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Abstract

Function prediction frequently relies on comparing genes or gene products to search for relevant similarities. Because the
number of protein structures with unknown function is mushrooming, however, we asked here whether such comparisons
could be improved by focusing narrowly on the key functional features of protein structures, as defined by the Evolutionary
Trace (ET). Therefore a series of algorithms was built to (a) extract local motifs (3D templates) from protein structures based
on ET ranking of residue importance; (b) to assess their geometric and evolutionary similarity to other structures; and (c) to
transfer enzyme annotation whenever a plurality was reached across matches. Whereas a prototype had only been 80%
accurate and was not scalable, here a speedy new matching algorithm enabled large-scale searches for reciprocal matches
and thus raised annotation specificity to 100% in both positive and negative controls of 49 enzymes and 50 non-enzymes,
respectively—in one case even identifying an annotation error—while maintaining sensitivity (,60%). Critically, this
Evolutionary Trace Annotation (ETA) pipeline requires no prior knowledge of functional mechanisms. It could thus be
applied in a large-scale retrospective study of 1218 structural genomics enzymes and reached 92% accuracy. Likewise, it was
applied to all 2935 unannotated structural genomics proteins and predicted enzymatic functions in 320 cases: 258 on first
pass and 62 more on second pass. Controls and initial analyses suggest that these predictions are reliable. Thus the large-
scale evolutionary integration of sequence-structure-function data, here through reciprocal identification of local,
functionally important structural features, may contribute significantly to de-orphaning the structural proteome.
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Introduction

The functions of most proteins solved by the Protein Structure

Initiative (PSI) [1–3] and other structural genomics (SG) projects

remain unknown [4]. One reason is that SG typically selects

targets with less than 30% sequence identity to known structures

[5–10], which limits annotation through homology. Thus eighty

percent of the 630 new SG structures solved last year lack

annotation, and as of May 2007 over a third of the almost 4400

structures in the PDB [11] with the ‘‘structural genomics’’ keyword

were labeled ‘‘hypothetical’’ or ‘‘unknown function’’.

Eventually, automated experimental screens should reveal

function on a large scale [12], but for now their range of assays

is limited. Analysis of gene ontology (GO) [13] annotations of the

UNIPROT database [14] indicates that 98% of the 26 million

annotations of 3.5 million proteins are inferred from computa-

tional methods, frequently BLAST [15] or PSI-BLAST [16]. One

concern about this universal strategy [17–19] is that it entails

errors at sequence identity below 40% [17,20–23], and occasion-

ally even above that threshold [24–26]. A derivative concern is

that these errors may propagate [2,27,28]. A critical goal of

annotation techniques therefore is to improve specificity.

Alternative strategies also rely on comparisons of sequence or

structure, either in whole or just in part. Examples include

sequence motifs [29,30]; global fold (DALI [31], VAST [32], SSM

[33], Grath [34], PDBFun [35], TOPS [36], SuMo [37,38], CM

[39]); and small structural motifs—the object of this study. In

contrast to all these techniques, which seek elements of sequence

or structure that are intrinsically correlated with a biological role

across species, other approaches such as ProtFun [40] suggest

function based on posttranslational modifications, subcellular

localization, and physical/chemical properties, while still others

suggest function from pyhlogenetic profiles [41], or from

relationships within species that reveal genome modules [42],

expression modules (CAST [43]), or physical modules [44].

The focus here is on three dimensional (3D) template methods,

which search for local structural similarity of key functional

residues in separate proteins [45] using methods such as geometric

hashing [46–48]. Examples include the geometric matching of

function-associated 3D templates to proteins (Jess [49,50], Rigor
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[51], Pints [52], ASSAM [53], Fuzzy Functional Forms [54],

geometric potential [55]); or the comparison of surface patches

(3D profiles [56,57]), clefts (Surfnet [58], VOIDOO [59], CASTp

[50], SiteEngine [60], pvSOAR [61]), or binding sites (Surfnet-

ConSurf [62], eF-site [63], Cavbase [64], PDBSiteScan [65,66]).

These methods often depend on experimentally identified motifs,

which are relatively few [67], and can be non-specific. One

important alternative approach therefore is to create templates for

the protein of unknown function. Methods such as GASPS [68]

use machine learning techniques, while the ProFunc metaserver’s

reverse templates method [69] accomplishes this through the semi-

random selection of multiple small templates.

Another possibility for creating templates in the absence of

experimental data on functional sites is to iteratively exploit

evolutionary constraints: first to identify evolutionarily important

residues that suggest 3D templates, and then to sort which of their

matches are functionally relevant. For example, starting from the

premise that the Evolutionary Trace (ET) can identify likely

functional sites [70,71] and their key residue determinants [72–

75], proof of concept studies optimized the heuristic selection of

3D templates from ET residues [76] so that matches in other

structures suggest functional similarity [77]. Yet, before it can be

deployed on a large scale this annotation strategy still needs to be

faster and more specific. This study addresses both problems. First,

a new algorithm increases structural matching speed by two orders

of magnitude. In turn, this makes it possible to consider all-against-

all template matches and enables the addition of a new

requirement for reciprocal matching. This requirement consider-

ably increases functional annotation specificity, much as reciprocal

best hits in sequence searches help identify orthologs [78,79].

Here, the gain in annotation specificity from reciprocal matching

is rooted in the fact that given two proteins S and T with respective

templates s and t, then s?t unless S and T are close homologs (and

their cross-annotation trivial). As a result the search for s in T and for

t in S should effectively be complementary tests, rather than

redundant ones. If both turn out positive, then the possibility that the

two proteins are functionally similar has more support than if only

one template had matched the other protein. This study therefore

tests the hypothesis that forcing the ET Annotation pipeline (ETA) to

yield reciprocal template matches, from t to S, and from s to T, will

increase annotation specificity and accuracy. Positive controls on

enzymes and negative controls on non-enzymes show this is true on

the small and large scales: reciprocal ETA routinely achieves better

than 92% accuracy, while its increased efficiency translates into its

application to all structural genomics proteins, yielding new

enzymatic annotations for 320 proteins.

Results and Discussion

Evolutionary Trace Annotation
This study first set out to improve ETA’s one-to-many annotation

strategy, shown in Figure 1a (see Methods for details). In this search,

ET ranks the evolutionary importance of the residues in a source

protein of unknown function, S. Heuristics then select six residues

based on their ranks, solvent accessibility, and clustering to define a

3D template denoted s. A geometric search then matches s to a set of

target protein structures T = {Ti} (Dataset S1), each with known

function fi. Since a small root mean squared deviation (RMSD) alone

is not sufficient to guarantee the functional relevance of a match

[77,80], a support vector machine (SVM) trained on enzymes

(Dataset S2) considers in addition to RMSD whether the matches

also fall on evolutionarily important regions of Ti. The resulting

matches Tj (where the index j denotes matches) yield a set of possible

functions F = {fj} of S, and if one function f0 achieves plurality (recurs

among Tj’s more often than any other), then it is chosen as the single

most likely annotation [76].

To enable large-scale ETA searches, the first task was to accelerate

the pipeline, specifically the geometric matching algorithm. A new

Paired Distance Matching (PDM) algorithm was introduced that

breaks templates down into pairwise distances among alpha carbons

and searches for them iteratively in target structures without

considering chirality (see methods). The variability of template

amino acids was also narrowed, and a strict 2 Å cutoff replaced a

more flexible but slower statistical model for the maximum

acceptable RMSD between a template and match. Table 1 shows

that in a control set of 49 structural genomics enzymes used

previously (Dataset S3), annotation accuracy edged upward from

79% to 83%. Critically, search time fell 20-fold, thereby allowing

large-scale and more complex search schemes.

As an example, to annotate Bacillus cereus phosphoribosyl-atp

pyrophosphohydrolase (PDB 1yvw, chain A), ETA identifies the

first cluster of 10 residues that are on the protein’s surface. In this

case, this occurs at the 15th percentile rank. From these, ETA picks

the six highest-ranked residues (39, 42, 46, 62, 43, 65; Figure 2a).

The template is then the coordinates of the Ca atoms of these six

amino acids from 1yvw and their types (K, E, E, E, E, D), allowing

for variations that may occur frequently in homologs (none in this

case). The PDM algorithm identifies a match with 39% sequence

identity in Chromobacterium violaceum phosphoribosyl-atp pyrophos-

phatase (PDB 2a7w, chain A, EC 3.6.1; Figure 2b): six amino acids

(K40, E43, E47, E63, E44, D66) with Ca atom distances between

that each match those of their template counterparts within 62.5

Å. Since the overall RMSD of the match (0.2 Å) is less than 2 Å, it

is evaluated by the SVM, which classifies it as a significant match

based on two features: the low RMSD and the similarity between

the evolutionary importance of the source template residues and

the matched residues (the difference is about 1 percentile rank for

each pair of residues). As this is the only match found by ETA, its

function achieves plurality and leads to the (correct) assignment to

1yvw of the function hydrolase activity on acid anhydrides in

phosphorus-containing anhydrides (EC 3.6.1).

Many-to-one Matching
We next asked whether a reciprocal many-to-one ETA matching

strategy improved annotation. This reverse strategy, illustrated in

Figure 1b, searches the structure of the unknown protein (S) for

matches to templates (ti) derived from all the proteins with known

function. The search is therefore from many t’s to one S, rather than

from one s to many T’s. The templates ti can be generated on a large

scale and automatically since ETA relies on ET rather than

experiments to extract putative determinants of a protein’s function.

Moreover, many-to-one and one-to-many results should be different

because S and T will only produce identical templates s and t if they

are close homologs. Table 2 compares many-to-one and one-to-

many on the same set of 49 enzymes using an updated (2006) set of

target structures (Dataset S4). Many-to-one does not improve on

one-to many: the two methods have similar accuracy. Many-to-one

ETA yielded 30 annotations, of which 87% were correct, whereas

one-to-many ETA made 33 annotations with 85% accuracy.

This similarity in overall performance, however, belies impor-

tant differences between the two methods, which often do not find

identical matches. For example, the template extracted from

Thermus aquaticus adenine-specific methyltransferase (PDB 1g38,

chain A) matched the structure of Escherichia coli type I restriction

enzyme ecoki m (2ar0, chain A), but the reverse was not true: the

template from the restriction enzyme did not match the

methyltransferase. Such asymmetry is common: out of 138

(SR{Ti}) one-to-many matches and 129 ({Ti}RS) many-to-one

Annotating Protein Structures
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matches, only 76 matches involve identical S-Ti pairs; thus one-to-

may and many-to-one matches yield non-redundant information.

Reciprocal Matching
The non-equivalence of many-to-one and one-to-many matches

raises the possibility that they may be combined to increase

specificity. The rationale is that in the example above, either one

method has a false negative and lower sensitivity, or the other has

a false positive and lower specificity. Either way, narrowing

acceptable matches to only those found by both searches—that is,

from s to T and from t to S, as shown in Figure 1c—should increase

annotation specificity and accuracy, if at the cost of sensitivity.

This hypothesis was tested by considering the reciprocal ETA

matches at the intersection of the one-to-many and many-to-one

searches. Figure 3 shows that in the control set of 49 annotated

enzyme structures solved by the PSI, the former identified 102 true

and 36 false matches, and the latter found 101 true and 28 false

matches. Strikingly, of 76 matches common to both, 74 were true

and only two were false. Thus, the true to false enrichment among

reciprocal matches jumped from 3- to 37-fold. In turn, annotation

accuracy rose from 85% and 87% to 100% (30 correct predictions

out of 30, Table 2). This 100% accuracy does not constitute a perfect

result: 19 proteins lack predictions, and ETA would necessarily miss

secondary functions for ‘‘moonlighting’’ proteins (though no

Figure 1. Matching Strategies. Schematic overview of the three matching strategies. 1a, one-to-many matching; 1b, many-to-one matching; 1c,
the two superimposed. Lines represent template searches; arrows, matches; bold lines, correct matches; other lines, incorrect matches; X’s, no match.
Purple spheres are residues in both the source and target template and match; red spheres, residues in the query template and target match; blue
spheres, residues in the target template and query match.
doi:10.1371/journal.pone.0002136.g001
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evidence suggested multiple functions). Despite this, the fact that

ETA produces no erroneous annotations is remarkable.

Four observations buttress the significance of reciprocal ETA

matches. First, one apparently false reciprocal match was in fact a

typographical error in the PDB file of a 1-pyrroline-5-carboxylate

reductase from Streptococcus pyogenes (PDB 2amf, chain A) [11,81],

erroneously annotated as EC 1.2.1.5, instead of EC 1.5.1.2 as per

the original paper [82], elsewhere [81], and the PDB annotation of

2ahr, chain E, which is the match that led to ETA’s annotation

and a different structure of the same protein. The remaining

incorrect reciprocal matches are both to one protein, 6-

phosphogluconolactonase from Thermotoga maritime (PDB 1vl1,

chain A). They appear to represent the rare case where reciprocal

ETA identifies matches that are functionally divergent but

structurally similar: Glucosamine 6-phosphate deaminase/isomer-

ase NagB from Escherichia coli (PDB 1fs5, chain A), has the same

SCOP fold as the query, while the other, a Bacillus subtilis hydrolase

(PDB 2bkx, chain A), does not have a SCOP classification but

appears to have the same fold as well.

Second, improved specificity did not lower sensitivity. Rather,

the removal of some non-reciprocal, false matches enabled

additional correct functions to reach plurality. Thus sensitivity

rose as well (30 versus 28 or 26). Third, the case involving 2amf

(discussed above) raised a concern that reciprocal ETA annota-

tions often involved trivial high sequence identity matches. But

Figure 4 shows that the increasing removal of reciprocal matches

with sequence identities above a cutoff (in 10% intervals from 90%

down to 20%) does not decrease accuracy. Moreover, sensitivity

remained above 50%, even at the 40% threshold. Lastly, the

accuracy of reciprocal ETA is in stark contrast to that of the non-

reciprocally filtered matches to the remaining proteins. These yield

only 49 true versus 60 false matches, which lead to ten plurality

annotations with only 50% accuracy. Thus, reciprocal ETA

searches are a scalable strategy to raise annotation accuracy.

Table 1. ETA Annotation of PSI Test Set Using MA or PDM.

MA ETA PDM ETA

Proteins 49 49

With Matches 38/49 (78%) 32/49 (65%)

With At Least One True Match 30/38 (79%) 28/32 (88%)

With Vote Winners 28/38 (74%) 24/32 (75%)

With Correct Winners 22/28 (79%) 20/24 (83%)

ETA annotation performance, using either Match Augmentation-based ETA (MA
ETA) or Paired Distance Matching-based ETA (PDM ETA), searched against the
2004 Target Set. The number of proteins in total, with matches, with at least
one true match, with plurality winners, and with correct plurality winners are
shown.
doi:10.1371/journal.pone.0002136.t001

Figure 2. Example of Evolutionary Trace Annotation. Illustration
of a source protein (2a, PDB 1yvw, chain A), its ET cluster (yellow),
residues chosen as a template from that cluster (red), and the Ca atoms
which define the geometry of the template (blue); and its functionally
relevant match in a target protein (2b, PDB 2a7w, chain A), with
corresponding match residues (red) and Ca atoms (blue).
doi:10.1371/journal.pone.0002136.g002

Table 2. ETA Annotation of PSI Test Set.

One-to-Many Many-to-One Reciprocal Non-reciprocal

Proteins 49 49 49 19

With Matches 40/49 (82%) 36/49 (73%) 31/49 (63%) 12/19 (63%)

With At Least One True Match 36/40 (90%) 32/36 (89%) 30/31 (97%) 7/12 (58%)

With Vote Winners 33/40 (83%) 30/36 (83%) 30/31 (97%) 10/12 (83%)

With Correct Winners 28/33 (85%) 26/30 (87%) 30/30 (100%) 5/10 (50%)

ETA annotation performance for the PSI Test Set when searched against the 2006 Target Set, using one-to-many matching, many-to-one matching, reciprocal matching,
and non-reciprocal matching.
doi:10.1371/journal.pone.0002136.t002

Figure 3. Matches to the PSI Test Set. The number of true and false
matches to the PSI test set before and after reciprocal filtering is shown.
The top ovals show the number of true and false matches found by
each method alone, with the number of query proteins in parenthesis,
and the true/false enrichment ratios below. The bottom ovals show the
same data with reciprocity imposed, taking the intersection of the
matches found by each method.
doi:10.1371/journal.pone.0002136.g003

Annotating Protein Structures

PLoS ONE | www.plosone.org 4 May 2008 | Volume 3 | Issue 5 | e2136



These results suggest that ETA’s template picking heuristics

identify functionally specific amino acids. This was tested by

comparing templates with PDB SITE records or Catalytic Site

Atlas [67] (CSA) residues. Only one of the 49 control enzymes had a

SITE record in its structure file, Escherichia coli ribose-5-phosphate

isomerase (1o8b, chain A); it indicated a functional site of 11

residues, and the ETA template overlapped with four of them.

Twenty-two of the 49 proteins also had residues noted in the CSA. In

17 cases, the CSA residues and ETA templates overlapped by an

average of about two residues per protein (a third of the template or

half of the CSA residues). ETA made correct reciprocal predictions

in 10 of these 17 cases. In the remaining five proteins, the CSA noted

only one or two residues and there was no overlap with the ETA

templates. Thus, consistent with prior data [77], ETA templates fall

in the neighborhood of known functional sites in all but one case, and

achieve an overlap in 18 of 23 proteins that, if imperfect, is sufficient

to support accurate annotation, despite having no prior experimental

knowledge of the functional mechanism.

Ideally, functional similarity due to convergent evolution could

be detected from template matches across folds. However, for the

18 of 30 reciprocal predictions with CATH classification [83] of

both the matched structures and the templates’ sources, the two

were identical at all four levels: architecture, fold, super family and

sequence. This may indicate that current ETA templates are not

only function-specific but also structure-specific.

In summary, these enzyme controls show that ETA exploits

evolutionary information to identify biologically relevant 3D

templates and structurally relevant matches. Using a combination

of the specificity of reciprocal ETA, which achieves the near 100%

predictive accuracy, and the sensitivity of non-reciprocal ETA,

which provides additional results, yields a desirable balance of

sensitivity and specificity for functional annotation.

Comparison to ProFunc Template Methods
ETA was also compared (Table 3) to two other template methods

[69] from the popular ProFunc metaserver [84]. In the Enzyme

Active Sites (EAS) method, templates are derived from the CSA

record of functional residues. Hence, only five were available for the

49 control enzymes. The top ranked match of each of these five was

correct four times (80% accuracy), resulting in low (8%) sensitivity.

A better comparison is to the Reverse Templates (RT) method,

which, like ETA, also creates templates without prior knowledge of

functional sites. Unlike ETA, this is done by choosing multiple

semi-random templates of just three residues, biased towards

conserved, non-hydrophobic, structurally neighboring residues

with minimal overlap with other chosen templates. RT identified

matches for 45 of the 49 test proteins and 30 of these had a correct

top-scoring match. Thus, RT is 61% (30/49) sensitive and 67%

(30/45) accurate, compared to 61% (30/49) and 100% (30/30) for

ETA. Notably, 27 of the predictions were common to RT and

ETA. Hence, ETA made three unique predictions and all were

correct, while RT made 18 unique predictions and only seven

were correct; none of these could be shown to cross folds. Thus

ETA is more accurate and just as sensitive.

Negative Controls on Non-enzymes
Because ETA was specifically developed to predict enzymatic

function, a risk of applying it to unannotated proteins is that it may

falsely assign EC annotations to non-enzymes, which form a major

part of the proteome. But Table 4 shows that reciprocal ETA did

not produce a single false enzymatic annotation in 50 non-

enzymes (Dataset S5) used as a negative control. In contrast, non-

reciprocal matches produced 10 false enzymatic functions.

Intriguingly, GO molecular function annotations were available

for 36 of the non-enzyme controls, and ETA identified reciprocal

matches for 27 of these in the 2006 PDB90 (Dataset S6). All

yielded accurate non-enzymatic GO annotations. This suggests,

first, that ETA may be applied reliably to any protein structure,

enzymes and non-enzymes alike, to specifically annotate catalytic

activity among the fraction that are enzymes, Second, this suggests

that ETA may scale in the future to include a broader range of

protein functions.

Positive Controls on Experimentally Annotated Enzymes
Next, to further test ETA, a prototype high-throughput

hydrolase and oxidoreductase assay pipeline provided 36 enzymes

Table 4. ETA Annotation of Non-enzyme Set.

One-to-
Many

Many-to-
One Reciprocal

Non-
reciprocal

Proteins 50 50 50 50

With Matches 12/50 (24%) 4/50 (8%) 0/50 (0%) 15/50 (30%)

With Vote Winners 8/12 (67%) 3/4 (75%) 0/0 NA 10/15 (67%)

Results of attempted ETA prediction of enzymatic functions for 50 non-
enzymes.
doi:10.1371/journal.pone.0002136.t004

Figure 4. ETA and Sequence Identity. ETA performance on the PSI
Test Set is shown, removing matches above a sequence identity cutoff
to explore the importance of matches with varying levels of similarity.
Sensitivity (black diamonds) is the percentage of the 49 proteins for
which ETA predicts a correct function; accuracy (blue circles) is the
percentage of these predictions that are correct.
doi:10.1371/journal.pone.0002136.g004

Table 3. ProFunc Template Annotation of PSI Test Set.

Enzyme Active Sites Reverse Templates

Proteins 49 49

With Matches 5/49 (10%) 45/49 (92%)

With At Least One True Match 5/5 (100%) 35/45 (78%)

With Correct Top Match 4/5 (80%) 30/45 (67%)

ProFunc annotation performance for the PSI Test Set when searched against
the 2006 Target Set, using either enzyme active site templates or reverse
templates.
doi:10.1371/journal.pone.0002136.t003
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annotated with EC class, subclass, and sub-subclass (the first three

EC digits) [12] provided an experimental gold standard (Dataset

S7). As shown in Table 5, only 11 of these proteins had known

structures, and ETA made five predictions for them, all based on

matches to proteins with less than 30% sequence identity. Four

were clearly correct and the fifth one may be as well (Escherichia coli

YihX, below). In addition, two more proteins without structures

had close structural homologs onto which ET ranks could be

mapped to extract templates: EC YbjI, with 52% sequence

identity to chain A of 2hf2 (an Escherichia coli hydrolase); and EC

YafA, with 69% sequence identity to chain A of 1nng (a

Haemophilus influenzae hydrolase). These templates also led to

correct reciprocal ETA annotations. Finally, non-reciprocal ETA

led to three additional predictions; two are correct. One of these

was Thermoplasma acidophilum TA0175 (PDB 1l6r, chain A), a

hypothetical protein that had not been annotated by sequence-

based methods due to low sequence identity to homologs [12].

The questionable annotation mentioned above involved Esch-

erichia coli YihX (Swiss-Prot P32145; PDB 2b0c, chain A) predicted

by ETA to be a phosphatase that hydrolyzes halide bonds in c-

halide compounds (EC 3.8.1). The evidence came from two

reciprocal matches to remote homologs with similar folds (1642,

chain A and 1zrn, at 22% and 20% sequence identity,

respectively, shown in Figure 5). This prediction concurred with

several other sources (InterPro [85], PRINTS [86], and TIGER-

FAMs [87]) that classify this protein as a haloacid dehalogenase-

like (HAD-like) hydrolase. These proteins frequently also carry

phosphatase activity [12], consistent with the experimental assay,

which suggested phosphoric monoester hydrolase activity (EC

3.1.3) as a function. The experimental essays did not, however, test

for the function predicted by ETA. Thus one strong possibility

may be that the experimental annotation is incomplete rather than

in conflict with ETA’s prediction.

In summary, despite the small number of structures available,

predictions are available for 10 of 13 proteins. Eight were clearly

correct while one additional prediction (EC YihX) may be as well.

Seven predictions arose from reciprocal ETA, which is at least

86% (6 of 7) accurate, including two predictions based on

homology models of EC YbjI and YafA. These last two

annotations further suggest that the scope of reciprocal ETA

annotations can extend to proteins with structural homologs—and

thus expand beyond the structural proteome.

Predictions for Structural Genomics Proteins
Following these small-scale studies, we next tested whether ETA

could predict function over the entire structural proteome,

following other efforts [88–90]. First, conveniently, 1314 SG

proteins already annotated with 3 or 4 digit EC numbers provided

a large-scale positive control. Of these, 1218 (93%, Dataset S8)

had enough homologs to support ET analyses. ETA predicted

functions for 517 that agreed with prior annotations in 478 cases

(92% accuracy, Table 6). This suggest an 8% misannotation rate

(39 disagreements) although some of these may also be due to

incomplete or incorrect annotations. Of note, among the 701

other proteins, non-reciprocal ETA suggested functions in an

additional 407, 291 of which agreed with prior annotations (71%

accuracy). Thus the large-scale accuracy of reciprocal ETA

remains above 90%, but non-reciprocal matches can still make a

non-negligible contribution.

ETA was then applied to make genuine predictions of

enzymatic function among the remaining 3114 SG proteins that

lack any annotated catalytic activity. The 2935 (94%, Dataset S9)

that were amenable to ET analysis lead to 258 enzymatic

annotations, as shown in Table 7. These fell in the six EC classes

in proportions that were within 6% of those for all PDB90

proteins, as shown in Figure 6. While the availability of predictions

is low (9%), we note first that many of the 2935 proteins are likely

to be non-enzymes, for which the lack of enzymatic activity

prediction is a desirable outcome. Thus the actual availability of

predictions for enzymes should be higher. Second, the preceding

computational controls suggest that most of the 258 predictions

Table 5. ETA Annotation of Toronto Set.

One-to-Many Many-to-One Reciprocal Non-reciprocal

Proteins 13 13 13 6

With Matches 8/13 (62%) 13/13 (100%) 7/13 (54%) 5/6 (83%)

With At Least One True Match 6/8 (75%) 9/13 (69%) 6/7 (86%) 2/5 (40%)

With Vote Winners 7/8 (88%) 11/13 (85%) 7/7 (100%) 3/5 (60%)

With Correct Winners 6/7 (86%) 9/11 (82%) 6/7 (86%) 2/3 (67%)

Results of ETA Annotation of recent experimentally annotated enzymes.
doi:10.1371/journal.pone.0002136.t005

Figure 5. EC YihX and Matches. Comparison of structures and
template/match residues for query 2b0c, chain A (4a and 4b, orange),
from the Toronto Set versus targets 1642, chain A (4a, green), and 1zrn
(4b, yellow). Purple spheres, residues in both the source and target
template and match; red spheres, residues in only the query template
and target match; blue spheres, residues in only the target template
and query match.
doi:10.1371/journal.pone.0002136.g005
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will prove correct. Third, 20 proteins were already partially

annotated with 1 or 2 EC digits, and 19 of these are in agreement

with ETA annotations.

The one ambiguity is Becilius cereus BC_3378 (PDB 2b81, chain

A) that is annotated as an oxidoreductase acting on paired donors

with incorporation or reduction of molecular oxygen (EC 1.14.-).

However, ETA suggested an oxidoreductase acting on the CH-

NH group of donors with other acceptors (EC 1.5.99). based on

one reciprocal match to Methanosarcina barkeri coenzyme F420-

dependent methylenetetrahydromethanopterin (PDB 1z69; chain

A), which had 21% sequence similarity to the source protein. Thus

the two annotations agree on oxidoreductase activity, but disagree

on the donor group. This error on the part of ETA arises from a

known global structural similarity between bacterial luciferases

(such as the query protein) and its methylenetetrahydrometha-

nopterin match [91]. Thus ETA identifies a meaningful local

structural similarity, but not one specific enough to indicate

functional similarity to two EC digits of precision. In all 20 cases,

though, ETA identifies functionally relevant similarities, 95% of

which are entirely consistent with existing partial annotations.

To determine the degree to which these 258 reciprocal

predictions were novel, they were also compared with ProFunc

annotations. In 167 proteins, ProFunc’s annotations agreed

completely with ETA’s. The remaining 91 predictions are unique

to ETA. For 36 proteins, the methods differ at the first, second, or

third EC digit (7, 24, and 5 proteins, respectively). In 24 proteins,

ETA offers more specific predictions than ProFunc, which

produces only one or two EC digits in these cases (6 and 18

proteins, respectively); these agree with ETA. For 31 proteins,

ProFunc offers no prediction (8 proteins), predicts only ‘‘enzymatic

activity’’ (2 proteins), or predicts only non-enzymatic functions (21

proteins). It is important to emphasize here that ProFunc

incorporates approaches beyond 3D templates, including four

template-based methods, five sequence-based methods, and five

global structure-based methods. Thus, ETA may prove even more

useful in combination with other methods.

Intriguingly, it appears to be possible to apply ETA iteratively to

make additional predictions. First, the 258 reciprocal annotations

were added to the target set of annotated proteins, and ETA was

repeated on the 2677 that remained without function. With this

second pass, ETA added nearly 25% (62) more predictions: 52

previously based on non-reciprocal matches, plus 10 completely

novel ones. Likewise, annotation from non-reciprocal matches

increased 14% (96). Thus such second order predictions

significantly raise the sensitivity of 3D template annotations for

structural genomics.

Molecular Analysis of Predictions
In order to clarify the meaning of these predictions, a few were

examined in detail. The first example demonstrated functional

annotation in the ‘‘twilight zone’’ of sequence identity. Four of five

reciprocal ETA matches suggested that PAE3301 from Pyrobaculum

aerophilium (PDB 1jrk, chain A) was a hydrolase acting on

Table 6. ETA Annotation of Structural Genomics Annotated Set.

One-to-Many Many-to-One Reciprocal Non-reciprocal

Proteins 1218 1218 1218 701

With Matches 914/1218 (75%) 745/1218 (61%) 527/1218 (43%) 494/701 (70%)

With At Least One True Match 801/914 (88%) 614/745 (82%) 486/527 (92%) 378/494 (77%)

With Vote Winners 837/914 (92%) 659/745 (88%) 517/527 (98%) 407/494 (82%)

With Correct Winners 716/837 (86%) 547/659 (83%) 478/517 (92%) 291/407 (71%)

Results of ETA annotation performance for annotated structural genomics proteins.
doi:10.1371/journal.pone.0002136.t006

Figure 6. EC Classes of ETA Predictions. Distribution of 320
reciprocal ETA annotations among the first digit EC classes, including
both first and second order predictions.
doi:10.1371/journal.pone.0002136.g006

Table 7. ETA Annotation of the Structural Genomics Unannotated Set.

One-to-Many Many-to-One Reciprocal Non-reciprocal

Proteins 2935 2935 2935 2677

With Matches 1027/2935 (35%) 553/2935 (19%) 269 (334*)/2935 (2935*) (9%) (11%*) 933/2677 (35%)

With Vote Winners 827/1027 (81%) 484/553 (88%) 258 (320*)/269 (334*) (96%) (96%*) 706/933 (76%)

Summary of ETA annotation of unannotated structural genomics proteins. For detailed information see the supplementary materials. *These numbers include second-
order predictions.
doi:10.1371/journal.pone.0002136.t007
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phosphorus-containing acid anhydrides (EC 3.6.1), a prediction

unique to ETA versus ProFunc. Remarkably, sequence identities

between the source and targets were between 16% and 25%, so no

matches are to close sequence homologs. Moreover, the template

match to one of them, the C. elegans ap4a hydrolase binary

complex (16% sequence identity, PDB 1vhz, chain B, Figure 7a),

was especially revealing because it overlapped six residues

(underlined) of the GX5EX7REUXEEXGU motif [92] (X: any

residue; U: I, L, or V) associated with the EC 3.6.1 activity in the

target protein [93]. Interestingly, the Pyrobaculum sequence deviates

slightly from this motif, with an F at the position of the first U.

The second example demonstrated iterative annotation. On the

one hand, EF_1086 (Enterococcus faecalis, PDB 2fl4, chain A) had

three matches suggesting it was an acyltransferase that transfers

groups other than amino-acyls (EC 2.3.1); however none of these

matches were reciprocal. On the other hand, ETA predicted this

same function for PH1933 (from Pyrococcus horikoshii OT3, PDB

1wwz, chain B) based on two reciprocal matches: one to an

acetyltransferase from Bacillius cereus with 15% sequence identity

(PDB 1y9w, chain A, Figure 7b), and the other to a phosphino-

thricin acetyltransferase from Agrobacterium tumefaciens with 24%

sequence identity (PDB 1yr0, chain A). Once this second,

independent result was fed back into the target set, it reciprocally

matched 2fl4 (Figure 7c), with which it shared 25% sequence

identity, and led to the EC 2.3.1 annotation of EF_1086.

The last example reinforces the functional role of template

residues. ETA identified 21 reciprocal matches with sequence

identities varying between 19% and 65% for R05D8.7 (Caenor-

habditis elegans, PDB 1xkq, chain A). Nearly all these matches (19)

concur on the predicted function, suggesting oxidoreductase

activity acting on CH-OH group of donors with NAD or NADP

as acceptor (EC 1.1.1), another unique prediction compared to

ProFunc. One of the matches is to a human 17beta-hydroxysteroid

dehydrogenase type 1 (Figure 7d, PDB 1jtv, chain A) with 21%

sequence identity, and it involved three of the five catalytic

residues suggested for 1jtv by the CSA. Two (Y155 and K159 in

1jtv) were represented in both the reciprocal template of the target

and the source template (Y162 and K166 in 1xkq). One additional

residue (S142) was unique to the reciprocal template and matched

the source (S148). This underscores that here, as with prior

controls, ETA annotation is reliable because its templates and

matches involve functionally significant residues.

All predictions are available as supplementary data (one-to-

many predictions, Dataset S10; many-to-one predictions, Dataset

S11; reciprocal predictions, Dataset S12; second-order reciprocal

predictions, Dataset S13; non-reciprocal predictions, Dataset S14).

Conclusions
This study aimed to transfer functional annotations between

protein structures based on the local structural and evolutionary

similarities of their functional sites. This was made possible

through the automated ET analysis of functionally important

residues [71] and substantial increases in the computational

efficiency of geometric matching. As a result, an ETA pipeline

could perform both one-to-many and many-to-one template

searches to identify reciprocal matches. Combined with plurality

voting [76], selecting reciprocal matches stringently removes false

positives and increases specificity so as to yield reliable annotations

in positive, negative, experimental, and large scale controls that

improve on existing template methods [69]. Thus ETA suggested

258 enzymatic function predictions (plus an additional 62 through

iteration) of high predicted reliability (over 90%) in the structural

proteome, of which 91 are unique to ETA over the ProFunc

metaserver. These should lead to efficient and systematic use of

appropriate assays for experimental annotation [12]. An ETA

server will be available on the ET server web site at http://

mammoth.bcm.tmc.edu.

While this work focused on enzymatic annotation, a preliminary

examination of GO predictions on these same proteins produced

correct annotations. This suggested that ETA might be extended

to non-enzymes, consistent with the many experiments where ET

guided the functional redesign of non-enzymes [74,75,94].

Likewise, preliminary use of homology modeling suggested that

3D template annotations could extend beyond the currently

limited structural proteome to include its homology-modeled

neighborhood. Both are fertile areas for future studies.

Notably, ETA compares well to other template methods—both

those that rely on experimentally determined catalytic sites, and

those that derive templates via computational means. ETA had

significantly higher (7x) sensitivity than ProFunc’s Enzyme Active

Site method, which relies on known catalytic sites. Compared to

ProFunc’s Reverse Templates method which does not depend on

such knowledge, ETA is just as sensitive (61%) but significantly

more accurate (100% vs. 67%).

The origin of this significant improvement is not likely to be due

to differences in structural matching techniques; rather, ETA

templates and their matches must be more functionally relevant as

a result of two techniques unique to this work. First, ETA

templates are defined with ET, which identifies and ranks residue

Figure 7. Examples of ETA Predictions. Reciprocal matches
contributing to three novel ETA function predictions, with the query
in orange and the target in green, and template/match residues using
the scheme in Figure 5. 7a, query 1jrk, chain A, vs. target 1vhz, chain B;
7b, 1wwz, chain B, vs. 1y9w, chain A; 7c, 2fl4, chain A, vs. 1wwz, chain B;
7d, 1xkq, chain A, vs. 1jtv, chain A.
doi:10.1371/journal.pone.0002136.g007
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variations that trigger major evolutionary divergences. Since

divergences involve evolutionary trees, ET ranks differ from other

measures of ‘‘conservation’’, and a growing body of experimental

evidence suggests that top-ranked ET residues clustered on the

surface are important determinants of function [72,74,75,94–96].

Thus ET ranks should lead to more precise approximations of

active sites. Indeed, controls presented here confirm that ETA

templates frequently overlap known active sites. Also, past work

showed that pinpoint identification of the active site was not

essential as long as the template consisted of important residues

near the active site [76,77].

Second, the ETA pipeline strives to raise specificity. It is

important to note the emphasis here on annotation specificity, as

misannotations may propagate and prove difficult to eradicate

from all databases. In particular, the massive number of false

positive geometric matches to a Ca template easily overwhelms the

few true positives. ETA thus applies three orthogonal and

successive filtering steps: the requirement that the matched site

residues have similar ET ranks as the template; the requirement

that a match from one protein to another be reciprocated,

exploiting the complementary information in both searches; and

the requirement that a plausible annotation of function achieve a

plurality of votes through more matches than any other

alternative. These three requirements each individually raise the

stringency of annotation, but when combined they drastically

reduce the likelihood that an annotation is due to random chance,

as shown by the lack of false enzymatic annotations on the non-

enzyme negative controls.

More broadly, there are now many computational annotation

methods based on identifying different types of similarity between

proteins. Pooling this information can be especially useful, as

shown by meta-servers such as ProFunc [84] and JAFA [97], and

by graph theoretic methods [98,99]. Further improvements should

be expected as more inconsistencies are identified and excised not

only among methods but also within individual ones. The latter

point was demonstrated here by imposing consistency between

matches, which leads to plurality, and between one-to-many and

many-to-one 3D template searches, which leads to reciprocity.

This highlights the complex nature of measures of functionally

relevant similarities in proteins. Each alone may not be reliably

meaningful or reproducible, but requiring post hoc consistency

among them can richly increase functional prediction specificity

with, as here, little if any loss of sensitivity.

Materials and Methods

Function Definition
Here, two proteins are considered to have the same function if

they share the first three digits of their EC numbers, as the fourth

digit represents a serial number assigned to each distinct enzyme

in that section of the hierarchy and does not carry a consistent

functional meaning [100]. Additionally, high throughput experi-

mental methods offer this level of precision [12]. EC numbers

for proteins of known function were those from the proteins’

PDB files, except for proteins from the Toronto functional

annotation pipeline, whose annotations were taken from that

publication [12].

Data Sets
The ‘‘Training Set’’ (Dataset S1) is the set of 53 enzymes used

previously [77] to train the SVM and to choose values for the

distance tolerance parameter e and the RMSD cutoff in this study

(see below).

The ‘‘PSI Test Set’’ (Dataset S3) is the same as the ‘‘PSI Set’’ set

used previously [76], and comprises 49 annotated enzymes chosen

randomly from the PSI that do not overlap with the Training Set.

The ‘‘Non-enzyme Set’’ (Dataset S5) is composed of 50

randomly chosen proteins from the PDB that appear to be non-

enzymes. Their functions include structure, DNA and RNA

binding, signaling, and oxygen transport.

The ‘‘Toronto Set’’ (Dataset S7) consists of 36 enzymes

annotated by automated experimental screening [12], among

which 11 have BLAST hits to structures in the PDB with 99% or

higher sequence identity. Twenty-three proteins did not have

structures, and two did not have successful ET analyses. Two of

the proteins that did not have structures did have close homologs

with greater than 50% sequence identity and were examined

further (see ‘‘Results and Discussion’’).

The ‘‘Structural Genomics Set’’ contains proteins with the

keywords ‘‘structural genomics’’ or ‘‘unknown function’’ in the

PDB [11]. There were 4372 such proteins in the PDB, 4253 of

which also had ET results. EC numbers and GO terms listed in

the PDB were used to identify PSI proteins annotated as enzymes,

with GO terms converted to EC numbers using the EC to GO

mapping [13]. There were 1218 proteins annotated to 3 or more

EC digits; these are the ‘‘Structural Genomics Annotated’’ set

(Dataset S8), and the remaining 2935 are the ‘‘Structural

Genomics Unannotated’’ (Dataset S9) set.

The ‘‘Target Set’’ (Dataset S4) was the subset of the 2006 PDB-

SELECT-90 [101] with ET results and single EC annotations

complete to the third or fourth digit in their PDB files. This set

contains 3069 proteins. Non-enzymes were also searched against

5827 traced PDB90 proteins without EC annotations. To compare

PDM ETA with MA ETA, we also used an older target set of 2779

proteins from the 2004 PDB-SELECT-90 (Dataset S2) with single

annotations complete to the fourth digit.

The PDB codes and protein names for each set, as well as

predictions for the unannotated structural genomics proteins, are

available as supplementary data.

Template Creation
Templates were created as described elsewhere [76]. Briefly,

proteins were traced using automated [102], real-valued [103] ET

[70] to determine their residues’ relative evolutionary importance.

Residues were added in order of importance to form a structural

cluster (each residue has a non-hydrogen atom within 4 Å of another

residue in the cluster) of at least 10 surface residues (solvent

accessibility of at least 2 Å2 calculated by DSSP [104]), and the six

most important are chosen. Ties were broken by choosing the

residue closest to a point halfway between the centroid of the cluster

residues and the centroid of the current template residues. Residues

are represented geometrically by their Ca atoms. The residue types

of matched positions must be a combination seen more than once in

the ET multiple sequence alignment.

For the two Toronto Set proteins modeled with homologous

structures, ETA applies ET to the sequence of the query protein—

including the homologous structure in the alignment but not in the

calculation of ET results—and maps the residue types and ET results

to the structure using the multiple sequence alignment. Only non-

gap positions in the query were allowed for the template.

To demonstrate functional relevance, templates were compared

to SITE records or Catalytic Site Atlas residues as of October 2007.

Template Searching
Template searching is performed using Paired Distance

Matching. Starting with residue r1 in a template R = {ri}, PDM

identifies all residues of type t1 in the target protein. For the first
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iteration, each of these is a possible match mi to the template, and

each is stored in the set M = {mi}.

For residue r2, all residues of type t2 are identified. Each new

residue is added combinatorically to each of the possible matches

mi in M, expanding M. Each mi is then checked against distance

constraints and retained or discarded. The distance between the

new residue r2 and the old residue r1 is computed; in this case

distance d(r1, r2). For each mi, the corresponding distances between

the new residue r29 and the residues in the current mi are computed

and compared; in this case the distance of the corresponding

matched residues d(r19, r29) is compared to d(r1, r2). The match is

removed if |d(r1, r2)-d(r19, r29)|$e; where e represents a tolerance

value; otherwise mi remains in M.

These steps are repeated for r3, with each residue of type t3 in

the target added to each mi, distances d(r2, r3), and d(r1, r3)

computed and compared to their counterparts in mi, and each mi

with all distances within e of the template distances retained in M.

This process continues for each remaining template residue ri,

halting when M becomes empty or all residues in the template

have been examined. The result is a set of matches whose distances

between residues match those of the original template plus or

minus e. If the distances match, the residues in mi are likely in a

similar geometry to those in R, so the residue numbers of each mi

are reported with their RMSD.

e is set at 2.5 Å. Values from 1 to 6 in 0.5 Å steps were tested on

the Training Set; 2.5 represented the best balance of post-SVM

positive predictive value and sensitivity in identifying true matches.

For one-to-many matching, templates were created for the

query protein and searched against the 2006 Target Set unless

noted otherwise. For many-to-one matching, templates were

created for the Target Set proteins and then searched against the

query protein (excepting 13 backbone-only structures with no

solvent accessibility data).

Match Filtering
Three filters removed likely false matches. First, matches with

an RMSD greater than 2 Å were eliminated. Values from 1 to 5 in

increments of 0.5 Å were tested for matching performance; of

these, 2 Å was the best compromise between sensitivity and

positive predictive power (as in the e optimization). Consistent with

this, true matches are rare beyond 2 Å.

Next, an SVM filters additional matches based on geometric

and evolutionary similarity. The SVM feature vector is seven

dimensional, made up of match RMSD, which quantifies

geometric similarity (1 dimension), and the sorted absolute values

of the difference between the percentile ET ranks of each pair of

matched residues, which quantifies evolutionary similarity (6

dimensions). The SVM was created with the Spider package for

MATLAB (http://www.kyb.tuebingen.mpg.de/bs/people/spider),

using a balanced ridge set to the difference in the proportions of

true and false matches, a radial basis function kernel with the

parameter s= 0.5, and all other parameters left at default values.

Training was performed using matches from the Training Set

against the 2004 Target Set and four digits of EC precision. SVMs

trained using the 2006 PDB-SELECT-90 and 3 digit precision were

evaluated but did not significantly change classification. For more

about the SVM, see [76,77].

Finally, reciprocal ETA removes non-reciprocal matches, taking

only those in the intersection of the sets of matches found by the

two matching methods.

Voting
Each remaining match, excluding self-matches, represents one

vote for its annotated function, and this set of functions represents

possible annotations. The function achieving a plurality of votes

wins. A protein counts only once per query. No single prediction is

made when no plurality is reached (a tie); instead ETA offers

multiple possible annotations.

Voting was performed using the set of many-to-one matches, one-

to-many matches, the intersection of these two sets (reciprocal ETA),

or the union of these two sets (non-reciprocal ETA). Non-reciprocal

predictions are made when reciprocal predictions are not available,

which can occur due to a lack of matches or a tie vote.

Sequence Identity
Sequence identity between pairs of proteins was calculated on

global alignments produced by CLUSTALW [105] with its default

settings.

Comparisons to ProFunc
ProFunc results for the Enzyme Active Sites templates, Reverse

Templates, and all methods combined are those provided by the

ProFunc web server. For the template method comparisons, this

meant that only the top five matches were given (which frequently

included a self-match; these were removed). Additionally, proteins

are matched against the entire PDB, raising concerns about

redundant matches. This was ignored for EAS due to the small

number of matches found, but because RT generally found more

matches, those results were restricted to proteins found in our

PDB90 target set to limit redundancy and ensure that the

comparison showed differences between the two methods’

performance, rather than their target data sets. The RT method

sometimes identified proteins with no enzymatic annotations; these

were considered false predictions. ETA’s structural genomics

functional predictions were compared to those of ProFunc by

taking the ProFunc server’s predicted functions and manually

mapping them to EC numbers.

All ProFunc results were retrieved in October 2007, except for

EAS results for the 49 proteins, which were retrieved in December

2007.

Visualization
Images of templates and matches were generated using

PYMOL [106].

Supporting Information

Dataset S1 The set of 53 enzymes used previously to train the

SVM and to choose values for the distance tolerance parameter e
and the RMSD cutoff in this study (see below).

Found at: doi:10.1371/journal.pone.0002136.s001 (0.00 MB

TXT)

Dataset S2 To compare PDM ETA with MA ETA, also we

used an older target set of 2779 proteins from the 2004 PDB-

SELECT-90 with single annotations complete to the fourth digit.

Found at: doi:10.1371/journal.pone.0002136.s002 (0.04 MB

TXT)

Dataset S3 Comprises 49 annotated enzymes chosen randomly

from the PSI that do not overlap with the Training Set.

Found at: doi:10.1371/journal.pone.0002136.s003 (0.00 MB

TXT)

Dataset S4 The ‘‘Target Set’’ was the subset of the 2006 PDB-

SELECT-90 with ET results and single EC annotations complete

to the third or fourth digit in their PDB files. This set contains

3069 proteins.

Found at: doi:10.1371/journal.pone.0002136.s004 (0.05 MB

TXT)
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Dataset S5 Composed of 50 randomly chosen proteins from the

PDB that appear to be non-enzymes. Their functions include

structure, DNA and RNA binding, signaling, and oxygen transport.

Found at: doi:10.1371/journal.pone.0002136.s005 (0.00 MB

DOC)

Dataset S6 Non-enzymes were also searched against 5827

traced PDB90 proteins without EC annotations.

Found at: doi:10.1371/journal.pone.0002136.s006 (0.03 MB

TXT)

Dataset S7 Consists of 13 enzymes annotated by automated

experimental screening, among which 11 have BLAST hits to

structures in the PDB with 99% or higher sequence identity, and

two of the proteins have close homologs with greater than 50%

sequence identity.

Found at: doi:10.1371/journal.pone.0002136.s007 (0.00 MB

TXT)

Dataset S8 The ‘‘Structural Genomics Set’’ contains proteins

with the keywords ‘‘structural genomics’’ or ‘‘unknown function’’

in the PDB [11]. There were 4372 such proteins in the PDB, 4253

of which also had ET results. EC numbers and GO terms listed in

the PDB were used to identify PSI proteins annotated as enzymes,

with GO terms converted to EC numbers using the EC to GO

mapping. There were 1218 proteins annotated to 3 or more EC

digits; these are the ‘‘Structural Genomics Annotated’’ set.

Found at: doi:10.1371/journal.pone.0002136.s008 (0.02 MB

TXT)

Dataset S9 The ‘‘Structural Genomics Set’’ contains proteins

with the keywords ‘‘structural genomics’’ or ‘‘unknown function’’

in the PDB. There were 4372 such proteins in the PDB, 4253 of

which also had ET results. EC numbers and GO terms listed in

the PDB were used to identify PSI proteins annotated as enzymes,

with GO terms converted to EC numbers using the EC to GO

mapping. There were 1218 proteins annotated to 3 or more EC

digits; these are the ‘‘Structural Genomics Annotated’’ set, and the

remaining 2935 are the ‘‘Structural Genomics Unannotated’’ set.

Found at: doi:10.1371/journal.pone.0002136.s009 (0.02 MB

TXT)

Dataset S10 ETA predictions for structural genomics proteins

using the one-to-many matching method. Proteins with no

prediction listed had matches but no function achieved plurality.

Found at: doi:10.1371/journal.pone.0002136.s010 (0.01 MB

TXT)

Dataset S11 ETA predictions for structural genomics proteins

using the many-to-one matching method. Proteins with no

prediction listed had matches but no function achieved plurality.

Found at: doi:10.1371/journal.pone.0002136.s011 (0.01 MB

RTF)

Dataset S12 ETA predictions for structural genomics proteins

using reciprocal matching. Proteins with no prediction listed had

matches but no function achieved plurality.

Found at: doi:10.1371/journal.pone.0002136.s012 (0.00 MB

TXT)

Dataset S13 Reciprocal ETA predictions for structural geno-

mics proteins using previous reciprocal predictions as target data.

Proteins with no prediction listed had matches but no function

achieved plurality.

Found at: doi:10.1371/journal.pone.0002136.s013 (0.00 MB

TXT)

Dataset S14 ETA predictions for structural genomics proteins

using non-reciprocal matching. Proteins with no prediction listed

had matches but no function achieved plurality.

Found at: doi:10.1371/journal.pone.0002136.s014 (0.01 MB

TXT)
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