensities,
we also performed the regression analysis for episodes pooled
from all northern tropical ocean locations (between 0°N and
23°N). Figure 4a shows the relationship between the temporal
temperature gradient and the rainfall intensity for this entire
region. We find a strong linear correlation (PCC = —0.998) with
a sensitivity of —4.02 + 0.0088 (SE) mmh~—1/0. 1°Ch—1,

Robustness of the correlation between temporal temperature
gradients and rainfall intensities. To further verify the robust-
ness of the linear correlation between temporal temperature
gradients and rainfall intensities, we performed the regression
analysis over northern tropical oceans using a variety of para-
meter settings: considering episodes with and without rainfall
3
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Fig. 2 Temperature histories and scaling relationships for rainfall episodes over a box in the Caribbean Sea and the northern tropical Atlantic. a
Average temperature history of rainfall episodes over the box in the Caribbean Sea in July-August-September-October (JASO). Episodes are partitioned
into groups according to their rainfall intensity r.,..., given by the peak intensity of an episode. All episodes are aligned by the time of their onset. Within
each intensity group, the mean temperature is depicted (dashed lines). The rolling 24 h mean of the temperature histories is depicted in solid lines. The
dashed black lines represent the regression lines through the rolling 24 h mean temperatures from 6 to 2 h before the onset of the episode. Histories are
cut off at 12 h after the onset of the episodes. b Same as a, but for the box in the northern tropical Atlantic. ¢ Observed scaling between temperature (T")
and the 90th percentile of rainfall rates (P90) for episodes precipitating in JASO over the box in the Caribbean Sea. Episodes are split into 40 bins according
to their temperature (T7), and for each bin, the 90th percentile of rainfall rates is plotted (black solid line and markers; vertical black lines indicate 95%
confidence intervals). The exponential regression between T" and P9 is depicted as a dashed magenta line (the blue color indicates the 95% confidence
band). d Same as ¢, but for the box in the northern tropical Atlantic. @ Observed scaling between temporal temperature gradients (T;) and the 90th
percentile of rainfall rates (P90) for episodes in JASO sampled from the box in the Caribbean Sea. Episodes are split into 25 bins with respect to their
temporal pre-rainfall temperature gradients (T;). The 90th percentile for each bin (P90) is plotted as a black solid line with markers (vertical black lines
indicate 95% confidence intervals). The linear regression through all bins with a negative temporal temperature gradient is depicted as a dashed magenta
line (the blue color indicates the 95% confidence band). f Same as e, but for the box in the northern tropical Atlantic.

before the onset of the episodes (see Supplementary Fig. 5); expected ranges, the linearity of the scaling is very robust (the

considering the 95th and 99th percentile of rainfall intensities (see
Supplementary Fig. 6); using different temporal window sizes and
locations to compute the temperature gradient (see Supplemen-
tary Fig. 7); and using the average rather than the maximum
rainfall rate of an episodes’ constituent rainfall events to define
the rainfall rate of an episode (see Supplementary Fig. 8).
Although the sensitivity for different parameters varies within

lowest PCC of all parameter configurations is still 0.990). With
regards to the general robustness of our results, it should also be
noted that the TRMM rainfall product has been shown to
underestimate extreme rainfall compared to finer-scale radar-
based rainfall datasets*>. Although this might affect the scaling
analyses performed in this study, there is no better alternative to
the TRMM product over open oceans at this time.
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Fig. 3 Average temporal temperature gradients, scaling factors between temperature gradients and rainfall intensities and their corresponding linear
correlation values. a Average pre-rainfall temperature gradient per pixel (T; in [°Ch=1]) for all episodes in July-August-September-October (JASO). b
Scaling between temporal temperature gradients (T;) and extreme-rainfall intensities (P99) in JASO. The slope of the linear regression between intensities
(P%0 in [mmh~"]) and gradients (T; in [°Ch=1]) is indicated by color. The regression is applied considering only those bins for which the representative
temperature gradient is negative (see also Fig. 2e, f). Pixels with less than 20 (of a total of 40) such bins, or less than 100 data points per bin, are depicted
as white. Pixels over landmasses are also depicted as white. Pixels with a p-value larger than 5% are shaded with crossed black lines. € Corresponding

Pearson Correlation Coefficients (PCCs) of the linear regressions in b.

Results for rainfall episodes associated with tropical cyclones.
We repeated the entire study considering only rainfall episodes
that are associated with TCs listed in the International Best Track
Archive for Climate Stewardship (IBTrACS) archive (see Meth-
ods for details). All tracks in the archive from 1998 to 2018 in
JASO are depicted in Supplementary Fig. 9a. Although there are a
few studies that investigated the contribution of cyclones to the
overall rainfall amount (e.g. refs. 4647), those studies mainly
focused on contributions over land. Therefore, we computed
contributions on a global scale. Supplementary Fig. 9b depicts the
proportion of TC-tagged rainfall episodes among all episodes
above the 90th percentile of rainfall intensities. Up to 40-50% of
episodes are TC-tagged over the northern tropical Atlantic, up to
90-100% over the northeastern Pacific ocean, up to 70-80% over
the northwestern Pacific ocean, and up to 10-20% over the
northern Indian ocean. The IBTrACS archive only entails a subset
of all cyclonic activity, in particular only cyclones with maximum

sustained wind speeds of at least 50-60 kmh~!. In view of this
fact, the contributions to extreme rainfall overall are
surprisingly high.

The results of our analysis using only TC-tagged rainfall
episodes are very similar to the results using all episodes.
Supplementary Fig. 10 depicts a geographic map of a-values over
water bodies using only TC-tagged rainfall episodes. Deviations
from the thermodynamically expected CC scaling tend to be even
larger (in both negative and positive direction) compared to
Fig. 1a. Overall, there is more scatter in the spatial variation of a-
values, which should be expected due to the reduced amount of
data. Nevertheless, the geographic patterns of negative and
positive temperature-rainfall scaling factors are in good agree-
ment. Temporal pre-rainfall temperature gradients are also
predominantly negative over tropical oceans. Finally, we observe
nearly the same correlation between temporal temperature
gradients and rainfall intensities over northern tropical oceans
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Fig. 4 Scaling between temporal temperature gradients and extreme-rainfall intensities over northern tropical oceans. a Observed scaling between
temporal temperature gradients (T'g) and 90th percentiles of rainfall rates (P90) for episodes in July-August-September-October (JASO) sampled from all
northern tropical ocean locations (between 0°N and 23°N). Rainfall episodes are split into 25 bins with respect to their preceding temporal temperature
gradients (T;). The 90th percentile for each bin (P?0) is plotted as a black solid line with markers, the 95% confidence intervals are depicted as vertical
black lines, but practically invisible because of their small size. The linear regression through all bins with a negative temporal temperature gradient is

depicted as a dashed magenta line. The blue color indicates the 95% confidence interval, but is again too small to be visible. b Same as a, but restricted to

rainfall episodes associated with TCs listed by the IBTrACS archive>’.

for the TC-tagged episodes as for all episodes (compare Fig. 4a
with b). Although rainfall rates show higher values overall when
we restrict the analysis to TC-tagged episodes, both the Pearson
correlation coefficient (PCC=—0.999) and the sensitivity
(—3.98+£0.0369 (SE) mmh~1/0.1°Ch—!) remain almost
unchanged. Essentially, the only difference between the scaling
we obtain using all episodes and the scaling obtained for TC-
tagged episodes is the offset on the y-axis.

Discussion

Although the (nearly) global median of a-values (6.0%°C~! in
JASO, and 6.3%°C~1 in DJFMA) is close to the expected CC rate
of ~7%, we observe a pronounced spatial and seasonal hetero-
geneity. Particularly over tropical oceans - for which few studies
have been published so far (ref. 48 is an exception) - the seasonal
variability is apparent (compare Fig. la with Supplementary
Fig. 11b) and deviations from the CC rate are particularly large,
both in positive and negative direction. This indicates that the
circulation-dynamical contribution to the temperature-rainfall
scaling is several times stronger than the thermodynamic con-
tribution given by the CC relation alone. We emphasize that this
is the case even though we took adequate measures to negate the
effects potentially influencing the scaling in unintended ways,
such as surface cooling by rainfall, seasonality, and the
diurnal cycle.

We identify a dynamical mechanism that contributes sub-
stantially to the temperature-rainfall scaling over tropical oceans.
Most rainfall episodes over tropical oceans show a temperature
decline before their onset (Supplementary Fig. 3). The magnitude
of this decline is linearly correlated with the subsequent extreme-
rainfall intensity (Fig. 4), i.e. the stronger the pre-rainfall tem-
perature declines, the higher the rainfall intensity. This correla-
tion leads to a negative contribution to the temperature-rainfall
scaling. In contrast, the CC relation contributes positively to the
temperature-rainfall scaling. These two aspects are therefore in
competition with each other, contributing in opposing direction
to the empirical scaling factors « that we estimate from the data
(Fig. 1a). It should also be mentioned that there are without doubt
additional (thermo)dynamic contributions to the scaling, given
the very strong positive scaling factors over parts of the oceans.

The influence of the intensity-dependent pre-rainfall cooling
effect on the temperature-rainfall scaling grows with the

proportion of episodes preceded by negative temporal tempera-
ture gradients. The strongest pre-rainfall temperature declines are
observed in those regions that show a negative temperature-
rainfall scaling (compare Fig. 1a and Fig. 3a). This indicates that
the contribution of the pre-rainfall cooling effect dominates the
scaling behaviour in those regions, leading to a net negative
temperature-rainfall scaling. Interestingly, there is also an
extensive overlap of these regions with those parts of the tropical
oceans that show the highest sea surface temperatures (SSTs)
during the study period (see the contour line indicating regions
with SSTs above 28°C in Fig. la, b; see also Supplementary
Fig. 12 depicting the spatial correlation between long-term
average SSTs and a-values).

But why are most rainfall episodes over tropical oceans pre-
ceded by negative temperature gradients, and why are those pre-
rainfall temperature gradients correlated with the subsequent
rainfall intensity? And what is the reason for the extensive spatial
overlap between regions with negative scaling and high long-term
average SSTs? In order to answer these questions, we need to
consider the atmospheric and oceanic dynamics related to tro-
pical cyclones.

First of all, it is well known that the passage of a TC over the
ocean causes the upper layers of the ocean to cool
substantially*>->1. The primary factor of this cooling is a mixing
of cold water from sub-surface ocean levels with warm surface
waters, caused by wind-driven surface divergence.

Additionally, TCs draw in air advectively from surrounding
areas, which can extend well into the extratropics®?> where air
temperatures are significantly lower than in the proximity of the
TC. Cloud cover accompanied by TCs may also play a role, by
shielding the ocean surface from direct sunlight before and
shortly after the passage of the TC®3. Temperatures start to
decrease up to 2-3 days before the arrival of the cyclone®0-51,54
and the spatial extent of this pre-TC-arrival cooling can reach
more than 1.000 km>!. This explains the pre-rainfall temperature
decreases we observe over tropical oceans (Figs. 2a, b and 3a).

Both the amplitude and the spatial extent of the cyclone-related
cooling strongly depend on the intensity of the cyclone (defined
in terms of its maximum sustained wind speed). The higher the
intensity of the cyclone, the larger its spatial extent (see Fig. 6
in®!) and the stronger the cooling (see Fig. 7a in ref. °1). Addi-
tionally, we find that the extreme-rainfall rate is strongly
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correlated with the intensity of cyclones as well (see Supple-
mentary Fig. 13). This is well in line with our finding that the
strength of the pre-rainfall temperature decline positively corre-
lates with the subsequent extreme-rainfall intensity. To our
knowledge, this relationship has not been quantified before.

Furthermore, the fact that the scaling between temporal tem-
perature gradients and rainfall intensities for all rainfall episodes
is essentially a shifted version of the scaling for TC-associated
rainfall episodes indicates that the predominant mechanism
generating rainfall over oceans is cyclonic activity. There are, of
course, other mechanisms that generate rainfall over tropical
oceans. For instance, convective rainfall systems near the equator
that are non-rotating because of the lack of a sufficiently strong
Coriolis force, produce strong rainfall. Two possible reasons that
these mechanisms do not noticeably alter the shape of the scaling
in Fig. 4a compared to Fig. 4b are: they are statistically out-
weighed by cyclonic activity; or they are associated with positive
temporal pre-rainfall temperature gradients. Further analysis,
however, would be required to better understand their influence
on the correlation between temperature gradients and rainfall
intensities.

The cyclone-related cooling also explains the strong spatial
overlap between high SST values and negative temperature-
rainfall scaling factors (see Fig. 1a): high SST's provide a beneficial
setting for cyclogenesis. This is reflected in Supplementary
Fig. 12, which shows that from 26 °C upwards (approximately the
temperature threshold for cyclogenesis>®), we obtain a negative
correlation between long-term average SSTs and a-values.
Negative a-values are heavily concentrated above approximately
28°C, corresponding to the contour line in Fig. la. This is also in
line with the observation that the strongest temperature declines
occur in those regions with the highest SSTs (see Fig. 3a).

One might expect a larger overlap of these regions with the
tropical cyclone tracks provided by IBTrACS (Supplementary
Fig. 9a), but a few factors have to be considered in that regard.
First, TC tracks only show the propagation of the eye of TCs. The
cooling effect, however, may extend up to hundreds of kilometers
away from the eye. For instance, even though there are no tracks
south of the equator in the TC season of the northern hemi-
sphere, the cooling may very well affect the southern hemisphere
as seen in Fig. 3a. Second, not all cyclonic activity is captured in
the IBTraCS archive, which only contains tracks of TCs with
maximum sustained wind speeds of at least 50-60 kmh~1.

In conclusion, our study finds that although the globally
averaged temperature-rainfall scaling is indeed close to the
thermodynamically expected 7% rainfall intensity increase per
1°C, there is a pronounced spatial heterogeneity. Hence, on
average, the intensity of extreme-rainfall events will increase with
rising atmospheric temperatures, which is consistent with the
large number of studies on the effect of global warming on
rainfall extremes. However, this thermodynamic effect is
accompanied by pronounced dynamical effects that lead to
complex spatial patterns. To a large extent, the spatial hetero-
geneity over tropical oceans can be explained by the oceanic and
atmospheric dynamics related to cyclonic activity. Our study thus
adds to the growing body of research arguing that dynamical
effects can strongly influence statistical analyses of temperature-
rainfall relationships in observational and simulated data. We
believe that dynamical contributions have to be taken into
account more thoroughly when investigating temperature-rainfall
scaling relationships, in particular in the context of future pro-
jections. Especially regarding extreme-rainfall events, we expect
model simulations of future projections to exhibit pronounced
spatial heterogeneity, as well as substantial deviations from the
thermodynamic expectations.

Methods

Data. We use the Tropical Rainfall Measuring Mission (TRMM) 3B42 V7
dataset®3. It is gridded at a resolution of 0.25° x 0.25° ranging from 50°S to 50°N,
and has a 3 hourly temporal resolution. We employ the data for the time period
from 1998 to 2018. In order to assure that only data points with significant rainfall
are considered in this study, we employ a wet-times threshold of r>0.1 mmh~1.

In addition, we make use of the temperature of air at two meters above the
surface from the ERA5 reanalysis dataset*4. It has the same spatial resolution
(0.25° x 0.25°) as the TRMM rainfall data, with an hourly temporal resolution. We
combine this data with the rainfall data as explained in the next section.

For sea surface temperatures (SSTs) from 1998 to 2018 (see Fig. 1b and
Supplementary Fig. 12), we employ the NOAA OI SST V2 High Resolution
Dataset®®. It is constructed by combining observations from different platforms
(satellites, ships and buoys), and has the same spatial gridding as the TRMM
rainfall data (0.25° x 0.25°).

Furthermore, we employ the International Best Track Archive for Climate
Stewardship (IBTrACS)?” to visualize tropical cyclone tracks for the time period
from 1998 to 2018 (see Supplementary Fig. 9a), as well as to tag rainfall events as
being part of a TC as described in the next section.

d.

Selection of rainfall to avoid bi in the temperature-rainfall
scaling. The local cooling effect of rainfall on surface temperatures has been shown
to influence the scaling behaviour between air temperature and rainfall rates3. We
therefore take two measures to circumvent any potential influence of this process
on our results.

First, for each geographic location of the TRMM grid, we partition the set of
rainfall events (above the wet-times threshold of r>0.1 mmh~!) into episodes,
defined as consecutive 3-hourly rainfall events without interruption. We define the
rainfall intensity of an episode as the maximum intensity of all rainfall events the
episode is comprised of.

Secondly, we only consider episodes without preceding rainfall for at least
48 hours before the onset of the episode.

Additionally, since the annual cycle involves changes in weather and large-scale
circulation patterns and therefore rainfall mechanisms in many regions of the
world®8, we consider episodes occurring in the TC season of the northern
hemisphere (JASO) and the southern hemisphere (DJFMA) separately. Episodes
occurring in any other month are discarded in this study. The total number of
episodes without preceding rainfall for each geographic location and over the entire
study period (in JASO) is depicted in Supplementary Fig. 14.

Regression analyses between extreme-rainfall intensities, temperature and
temporal temperature gradients. With each rainfall episode, we associate a
temperature (T) history going back 48 hours from the onset of the rainfall episode.
Exemplary histories of rainfall episodes precipitating over the Caribbean Sea and
the northern tropical Atlantic in JASO are shown in Fig. 2a, b, respectively.

Based on these histories, we compute two features for each rainfall episode,
which will both be used as the independent variables in our scaling analyses. For
the conventional temperature-rainfall scaling, we use the 24 h mean temperature
two hours before the event, given by T" = - > T,, where T} is the temperature
th before the onset of the episode. For our scaling analysis of temporal temperature
gradients and rainfall intensities, we use the slope of a linear regression through the
rolling 24 h mean temperatures from 6 to 2 h before the onset of the episode (i.e.
for the time interval [—6h, —2 h]), denoted T;, with the unit °Ch~!1. We apply a
24 h rolling mean for a similar reason to why we separate rainfall by seasons,
namely to avoid biases induced by the diurnal cycle and specifically to negate the
effect of sampling events generated by potentially different rainfall mechanism on
the apparent scaling behaviour.

For the scaling analyses, we first bin the temperature (temporal temperature
gradient) values into 40 (25) bins with an equal number of samples in each bin.
This approach is preferable over using bins of equal width, as it ensures a reliable
number of data points across all bins, and avoids sample-size based biases to a great
extent®. The mean temperature T" (temporal temperature gradient Ty) of the
events in each bin is used as the representative temperature (gradient) for that bin.
We then estimate the 90th percentile of rainfall rates for each bin (P%0).

With regard to the temperature-rainfall scaling, motivated by the exponential
CC relationship, we apply an exponential regression to the rainfall intensities P%,
by fitting a least-squared linear regression to the logarithm of rainfall intensities.
The change in P%0 with respect to the change in 1" is quantified using the
regression between T" of the first bin and the peak point temperature (the
temperature T of the bin where the maximum of P%0 occurred). This relation can
be written as: P3° = P°(1 + a) T2~ such that a = 0.068 is equivalent to a CC
like scaling of 6.8%°C~1 at 25 °C. Figure 2c, d depict the scaling between T" and P
for two distinct sets of rainfall episodes. One set of episodes is pooled from the
Caribbean Sea (in JASO, Fig. 2¢; the box extends from 82°W to 76°W and 12°N to
18°N) and the other set from the northern tropical Atlantic (also in JASO, Fig. 2d;
the box extends from 46°W to 40°W and from 16°N to 22°N). Geographic maps of
the fitted a-values (for JASO) over water bodies and landmasses are shown in
Fig. 1a and Supplementary Fig. 1, respectively.
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For the scaling between the temporal temperature gradients and rainfall
intensities, we apply a least-squared linear regression to all rainfall intensities P%,
for which the gradient T is negative. The scaling between T} and P for the set of
rainfall episodes pooled from the Caribbean Sea is illustrated in Fig. 2e, for the set
pooled from the northern tropical Atlantic in Fig. 2f, and for the set pooled from all
northern tropical oceans in Fig. 4a, b. A geographic map of the slopes of the
regression analyses is depicted in Fig. 3b. The corresponding PCCs are shown in
Fig. 3c.

In Fig. 2¢, d, e, f and Fig. 4a, b, we compute the 95% confidence intervals for the
estimates of the 90th percentile of rainfall rates, P, using a bootstrapping
approach. We resample the original data 1.000 times (with replacement), and then
calculate the 2.5th and 97.5th percentile of the test statistic (P0). In the same
figures, the regression parameters, i.e. slope and intercept, and their respective
standard errors, are computed using quantile regression models®>°!, in particular
the Python package Statsmodels®? and its QuantReg class
(statsmodels.regression.quantile_regression.QuantReg). For the 95% confidence
bands of the quantile regression lines (same figures), we use a boostrapping
approach again (1.000 resamples with replacement).

All p-values stated within figures and figure captions are based on a hypothesis
test whose null hypothesis is that the slope of the regression line is zero, using a
Wald test with t-distribution of the test statistic. The alternative hypothesis is that
the slope of the regression line is nonzero, i.e. we are using a two-sided test.

Associating rainfall episodes with tropical cyclones. We essentially conduct our
analysis twice: once with all rainfall episodes derived from the TRMM dataset, and
another time considering only rainfall episodes associated with TCs listed in the
IBTrACS archive. Using the IBTrACS dataset, we tag rainfall episodes as part of a
TC whenever they are closer than 1.000 km from the eye of the TC. The proportion
of TC-tagged rainfall episodes among all episodes above the 90th percentile of
intensity values is depicted in Supplementary Fig. 9b.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All data used in this study are publicly available. For rainfall estimates, we used the
Tropical Rainfall Measuring Mission (TRMM) 3B42 V7 dataset, available trough https://
disc.gsfc.nasa.gov/datasets/ TRMM_3B42_7/summary and downloaded from https://
disc2.gesdisc.eosdis.nasa.gov/s4pa/ TRMM_L3/TRMM_3B42.7/. For temperature
estimates, we used the ERA5 reanalysis dataset, downloaded from https://
cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels. For sea surface
temperatures, we used the NOAA OI SST V2 High Resolution Dataset, available through
https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html and downloaded from
http://ftp.cdc.noaa.gov/Datasets/noaa.oisst.v2.highres/. For tropical cyclone tracks, we
used the International Best Track Archive for Climate Stewardship (IBTRACS), available
through https://www.ncdc.noaa.gov/ibtracs/ and downloaded from https://
www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-
ibtracs/v04r00/access/netcdf/IBTrACS.ALL.v04r00.nc. Source data are provided with
this paper.

Code availability
The Python code used to produce the results and figures of this study is available via
GitHub: https://zenodo.org/record/5595864%3.
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