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Are there superagonists for calcium-activated potassium channels?
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Similar to GABAA receptor-channels the calcium-
mediated gating of the small-conductance KCa2 and
the intermediate-conductance KCa3.1 channels can be
positively or negatively modulated by small molecule
drugs, which, in analogy to the GABA field, have been
termed positive (PAM) or negative allosteric modula-
tors. While positive gating modulators like EBIO,
NS309, SKA-31 and SKA-121 shift the calcium-
response curve of these voltage-independent, calmod-
ulin-gated channels to the left and apparently increase
their sensitivity to calcium, negative gating modulators
decrease calcium sensitivity.1 However, in contrast to
GABAA receptors, where the binding site for the
endogenous ligand GABA is located on the extracellu-
lar side and where allosteric modulation by benzodia-
zepines, neurosteroids and barbiturates has been
studied in exquisite detail, only a small number of
studies have been performed for KCa channels. One
reason is of course the lower level of pharmacological
interest. While GABAA receptors are firmly estab-
lished as clinically used drug targets, no KCa2 or
KCa3.1 channel modulators have yet reached the clinic
despite their undeniable therapeutic potential for neu-
rological, cardiovascular and inflammatory diseases.1

Another reason is the technical challenge involved in
studying KCa channel gating. The gating apparatus is
located at the intracellular C-terminus, where calmod-
ulin, which functions as a calcium-sensing b-subunit,
is constitutively associated with the calmodulin bind-
ing domain of the channels,2 necessitating the perfor-
mance of inside-out patch-clamp recordings when
aiming to work at defined intracellular calcium con-
centrations. Nevertheless, a few studies, including

some exquisite X-ray crystallography,3,4 have been
performed and it is currently hypothesized that KCa

channel PAMs bind at the interface between the cal-
modulin N-lobe and the calmodulin-binding domain
of the channels and thus “facilitate” mechanical open-
ing ( D increased open channel probability) at a given
Ca2C concentration.

Both benzimidazole-type activators like EBIO and
NS309 and naphthothiazole/oxazole-type activators
like SKA-31 and SKA-121 (Fig. 1) have been shown to
bind in this interface pocket either through co-crystal-
lization of calmodulin in complex with the calmodu-
lin-binding domain of KCa2.2,

3,4 or, more recently, by
our own group using a combination of electrophysiol-
ogy and site-directed mutagenesis.5 The latter study
was guided by homology modeling of the KCa2.3 and
KCa3.1 interface pocket and docking studies using the
RosettaLigand computational modeling software.
While the crystallography studies3,4 afforded the first
insight into the atomistic mechanism of action of KCa

activators, our molecular modeling study provides a
plausible explanation for why KCa channel activators
in general are 5–10-fold more potent in activating
KCa3.1 than KCa2 channels.5 The presence of R362
creates an extensive “background” hydrogen-bond
network in the KCa3.1 interface pocket that stabilizes
the main contacts NH2-substituted KCa activators
make with M51 and E54 in calmodulin (Fig. 1). The
three KCa2 channels have shorter N or S residues in
the corresponding position and therefore cannot form
this hydrogen-bond network. The Rosetta models fur-
ther suggested an explanation for why the 5-position
methyl substituted SKA-121 is more potent on KCa3.1
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and less potent on KCa2.3 than its parent compound
SKA-31 by identifying an increased number of hydro-
phobic interactions in the “back” of the interface
pocket for SKA-121 in the most frequently sampled
lowest energy binding poses in KCa3.1.

While these homology models are certainly helpful
for explaining selectivity or for attempting structure
based drug design, they fail to explain the experimen-
tally observed ability of SKA-121 to further potentiate
KCa currents at saturating Ca2C concentrations. All
previously published calcium-response curves for
EBIO or NS309 on KCa2.2 show a “clean” left-ward
shift without any increase in maximal effect (Fig. 1).
SKA-121, in contrast, doubles KCa3.1 currents even in
the presence of 10 mM of free intracellular calcium.

This potentiation above the effect of the endogenous
ligand, which is reminiscent of the superagonism
observed on extrasynaptic GABAA receptors, could
potentially be explained by the assumed relatively low
Ca2C-dependent Po(max) of KCa3.1. However, it
becomes harder to explain for KCa2.3, where SKA-121
is also still able to further potentiate currents in the
presence of even 30 mM free calcium5 despite the fact
that KCa2 channels are supposedly already fully open.

Future studies of KCa channel gating and the mecha-
nism of action of KCa activators therefore will have to
address several questions. First, how does the calmodu-
lin mediated gating of the channels actually work? The
dimer-of-dimers model suggested by the C-terminal
crystal structures,3,4,6 which all show two anti-parallel

Figure 1. Top, Chemical structures of the KCa channel activators and Rosetta model of SKA-121 (orange) docked into the interface
between the KCa3.1 calmodulin-binding domain (blue) and calmodulin (yellow). See Brown et al.5 for details. Bottom, Cartoon of the
effect of EBIO or NS309 on the calcium-response curve of KCa2.2 and of SKA-121 on the calcium-response curve of KCa3.1.
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KCa2.2 fragments and two anti-parallel calmodulins
forming a dimeric complex, has been questioned in
favor of a model with four-fold rotational symmetry.7

This debate is unlikely to be resolved before a full-
length structure of a KCa2 or KCa3.1 channel becomes
available. Second, how do small molecules affect the
gating and do they have the same effects on KCa3.1 and
KCa2 channels? Up to now our laboratory is the only
group that published KCa3.1 calcium-response curves
in the presence of a KCa activator raising the question
whether there are intrinsic differences between KCa3.1
and KCa2 channels, for which phosphatidylinositol
4,5-bisphosphate (PIP2) has recently been shown to
regulate channel activity by binding to the KCa2.2
calmodulin-binding domain/calmodulin complex.8 3)
Are there superagonists and partial agonists for KCa

channels? And lastly, how different are KCa agonists
that bind in the C-terminal interface pocket from KCa

agonists1 that bind in the pore domain?
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