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Abstract Molecular biochemistry is controlled by 3D

phenomena but structure–activity models based on 3D

descriptors are infrequently used for large data sets because of

the computational overhead for determining molecular con-

formations. A diverse dataset of 146 androgen receptor bin-

ders was used to investigate how different methods for

defining molecular conformations affect the performance of

3D-quantitative spectral data activity relationship models.

Molecular conformations tested: (1) global minimum of

molecules’ potential energy surface; (2) alignment-to-tem-

plates using equal electronic and steric force field contribu-

tions; (3) alignment using contributions ‘‘Best-for-Each’’

template; (4) non-energy optimized, non-aligned (2D[ 3D).

Aggregate predictions from models were compared. Highest

average coefficients of determination ranged from RTest
2 =

0.56 to 0.61. The best model using 2D[ 3D (imported

directly from ChemSpider) produced RTest
2 = 0.61. It was

superior to energy-minimized and conformation-aligned

models and was achieved in only 3–7 % of the time required

using the other conformation strategies. Predictions averaged

from models built on different conformations achieved a

consensus RTest
2 = 0.65. The best 2D[ 3D model was ana-

lyzed for underlying structure–activity relationships. For the

compound strongest binding to the androgen receptor, 10

substructural features contributing to binding were flagged.

Utility of 2D[ 3D was compared for two other activity

endpoints, each modeling a medium sized data set. Results

suggested that large scale, accurate predictions using

2D[ 3D SDAR descriptors may be produced for interactions

involving endocrine system nuclear receptors and other data

sets in which strongest activities are produced by fairly

inflexible substrates.
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Introduction

3-Dimensional spectral data-activity relationship (3D-

SDAR) modeling is a grid-based in silico technique which

belongs to a group of methods collectively known as

Structure–Activity Relationships (SARs). In 3D-SDAR

each compound is represented by a unique ‘‘fingerprint’’

constructed from the NMR chemical shifts, d, of all carbon

atom pairs placed on the X- and Y-axes joined with the

inter-atomic distances between each pair on the Z-axis [1].

For details see the sub-section below on the 3D-QSDAR

fingerprint. The atom-specific nature of chemical shifts and

the use of inter-atomic distances enable representation of

interaction potential with receptor active sites in terms of

electronic and steric qualities, respectively [2]. 3D-SDAR

can produce models that facilitate identification of 3D

pharmacophores and toxicophores.
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This work models quantitative data and so exemplifies

3D-QSDAR. In this project, information about the presence

of atoms other than carbon was not explicitly included. We

have found in several of our previous SDAR modeling

projects that the high sensitivity of 13C ds to their envi-

ronment is often sufficient for useful reflection of chemical

structure in the vicinity, including the presence of nearby

heteroatoms [1, 3, 4]. A tessellation of the 3D-SDAR space

into regular grids (‘‘binning’’) is further used to convert the

information contained in a fingerprint into a set of 3D-

SDAR descriptors. For a particular molecule, in addition to

the 3D co-ordinates from carbon atoms, each descriptor

includes the number of fingerprint elements belonging to

each bin. Depending on the granularity of the grid, thou-

sands of such descriptors can be generated but most bins

have zero occupancy. These are further handled by an

ensemble modeling PLS algorithm performing multiple

training/hold-out test randomization cycles producing

averaged ‘‘composite’’ models.

The 3D-SDAR parametric space, with a quantitative

measure of each compound’s biological affinity appended,

can be explored by comparing the predictive power of

models derived from grids of different density/granularity,

thus determining an optimal grid size. As a 3D-modeling

technique conceptually similar to Comparative Molecular

Field Analysis (CoMFA) and Comparative Molecular

Similarity Analysis (CoMSIA), 3D-QSDAR depends on

the specific conformation chosen for fingerprint generation.

Unlike CoMFA and CoMSIA, 3D-QSDAR is an alignment

independent technique.

Our earlier studies indicated that 3D-QSDAR models

based on lowest energy conformations perform well [1, 3,

4]. However, we hypothesized that use of substrates inter-

nally aligned with respect to molecular template molecules

rather than energy-minimized conformations might prove

beneficial. In other words, we asked whether the adoption of

a biologically more appropriate conformation for flexible

compounds significantly increases overall predictive accu-

racy of the models by using 3D descriptors. Addressing this

was the point of an experimental design intended to explore

a variety of ways to establish 3D conformations. As will be

shown below, the hypothesis was contradicted for modeling

androgen receptor binding (the endpoint studied here) and

another similar challenge.

Whether substrate-template alignment or energy mini-

mization generates optimal 3D-SDAR models has not been

previously determined. By definition of the 3D-SDAR

fingerprints, substrate conformational changes would affect

the position of the fingerprint elements only along the

Z-axis. Because the distance between first and second order

atom neighbors does not change with conformation, only

fingerprint elements associated with more widely separated

atom pairs in flexible molecules would vary significantly.

To study the effect of conformation on the performance

of 3D-QSDAR models, the following experiments were

conducted:

(a) conformational search analysis for each molecule to

locate the global minimum of the potential energy

surface (PES) followed by a semi-empirical or QM

optimization to determine it precisely;

(b) alignment-to-template molecules [5], performed

using clustering by similarity (alignment-to-tem-

plates by two different procedures was tested);

(c) simple 2D to 3D (2D[ 3D) conversion using

molecular mechanics as implemented in Jmol.

Approaches (a) and (b) guaranteed the use of consistent

and reproducible geometries [6]; approach (c), though

much less computationally demanding, was not systematic

and models based thereon might not be precisely repro-

ducible. If our hypothesis was true, approach (c) should

produce inferior results compared to (a) or (b). These

approaches were compared for predictive accuracy of the

resulting 3D-QSDAR models.

Many conformational alignment algorithms have been

developed for use in 3D-QSAR modeling [7–10]. Choices

related to alignment are discussed in detail in Materials and

Methods, the subsection entitled 3D-QSDAR Conforma-

tion Comparison, Experimental Design.

To test how a specific choice for generating conforma-

tions affects the predictive performance of 3D-QSDAR

models, a dataset of 146 compounds, each with known

affinity to the androgen receptor (AR), was used. The bio-

logical and environmental significance of modeling andro-

genicity is discussed in Online Resource 1, file name ESM_1

[11–17]. In summary, binding of exogenous chemicals to the

AR leads to mammalian endocrine system disruption, which

has happened and is happening on a large scale.

The dataset of 146 AR binders satisfied the following

requirements: (1) they were all measured in the same lab

using the same methods by the same personnel; (2) they

were structurally diverse ([10 carbon backbone classes);

(3) a significant proportion were flexible compounds (see

‘‘Discussion’’ of Kier Index below), (4) they involved

interaction with a single, well defined biological receptor,

and (5) the same data were previously used in QSAR

modeling (for direct comparison of results).

We examined how use of different conformations

affected the overall statistical accuracy of 3D-QSDAR

predictions, the optimal bin dimensions, and/or the loca-

tions of important bins in 3D-SDAR space. We also studied

whether consensus predictions averaged from models

based on different molecular conformations would lead to

increased predictive accuracy. A model based on directly

downloaded (2D[ 3D) structures without systematic

conformational adjustment or alignment was also built and

332 J Comput Aided Mol Des (2016) 30:331–345

123



used to identify substructural elements that contribute to

AR binding and endocrine system disruption. Finally, the

general utility of the 2D[ 3D shortcut was studied for two

other biological endpoints by comparing model predictive

accuracy based on 2D[ 3D conformations to those based

on energy minimized conformations.

These studies have been successfully completed and

may lead to a significant improvement in computational

modeling: a methodology that uses 3D descriptors for

which it will be practical to predict biological affinity

accurately for a huge chemical data set. This capability

becomes possible by avoiding computationally-intensive

and subjective procedures necessary for other 3D methods

to build and consult models.

Materials and methods

Data set

146 androgen receptor binders from the Nationalm Center

for Toxicological Researh (NCTR) Endocrine Disruption

Knowledge Base (EDKB) were used along with their

respective binding affinities as a representative and illus-

trative modeling challenge (http://www.fda.gov/sciencer

esearch/bioinformaticstools/endocrinedisruptorknowledge

base/default.htm). Experimental Relative Binding Affini-

ties (RBA) to AR were determined by measuring the

binding inhibition of radiolabeled [3H] R1881 to the rat

androgen receptor. There were far more of the less active

compounds than of the more active in this data set. To

improve data normality, logarithms of RBA were used for

modeling [18].

Structure or chemical utility classes among the 146

included steroids, DESs, DDTs, flutamides, indoles, PCBs,

pesticides, phenols, phthalates, phytoandrogens, and

siloxanes. The study varied the basis for defining 3D

conformations. The range of possible conformations was

obviously related to the inherent flexibility of molecules in

the data set. Some of the structures were not very flexible.

Each of the compounds was analyzed for structural

flexibility using the Kier Index of Molecular Flexibility

[19]. The Kier Index is a dimensionless indicator of rela-

tive flexibility. While it yields a quantitative value, the

meaning is more intuitive, qualitative. A completely flex-

ible molecule, such as a very long alkane chain, would

have an infinite Kier Index. The 146 compounds in this

study range from about 1.7 to 14.4 on the index. 48

(32.9 %) of the compounds have indices below 3.0 and

could be described as fairly rigid. 70 (47.9 %) have indices

between 3.0 and 5.0 and could be described as partially or

somewhat flexible. The remaining 28 (19.2 %) molecules

have the higher indices and would be described as flexible.

Each chemical used in this study along with its con-

formational alignment template, CAS number, log(RBA)

to AR, and 2D structure drawing is catalogued in Online

Resource 2, file name ESM_2. Online Resource 3 reports

molecule-specific results of the Kier Index calculation.

Definition of terms, description of computational

tools, and basic concepts

PLS was used for model generation. SDAR and many other

descriptor sets provide a large number of variables. Mul-

tiple Linear Regression (MLR) fails if the number of

variables exceeds the number of data entries (compounds,

here). PLS reduces the dimensionality so that the pattern is

encoded as weighted contributions from the original vari-

ables (bins, in SDAR). Most of the variability in the data is

condensed into the first few, orthogonal Latent Variables

(LVs). The mathematical operation that generates the LVs

is reversible via the model weights in each LV, so that the

contributions of bins to the model are interpretable.

Non-linear modeling techniques can be interpreted to

some extent but the process is not easy and the results are

qualitative [20]. It is difficult via their non-linear associa-

tions to relate the molecular descriptors to the observed

binding affinity and thus develop structure–activity asso-

ciations from the model. Because SDAR descriptors are

directly related to chemical structure, and PLS models can

be used to identify important bins, the combination of

SDAR with PLS facilitates discovery of pharmacophores

or toxicophores.

NMR chemical shifts and many interatomic distances

exist along a continuum. Combined to form 3D finger-

prints, the ordered triplets are binned so that elements

belonging to the same bin (and presumptively residing in

similar chemical environments) are likely to contribute in a

similar manner to the biological affinity. Since we did not

know a priori the optimal grid granularity, bin widths

ranging from 2 to 20 ppm in the XY chemical shift plane

were explored in 2 ppm increments. Beyond 20 ppm,

atoms in quite different chemical environments would be

grouped together, thus reducing the ability to infer struc-

tural associations from the models. On the Z-axis, the

interatomic distances were binned varying from 0.5 to

2.5 Å in 0.5 Å increments. Beyond 2.5 Å, atoms across a

phenyl ring from each other, for example, might meet the

same criteria in relation to a distant atom, so that structural

alert discovery would become more difficult. Systemati-

cally examining all possible combinations of bin granu-

larity necessitated batch-mode operations, here performed

automatically by algorithms written in Matlab R2012b.

To reduce error, achieve reproducibility, assure objec-

tivity, and avoid data over-fitting, a PLS modeling algo-

rithm employed a random number generator (RNG) to
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create a sequence of training and test set combinations. A

batch of 100 randomization cycles executed at each bin

width granularity of the SDAR grid was performed. In each

randomization event, 20 % of the compounds was held out

as a test set, the remaining 80 % was used to build the

model and to predict the binding affinity of the held out

compounds. It has been demonstrated that randomization

rules that disregard applicability domains, as in this case,

produce more conservative estimates of the external pre-

dictive performance of models [21]. This approach was

adopted in our experimental design. After 100 iterations,

statistical metrics (RTraining
2 , RTest

2 , RScrambling
2 ) were calcu-

lated as averages of the corresponding values in each cycle.

The RNG was automatically reset to the same seed for the

next experiment in a batch. Systematic examination of

parameter space in batch operation yielded 20 % hold-out

test set predictions from which RTest
2 values were calcu-

lated. In other 3D-SDAR projects, RTest
2 results thus

obtained have shown accuracy equivalent to that for pre-

dicting toxicity for members of an external test set [22].

Predictions were also generated for training set compounds as

well as for test set compounds based on Y-scrambled inputs.

In the latter case, the list of binding affinities were randomly

distributed among the 146 compounds to assess the likeli-

hood that nonsense relationships would be ‘‘discovered.’’

Composite models were averaged from predictions of

100 individual models. Predictions from a composite

model could be further averaged with those of other

composite models developed either under different mod-

eling parameters or based upon different 3D molecular

conformations, thus generating a consensus model.

The 3D-QSDAR ‘‘fingerprint’’

Organic molecules with at least two carbon atoms can be

represented by the 3D spectral fingerprints used here [1]. For

a given molecule with a total of N C 2 carbon atoms, the 3D

fingerprint is constructed using the chemical shifts of all

non-ordered (CiCj : CjCi; i, j = 1, …, N) carbon atom

pairs in conjunction with a dCi C dCj condition, in which d
denotes a chemical shift in ppm. Under these conditions, a

3D abstract space is created having the following orthogonal

axes: (1) the d of atom Ci is placed on the X-axis; (2) the d of

atom Cj is placed on the Y-axis, and (3) the distance (rij)

between atoms Ci and Cj forms the Z-axis. According to the

above definition of axes, (CiCj : CjCi), all fingerprints are

characterized by a single plane of symmetry Cs intersecting

the XY-plane through its main diagonal. Application of

dCi C dCj removes the redundant fingerprint elements on

one side of the symmetry plane.

These fingerprints are invariant under rotation and/or

translation of the molecular atomic Cartesian coordinates.

Thus, 3D-SDAR and 3D-QSDAR can be performed without

conformational alignment, a significant advantage com-

pared to CoMFA and CoMSIA. This explains why, prior to

this work, alignment was not tested for 3D-QSDAR.

3D-QSDAR conformational comparison,

experimental design

We compared the performance of 3D-QSDAR models

based on four molecular geometries: Global Minimum

Energy; Alignment-to-a-Template-50:50, (i.e., with equal

contribution of the electronic and steric energies of inter-

action); Alignment-to-a-Template-Best-of-Each, (i.e., with

optimized electronic and steric field contributions specific

for each template), and a 2D to 3D conversion using instant

JChem with an MM universal force field as implemented in

ChemSpider, shorthand referenced as ‘‘2D[ 3D’’). These

terms require more definition, explanation, and context.

For Global Minimum Energy models, the potential

energy of each of the 146 molecules was determined by

random walks followed by AM1 in Hyperchem 8.0

(HyperCube, Inc., Gainesville, FL) as detailed in Online

Resource 4. When the difference in energy between con-

secutive AM1 iterations fell below 0.01 kcal/Å 9 mol, the

calculation was at its convergence limit, computation was

halted, and the associated molecular conformation was

regarded as that with Global Minimum Energy. Each

molecule’s Global Minimum Energy conformation was

saved as a *.mol file and used to compute interatomic

distances between pairs of carbon atoms. The distances and
13C NMR chemical shifts were combined as detailed below

to define each molecule’s 3D-SDAR matrix, its fingerprint.

After adding the log(RBA) to each fingerprint, the matrices

were then used for PLS modeling.

Alignment-to-a-Template models presented another

challenge. Due to the heterogeneity of the dataset and

because binding profiles might not be the same for different

structural groups, multiple templates were used. Many

conformational alignment algorithms have been developed

for use in 3D-QSAR modeling [7]. A commonly used

approach is to define a group of structurally dissimilar

templates that are active compounds and use force fields to

align less active, flexible molecules to their most topo-

logically similar templates. For alignment-to-template

studies, we used force fit [8, 10]. Force field fitting pro-

cedures as implemented in Discovery Studio v 3.5 (BS

Biovia, http://accelrys.com/) were applied to each flexible

molecule such that its active features were positioned as

close as possible to the corresponding features of its best

template.

Obviously, template choice for each molecule was

important [23]. Template for a molecule were based on its

structural (carbon backbone) similarity to a molecule with

strong or medium binding affinity to AR. We selected the
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strongest AR binder among molecules with a similar

backbone in the data set to serve as that group’s template.

This produced ten templates in all: 4-hydroxybiphenyl;

2-(4-nitrobenzyl)-1H-isoindole-1,3(2H)-dione; 6-hydrox-

yflavanone; dihydroxymethoxychlor olefin; dihydrotestos-

terone; p-nonylphenol; 4-hydroxybiphenyl; 4-hydroxy-

tamoxifen; di-n-butyl phthalate; a-zearalenol; triphenyl

phosphate. The CAS numbers of these ten compounds are

catalogued in Online Resource 2. The plan was that tem-

plate molecule conformations would be determined by

X-ray crystallography as bound in the AR or, if that

receptor data was not available, a similarly shaped nuclear

receptor, the estrogen receptor (ER) [24]. Should neither be

available, the template’s lowest energy unbound confor-

mation would be used. The only bound conformations of

template molecules available were for 4-hydroxy-tamox-

ifen in the estrogen receptor alpha (human) and dihy-

drotestosterone in the androgen receptor (rat). These two

receptor-bound compound conformations were templates

used for 11 and 43 compounds, respectively. This left 82

other compounds referenced to their template’s lowest

energy conformation or, if completely inflexible, their only

possible conformation.

See the table in Online Resource 2 for specific templates

associated with each molecule. Only 27 compounds could

not be assigned a template by visual inspection. Five of

these were so structurally rigid that alignment was unnec-

essary, identified in the table by the annotation (N/A). 22

were flexible but so structurally distinct that it was not

obvious which of the ten strong or medium AR-binding

compounds could best serve as each ones template. For

each the best template was selected based on a structural

similarity index calculated using ToxMatch 1.0.7 [25].

Specifics of this process can be found in Online Resource 5

and Online Resource 6.

Genistein in comparison with its manually chosen

template, 6-hydroxyflavanone, was arbitrarily chosen to

scale expectations for ToxMatch template selections.

Genistein’s ToxMatch similarity to 6-hydroxyflavanone

was 0.63. The 22 flexible compounds’ similarity to their

ToxMatch-selected templates ranged from 0.14 to 0.88, on

average 0.39 ± 0.21. Average similarity less than that of

the genistein, 6-hydroxyflavanone pair was not surprising,

given the structural diversity that explained why the

appropriate template for these 22 compounds was not

obvious. Calculation of structural similarity provided

objectivity in template selection. 2D structures of Tox-

Match-defined pairs were also compared to confirm that

their ToxMatch pairings appeared reasonable.

Another Discovery Studio feature allows the user to

specify the relative contributions of electronic and steric

force fields that determine optimal alignment. The program

outputs a metric called Overlay Similarity: values range

from -1 to ?1, with ?1 representing perfect alignment.

The default relative contributions of electronic and steric

fields are equal, 50:50. Starting with the Global Minimum

Energy conformations, a new set of conformations for each

of the 146 compounds was determined by choosing 50:50,

and executing alignment to corresponding templates with-

out regard to the resulting Overlay Similarity. The 50:50

aligned conformation for each molecule was written as a

*.mol file and combined (See sub-section immediately

below) with both the predicted NMR chemical shifts and

experimental log(RBA)s. The set of such 3D-QSDAR

matrices was modeled, yielding results labeled Alignment

to-a-Template, 50:50.

For a third experiment, all compounds assigned to a

particular template, were grouped together into a single

*.sdf file (multiple *.mol files) and their Global Minimum

Energy conformations were adjusted as a group relative to

their template. Using 10 % increments, the relative con-

tribution fraction was explored to identify that fraction

(e.g., 100:0, 90:10, … 50:50, …10:90, 0:100) yielding the

highest Overlay Similarity as a group to its template. The

individual *.mol files were then extracted from the *.sdf

files. 70:30 electrostatic:steric alignment was found opti-

mal for each of the template groups. For this alternative

alignment experiment, the 70:30 aligned conformation was

used to define each molecule’s 3D-SDAR fingerprint. The

set of fingerprints with appended experimental log(RBA)s

was modeled and results were reported as Alignment-to-a-

Template, Best-of-Each, since the experimental design

concept was to use the force field proportions that produced

the best fit for each template and the fact that each of these

optimized at 70:30 was a coincidence.

Finally, we downloaded the 3D conformations from

ChemSpider without conformational adjustments beyond

what is done automatically by ChemSpider during the

download of any 3D *.mol file: Jmol (Bioinformatics.Org)

is used for 2D to 3D conversion by means of a molecular

mechanics (MM) universal force field (UFF). We com-

bined these mol files with their corresponding NMR files to

form the 3D-SDAR fingerprint, added the log(RBA)s,

performed the data set partitions and PLS analyses and

reported results as 2D[ 3D (meaning directly downloaded

original conformations, non-systematically-energy mini-

mized, non-aligned).

Predicting 13C NMR chemical shifts, generating

the 3D-QSDAR matrix, and optimizing models

The *.mol files were imported to the ACD/NMR C Pre-

dictor, Version 12.0, with the atom numbering system

preserved in the transfer, and the NMR spectra of the

corresponding compounds were generated using the HOSE
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algorithm [26, 27]. HOSE predicts on a two dimensional

basis, that of the substructural unit. Three dimensional

descriptor information used in 3D-SDAR and 3D-QSDAR

derives from the combination of these 2D-predicted atomic

chemical shifts with interatomic distances calculated from

3D mol files.

In a systematic examination of parameter space, the 3D-

SDAR fingerprints were tessellated (binned) using regular

grids. A step of 2 ppm was used to increment chemical

shifts whereas a step of 0.5Å was used to increment

interatomic distances…(i.e., 3D-SDAR fingerprints were

tessellated using bins ranging in size from 0.5 Å 9 2 ppm

9 2 ppm to 2.5 Å 9 20 ppm 9 20 ppm). The use of small

bin sizes increases the proportion of zero occupancy bins

for the entire set of compounds. It also defines as distinct

some adjacent chemical shift-distance combinations that

actually might represent the same contribution to bio-

chemical activity. The use of very large bins decreases the

proportion of zero occupancy among the small number of

large bins. But large bins implies, as being equivalent,

chemical shift-distance combinations that might represent

unrelated chemical effects, thus compromising the ability

to infer associations. Therefore, for both quality-of-fit and

pattern interpretation it was necessary to explore the

granularity of parameter space using a multifactorial

experimental design.

We explored model quality as a function of the number

of PLS Latent Variables used in modeling as well as bin

widths in both chemical shift and interatomic distance

dimensions. For each compound and bin dimension com-

bination, the number of fingerprint elements in each bin

(the bin occupancy) was counted and stored in columns.

The binned data was processed using PLS and modeling

results were subject to regression, generating R2 values.

The RTest
2 response space was compared, not the quality of

training set results. The four modeling projects using from

one to 10 LVs compared average RTraining
2 and RTest

2 from

parallel 100 fold random training/20 %-hold-uut test

experiments. The addition of LVs stopped at the point at

which RTraining
2 vs number of LVs has plateaued, while

RTest
2 and RScrambling

2 were monitored to ensure that the

models were not produced due to chance and that their

predictive power did not degrade significantly in compar-

ison to the training set…
In the last 2 years our group has been using this rather

stringent 20 %-Hold-Out and 100 random partitions vali-

dation process as standard procedure for quality assurance

[1, 3, 4, 22]. This standard has recently been evaluated by

others and confirmed as both necessary and appropriate for

estimating QSAR model predictive accuracy of external

data [21]. RTraining
2 , RScrambling

2 , and RTest
2 are reported as

average predictions from these 100 run cycles. This project

entailed generating over 40,000 individual models and

associated regressions.

Consensus models

Besides comparing model statistics, we examined whether

the different molecular conformation types had parallel or

contrary error tendencies in prediction of log(RBA). If the

error tendencies were contrary, predictions could benefit

from consensus.

Since the RNG sequence of partitions was repeated

exactly for each test, the average predictions could be

directly compared across the experimental variable space

to see whether there were differences in error tendencies

between models based on different conformation types. For

the four different conformation types we separately ranked

the individual RTest
2 values from greatest to least to see

whether variations in conformation produced different

sequences. If the identity of the training and test set com-

pounds for a partition were the only significant factor, the

rank would not differ with conformation. If outliers dif-

fered with conformation, ranking sequence would vary and

consensus models from different conformations could

show improved prediction accuracy.

Discovering structure alerts of affinity or toxicity

from 3D-SDAR models

We identified and plotted important bins from a 3D-SDAR

model onto a 3D map of QSDAR abstract space. Some of

the most important bins were plotted on the 3D-SDAR

map, color coded to reflect the frequency of occurrence.

Important bins were used to discover structure alerts of

toxicity: i.e., toxicophores. The task was to identify struc-

tural features that gave rise to atom pairs populating an

important bin. Each such bin was manually overlaid on a

chemical structure, each overlay appearing as a dotted,

dashed, and/or colored line joining that bin’s pair of atoms.

Once multiple overlays were constructed for several

strongly interacting molecules, it was possible to discover

structural features necessary to produce the binding affinity

or, conversely for undesired affinity, features to avoid.

Comparing results based on 2D > 3D versus energy

optimized conformations

We built and modeled 2D[ 3D conformations for 130

estrogens and 154 acute toxicity compounds previously

modeled by 3D-QSDAR [1, 4]. Predictive accuracy, RTest
2 ,

was compared for these endpoints to estimate the circum-

stances under which one might effectively take advantage of

the 2D[ 3D shortcut and save 93–97 % of modeling time.
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Results

We report below results for models in which the experi-

mental variations were explicitly designed to produce an

objective comparison and not to bias for a particular con-

clusion. When it became obvious that the direct 2D[ 3D

conformations as applied to 3D-SDAR descriptors were

outperforming conformation determinations requiring more

elaborate procedures, an effort was made to understand

whether this was an outlier result. Also, some experimental

variants associated with template alignment models were

explored to increase confidence that improved 2D[ 3D

performance was not an artifact of comparison to an

inadequately optimized alignment procedure.

We start by illustrating the relationship between

molecular conformation and the SDAR fingerprint: the

reason conformation would be expected to matter. Figure 1

visualizes a partially flexible molecule, Linuron. Its Global

Minimum Energy conformation is shown in (a) and its

conformation when aligned based on a 50:50 elec-

tronic:steric criterion, in (b). The most obvious conforma-

tional difference is highlighted.

Predictive accuracy comparative statistics

and response surfaces for AR models

Energy minimization and/or alignment affects the 3D

conformation of non-rigid members among the 146 com-

pounds, which might affect model accuracy. Detailed sta-

tistical results are available in Online Resources 4, 5, 6, and

7: Excel spreadsheets for Global Energy Minimized,

Aligned 50:50, Aligned Best-of-Each 70:30, and direct

2D[ 3D Conversion, respectively.

For Global Minimum Energy conformations, optimal

predictive PLS models were built using 2–4 LVs. Two that

showed good results:

Model (1) 4 LVs, average RTest
2 = 0.60 for chemical

shift bin width = 16 ppm and distance bin

width = 1.0 Å (so bin dimensions in the

abstract 3D- space were 16 ppm; 16 ppm;

1.0 Å)

Model (2) 3 LVs, average RTest
2 = 0.60 for bin

widths = 8 ppm and 1.0 Å (8 ppm;

8 ppm; 1.0 Å)

The Matlab code used in automatically building and holdout

testing all models is provided in Online Resource 8, ESM_8.

We produced plots (Figs. 2, 3, 4) based on three of the

conformation strategies and showing the average

RTest
2 response suface tessellated through relevant granularity

combinations. In Fig. 2 several optima span the granularity

range for Global Minimum Energy conformations.

Comparison of the Global Minimum Energy confor-

mation response surface (Fig. 2) with a surface based on

alignment (Fig. 3) showed significant differences. The

overall response surface shape differed substantially,

alignment being much simpler overall and significantly

lowered on the right hand edge compared to Global Min-

imum Energy. The maximum RTest
2 values were 0.58 or

0.56 and the lowest, 0.44 or 0.42, respectively, so the

ranges from highest to lowest values were the same

magnitude.

The results shown in Fig. 4 come from the study that

used 3D conformations taken directly from an online

source, ChemSpider. Since no systematic examination of

conformations was required, the download process

appeared instant. SDAR fingerprint composition, model

building, and validation was completed 15 times faster than

if systematic energy optimization and 30 times faster than

if both optimization and alignment to a template were

executed. The best 2D[ 3D average RTest
2 value was 0.61,

for a composite model using 3LVs and 8 ppm 9 8 ppm

9 1.5 Å bins. This is 0.01 to 0.05 RTest
2 units higher than

the best composite models by other conformation strate-

gies. For this experiment RScrambling
2 was only 0.05. Supe-

rior or even equivalent results for a model built without

energy optimized or template adjusted conformations is a

Fig. 1 Example of how molecular conformation can vary with the

method by which it is determined. Shown is linuron (Compound 106),

in a 3D conformation based on a its internal Global Minimum Energy

or b alignment to template 2-(4-nitrobenzyl)-1H-isoindole-1,3(2H)-

dione (Compound 3) using 50:50 electronic:steric force fields.

Orientation of a methyl group (inside the red dashed box) is the

most obvious difference between the two conformations. The

variation would be expressed in the abstract 3D SDAR fingerprint

as a difference in the interatomic distance between the methyl carbon

and other carbons in the molecule, which would affect Linuron’s

SDAR fingerprint and could alter its predicted activity. The Kier

Flexibility Index for Linuron is 4.55, which translates as ‘‘partially

flexible’’
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Fig. 2 Response surface for

Global Minimum Energy

conformations modeled using 4

PLS Latent Variables (LVs).

Plot shows average RTest
2 as a

function of chemical shift and

interatomic distance bin widths.

Three optima (surface regions

colored red) span a range from

0.5 to 1.5 Å in interatomic

distance granularity

Fig. 3 Average RTest
2 response

surface based on 70:30 Best-of-

Each Alignment and 2 LVs. The

surface shows a single optimum,

indicated in red, though the

color key in this case is

translated downward by 0.02

RTest
2 units compared to Fig. 2.

The entire response surface is

depressed on the right side there

are no local optima found for

large bins with 2.0–2.5 Å

granularity. The response

surface for 50:50 alignment was

similar in shape to Best-of-Each

Alignment
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surprising result, one that is opposite to that found for other

3D descriptor types [28].

Table 1 compares the analytical figures of merit for two

Energy-Minimized composite models of different granu-

larity; corresponding figures for two composite models

based, respectively, on 50:50 or Best-of-Each-Compound

70:30 structural alignments; and results of 2D[ 3D

conversion. Comparing modified conformations, alignment

gave poorer predictive quality than Global Minimum

Energy optimized conformations (although according to a

t test the difference was not statistically significant). This

example suggests that, with respect to predictive accuracy,

there would be no point in bothering to execute alignment

strategies for 3D-SDAR modeling. The minimal utility of

Fig. 4 Average RTest
2 response

surface for direct 2D[ 3D

conversion modeled using 4

LVs. Conversion was executed

using molecular mechanics via a

Universal Force Field but

involved no systematic energy

optimization or alignment. Four

optima are observed in the red

color and they span the

granularity range in both

dimensions. In this figure the

color key range is translated

0.02 RTest
2 units higher than

Fig. 2

Table 1 Model statistics as a function of experimental parameters

Conformation Experimental parameters RTrain.
2a RScrm.

2b RTest
2 RMSD Consensus RTest

2

(a) (b) (c) (d)

Global minimum energy (Model 1) 4 LV; 16 ppm; 1.0 Å 0.92 0.06 0.60 0.77 0.62

?3.3 %

0.65

?10 %Global minimum energy (Model 2) 3 LV; 8 ppm; 1.0 Å 0.92 0.07 0.60 0.77 0.58

-0.9 %

0.64

?15 %Alignment, 50:50 electronic:steric 2 LV; 6 ppm; 1.0 Å 0.85 0.06 0.57 0.80

Alignment, best-of-each 2 LV; 6 ppm; 1.0 Å 0.84 0.06 0.56 0.80

2D[ 3D conversion 3 LVs; 8 ppm; 1.5 Å 0.91 0.05 0.61 0.75

Parameters were conformation basis, number of Latent Variables (LVs) in the PLS model, 3D-SDAR fingerprint granularity (chemical shifts in

ppm; interatomic distances in Å) including predictive accuracy (RTest
2 ) based on consensus predictions from composite models of differing

granularity and conformation basis. (All R2 values in non-bold fonts are from composites based on averages from 100 random training/test set

partitions)
a Replicate data for a similar estrogen receptor binding bioassay from the same data base, allowed calculation of an upper bound for modeling

accuracy by the method of Doweyko et al. [30]. The calculation yielded RTraining
2 = 0.89 as the highest average that can be consistently obtained

without over-fitting the data. All comparisons are based on RTest
2 , not RTraining

2 values. However, the best models in the RTraining
2 column are just

slightly higher than 0.89, near the upper limit of the Doweyko criterion for the NCTR EDKB estrogen data. This could be a statistical artifact or

could reflect somewhat greater accuracy for androgen compared to estrogen measurements
b All Y-axis RScrambling

2 values satisfy norms for modeling quality assurance. The low values indicate that these models could not be forced (for

example, by the choice of the number of Latent Variables, number of descriptors or other modeling parameters) to fit randomized data
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alignment for producing models with good statistical pre-

dictivity may be the appropriate conclusion for modeling

interactions between substrates and a promiscuous recep-

tor, a generally recognized characteristic of nuclear endo-

crine receptors, including the AR [29]. That inference

might not hold for substrate interactions involving less

promiscuous receptors. Also, the equivalence of models

using no systematic conformational adjustments may hold

only for data sets in which the strongly interacting mole-

cules (here, steroids and their derivatives) are fairly rigid

and their 3D conformations are invariant. The apparent

superiority or equivalence of 2D[ 3D predictions com-

pared to that of the other methods tested was an unantici-

pated result [28].

Table 1 also reports Consensus RTest
2 results between

(a) two Minimum Energy predictions of different granu-

larity, (b) a Minimum Energy composite model and a 50:50

Alignment model of similar granularity, (c) a four com-

ponent model (two Minimum Energy and two Alignment);

and (d) a three component model, one each from Global

Minimum Energy, Best-of-Each Alignment, and 2D[ 3D

Conversion (using MM via UFF with no alignment).

The (a) experiments averaging individual log(RBA)

predictions yielded RTest
2 = 0.62, an improvement of about

3.3 % relative to 0.60, the average of log(RTest
2 ) from the

two composite models. Improvement attributable to dif-

ferent granularities agreed with our earlier consensus

results for other biological endpoints [1, 3, 4, 22].

In (b), consensus predictions of models with similar

granularity but different molecular conformations yielded

RTest
2 = 0.58, a decrease of 0.9 % relative to the average of

corresponding statistics (0.585). In this case, minimum

energy and alignment conformations did not extract dif-

ferent structure–activity information from SDAR

descriptors.

In (c), consensus of four composite models, yielded an

RTest
2 = 0.64, an improvement of 15 % relative to the

average, 0.5825, of corresponding statistics.

In (d), a consensus from three composite models, one of

which was the best model using 2D[ 3D ChemSpider

conformations (RTest
2 = 0.61), gave RTest

2 = 0.65, an

improvement of 10.0 % relative to the average RTest
2 values

of the three composite models.

Improved statistical results by consensus may justify

modeling with conformations defined in more than one

way. The question remains whether it is worth the extra

time and effort. This question is compounded by the fact

that it is possible to interpret less than optimal SDAR

models, even ones built using the expedited 2D[ 3D

process. If the ability to infer association and discover

toxicophores is deemed more important than incremental

improvements in predictive accuracy, then increasing RTest
2 ,

even by up to 15 %, may be unnecessary.

Figure 5 is a plot of RTest
2 values for the 100 training/test

set partitions in the best models of each conformation

mode, separately ranked from highest to lowest. The

number of LVs used in optimal models plotted varied from

2 to 4. In each case, the range of RTest
2 values is quite broad,

typically between 0.85 and 0.20. Merely by selecting dif-

ferent training and test set partitions, it is possible to

generate models varying in predictivity from extraordi-

narily good to unacceptably poor. The plot shows similarity

in the optimal values predicted, albeit using different par-

titions. The two experiments using aligned conformations

were more sensitive to unfavorable data partitions as

shown by their lower trajectory on the right hand side of

the plots. This depressed trajectory shows why the average

RTest
2 values by alignment were lower than those of the

other two conformation strategies. A likely explanation is

that when molecules are aligned, any mistakes in alignment

show up as reduced predictive accuracy whenever most of

the misaligned molecules appear in the hold out test set.

The only objective way to make fair comparison of

results is to partition by an agnostic method (e.g., an RNG)

and report some measure of the resulting distributions’

central tendencies—averages or means, derived from an

identical sequence of partitions. We used 100 RNG parti-

tions here because our studies have shown that using fewer

than 100 yielded an inflated average RTest
2 , up to 10 %

higher, whereas averages from more than 100 yielded

approximately the same metrics and only increased

Fig. 5 Overlaid plots of ranked RTest
2 values. These are based on the

optimum granularity (bin dimensions giving the highest average

RTest
2 ) of each conformational variant. The four variants used symbols

blue diamond, red square, green triangle, or purple circle, respec-

tively, for conformations based on Global Minimum Energy (4 LV,

16 ppm, 1 Å), Alignment 50:50 (2 LV, 6 ppm, 1.0 Å), Best-of-Each

Alignment 70:30 (2 LV, 6 ppm, 1.0 Å), or 2D[ 3D conversion (3

LV, 8 ppm, 0.5 Å). For each series, test results varied greatly as a

function of the partition between training and test sets, which shows

why only average or median values would provide objective

comparison among experiments
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computational overhead [4]. When the RNG-generated

100-partition protocol was followed, and predictions for

each compound were averages calculated from hold-out

test set predictions, the resulting regression of average

predictions against experimental values closely approxi-

mated the corresponding predictive accuracy for a com-

pletely external test set [22]. Agreement between hold-out

test set and external test set predictive accuracy is the

appropriate goal because it shows that the value of the

model for predicting unknown compounds has been accu-

ratetly assessed.

As reported in Table 1, the best composite based only on

direct 2D[3D Conversion yielded RTest
2 = 0.61: e.g., it was

the most accurate of the composite models, an interesting and

unanticipated result. Figure 6 plots the predicted versus

experimental log (RBA) values for this 2D[3D conversion

model. The bins had granularity 8 ppm 9 1.5 Å.

Structure alert discovery from 2D > 3D models

The direct download models might not prove as useful for

discovering structure alerts, particularly in the interatomic

distance dimension, since some of the compounds will

have been modeled in local optimum conformations thus

presumably decreasing predictive accuracy for their struc-

tures (though decreased predictive accuracy was not

observed in the 2D[ 3D case modeled here).

The possibility of structure alert dicovery was explored

by extracting important bins from the best 2D[ 3D model

and overlaying them on the strongest androgen receptor

binder, dihydrotestosterone, an inflexible molecule (Kier

Index, 2.14). This way of working backward from impor-

tant bins to structural motifs has proved enlightening when

the conformations modeled were Global Minimum Energy.

The process of identifying and mapping important bins

from a model can be executed no matter the conforma-

tional mode, including 2D[ 3D. The relevant issue is

whether identified toxicity-associated substructures are

consistent with those determined in a systematic way and

also make sense in explaining, in this case, a molecule’s

AR binding.

Color coded to reflect the final ranking based on percent

occupancy, a few important bins from this model are

shown on the 3D map of QSDAR space (Fig. 7).

Fig. 6 Hold-out test set

predicted versus experimental

log(RBA) plot. Data are for the

2D[ 3D direct conversion

model with granularity

8 ppm 9 1.5 Å derived from

3LVs. Note that the spread of

predictions is similar across the

range of values, particularly that

the upper log(RBA) range is not

more accurately predicted than

the lower even though a higher

proportion of the more active

structures are inflexible. In these

models, most major excursions

from the regression line

overestimated androgenicity, an

error tendency useful for

conservative toxicity screening.

See ‘‘Discussion’’ section for

comments on the four data

points indicated by red

diamonds
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Important bins were used to discover toxicophores.

Select important bins were mapped onto dihydrotestos-

terone, the most strongly binding molecule, as shown in

Fig. 8. To facilitate the examination, we ranked the bins by

percent occupancy then, starting from the top, identified

every molecule in the training/test set in which that bin was

occupied. For Fig. 8, whenever dihydrotestosterone

appeared in the list for an important bin, that bin’s identity

was marked on the 2D dihydrotestosterone structure. Such

bins were represented as colored dotted or dashed lines.

The lines visualize many of the AR binding structure–ac-

tivity relationship components.

Via the model, any molecule’s estimated binding affin-

ity is calculated as the sum of products of its occupied bins

multiplied by their respective weights. It is not surprising

that strongest binding to AR occurs for a molecule, dihy-

drotestosterone, with 10 highly weighted and frequently

occupied (important) bins and a number of lesser bins

contributing to the estimated log(RBA) total. This fact

demonstrates the ability to deduce structural associations of

androgeneicity from 2D[ 3D SDAR models.

Investigation of 2D > 3D modeling for endpoints

other than AR binding

If acceptable predictive accuracy were observed for mod-

eling other endpoints, the 3D-QSDAR technique should be

practically adaptable for rapidly modeling large data sets.

We tested two other endpoints previously modeled using

Global Minimum Energy conformations to see whether

results by 2D[ 3D conformations were comparable in

predictive accuracy. For estrogen receptor (ER) binding,

the best 2D[ 3D model gave average RTest
2 = 0.55. This

compares to average RTest
2 = 0.56 for our best log(ER)

binding model where Global Minimum Energy was used

for the conformations [1]. The ER binding receptor and

data set were similar to the AR binding receptor and data

set modeled here. The Kier flexibility of the 130 estrogens

comprised 41 rigid (31.5 %), 58 partially flexible (44.6 %),

and 31 flexible (23.8 %) structures. The corresponding

percentages for the androgens were 32.9, 47.9, and 19.2 %,

respectively. Thus, as with the androgens, use of directly

downloaded 3D *.mol files worked as well as energy

minimized ones for the estrogens. This is consistent with

the strong binder rigidity hypothesis advanced in the pre-

ceding paragraph.

For acute toxicity, modeling 154 diverse structures, the

corresponding compound numbers and flexibility ranges

were 41 (26.6 %), 69 (44.8 %), and 44 (28.6 %). That is,

compared to the androgens and the estrogens, for the acute

toxicity data set the percentage of flexible structures was

higher and partially flexible or inflexible structures, lower.

The best 2D[ 3D acute toxicity model yielded an average

RTest
2 = 0.63. This compares to average RTest

2 = 0.77 for

the best PLS composite model of the same endpoint when

Global Minimum Energy conformations were used [4].

This shows that in some cases 3D-SDAR is sensitive to

conformation definition. This result is also consistent with

Fig. 7 Plot of 3D SDAR fingerprint space. This plot shows important

bins associated with AR binding from a 2D[ 3D composite model

with bin width dimensions 8 ppm 9 8 ppm 9 1.5 Å based on 3 LVs

giving average RTest
2 = 0.61. A bin is ‘‘important’’ only if it is both

highly weighted and frequently occurring as highly weighted within

the 100 randomized models
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the hypothesis that greater modeling vulnerability to con-

formation is observed when structures are flexible, when

the most rigid compounds are not necessarily the most

toxic, and/or interaction with more than one target affects

the toxic endpoint.

When using the 3D QSDAR method it appears that

2D[ 3D conformations may work as well as or better than

other methods for generating conformations when model-

ing endocrine system nuclear receptors such as AR and ER,

but more poorly for mechanistically ambiguous endpoints

like acute toxicity.

Discussion

Examination of Fig. 8 shows that molecular features asso-

ciated with a steroid backbone are important for dihy-

drotestosterone’s strong binding to AR. This is not surprising

since the majority of strong AR binders are steroids. Three of

the bins involve the same atom, the one having a chemical

shift (81.70 ppm) most affected by the presence of an adja-

cent hydroxyl substituent. Having such a chemical shift is not

a universal steroid characteristic. Similarly, aromaticity in

the steroid A ring, a common feature for steroidal estrogens,

is not associated with a strong androgen: for dihydrotestos-

terone the three important bins with a carbon in that ring

include 13C chemical shifts associated with sp3 hybridiza-

tion. It is significant that, though these bins were discovered

from a model based on less coherent conformations, all but

two of the important bins shown in Fig. 8 involve longer

distance atom pair relationships that for flexible compounds

can vary with 3D molecular conformation. In summary,

structure alerts discovered from the 3D-QSDAR composite

model reflect contributions from the molecular biology

influenced by the most frequent structural scaffold used in

model construction if that scaffold is also associated with

strong AR binding.

There was not an improvement in predictive accuracy

for models built on aligned conformations compared to

lowest energy conformations. Rather, the predictive accu-

racy of structurally aligned conformations, whether forced

to template using default parameters or using parameters

selected as optimal for their template, was measurably

poorer than that of any alternative conformational mode

tested. The 2D[ 3D model using neither global lowest

energy nor alignment gave improved predictivity. It

appears that 3D-SDAR, although its compounds are rep-

resented in 3D, is relatively insensitive to alignment and

energy optimization for modeling AR, ER, or similar

receptors modulating critical reproductive functions. A

significant benefit is that models built on 2D[ 3D con-

version take a small fraction of the model construction

work compared to energy-minimization or alignment-based

models, only 7 or 3 %, respectively.

It should not be a surprise that many natural substrates

involved in critical signaling pathways are built on fairly

rigid carbon scaffolds (i.e., fused ring systems, aromatic

rings). These are presumably less vulnerable to catastrophic

inactivation via enzyme/receptor mutation and more optimal

than highly flexible molecules for assuring proper fit (‘‘lock

and key’’ or ‘‘molded fit’’) between the substrate and the

corresponding active site [31]. Thus, it is possible that a

significant portion of processes critical for reproduction can

be successfully modeled using 2D[ 3D conformations.

The ability to create even an inferior but possibly accept-

able model (e.g., average RTest
2 = 0.55 for acute toxicity)

using 2D[ 3D conformations in 3–7 % of the time and apply

it for prediction of a very large number of compounds by

merely downloading their 3D *.mol files would facilitate

rapid screening of vast chemical libraries whenever the

training/hold-out-test set results warrant such an extension.

The RTest
2 response surfaces differ among energy-opti-

mized, template-aligned, and 2D[ 3D conformations. The

response surfaces for the two types of template-aligned

conformations were similar to each other and quite dif-

ferent from each of the other two. Significant differences in

the response surface contours suggest that the androgen

data set included enough flexible or partly flexible mole-

cules to assess the question of conformational mode

dependency in 3D-QSDAR.

From the best 2D[ 3D model we chose as an experi-

ment to omit four outliers, 16b-hydroxy-16-methyl-3-

methyl-estradiol (Compound 53), testosterone propionate

(Compound 137), l-norgestrel (Compound 118), and 2,4,5-

trichlorophenoxyacetic) acid (Compound 6). This improved

Fig. 8 2D structure of dihydrotestosterone (Compound-82). It is

annotated with 13C chemical shifts and overlaid with colored lines,

each indicating an important bin discovered from the 2D[ 3D

composite model based on 3 LVs and having granularity

8 ppm 9 1.5 Å and average RTest
2 = 0.61. In dihydrotestosterone,

for 10 important bins, one occurs in four instances and another in two.

Thus the estimated log(RBA) would be the sum of 14 weighted

contributions (plus a few more not shown from lower or negatively

weighted bins)

J Comput Aided Mol Des (2016) 30:331–345 343

123



average RTest
2 from 0.61 to 0.67, or 10 %. In the end, we did

not exclude outliers in order to improve statistics, but have

reported this result to demonstrate how sensitive overall

statistical predictivity is to the exclusion of a few poor-

quality predictions and how misleading results can be if

compounds are arbitrarily excluded, especially without

disclosure and without structural or at least statistical jus-

tification. For objectivity, having selected a test set, the

modeler should not exclude problem compounds merely to

inflate results.

RNG-generated data set partitions provided an objective

but conservative training/test selection basis and 20 %

hold-out, a rigorous validation standard. Thus, average

RTest
2 results from 100 partitions might have suffered when

naively compared to statistical figures of merit for models

not so rigorously validated. Such factors considered, results

in Table 1 compare favorably to other published AR QSAR

models. Loughney and Schwender, modeling 48 andro-

gens, achieved Leave-One-Out cross validation (LOO)

Q2 = 0.525 [32]. Modeling by CoMFA the same 146

compounds studied here and using the same experimental

AR binding data, Hong et al. obtained LOO Q2 = 0.571

[33]. In both cases, 3D-QSDAR produced more accurate

predictions under much more rigorous validation.

Recognized characteristics of CoMFA modeling are its

requirements for identification of bioactive conformers as

well as accurate alignment of ligands to each other, and

that these pose particular challenges with large scale

modeling projects estimating activity for huge compound

numbers [34]. The work presented here shows that 3D-

QSDAR, under some circumstances, can model as well as

or better than CoMFA without conformational adjustment

or receptor site alignment. The tedious nature of alignment

should be obvious from the experimental descriptions in

the subsection above dealing with conformational com-

parison experimental design. Avoiding this necessity while

still executing effective modeling represents a significant

technical advance and commends 3D-SDAR for large data

set modeling and screening.

Many nD-QSAR methods (e.g., Eigen Value Analysis)

cannot extract useful information for drug design and

toxicophore identification from PLS models [10]. This

work has demonstrated that information extraction related

to biological affinity is possible from 3D-SDAR PLS

models and that toxicity-structure associations can be

derived from such models.

Conclusions

For modeling interactions with AR, we observed no

improvement but rather deterioration in model predictive

accuracy associated with Template-Aligned conformations

compared to Global Minimum Energy conformations. On

the contrary, improved predictivity was obtained using

downloaded 3D conformations without systematic molec-

ular mechanics adjustment. Downloaded conformations

were acquired almost instantly and their use bypassed the

most time consuming and, for alignment, semi-subjective

portions of the modeling process. The different confor-

mation strategies reached optimal performance under dif-

ferent modeling parameters. Improved prediction accuracy

was typically obtained from consensus of models based on

different conformations, because different conformations

produced different outliers. Consensus improvements were

significant and might justify the extra effort required to

perform alignment. 3D-SDAR modeling identified struc-

tural alerts of androgen receptor affinity by mapping

important 3D-SDAR bins onto the chemical structures of

compounds with high affinity. This could have been done

using models built on any of the conformation bases but

was exemplified for 2D[ 3D.

We hypothesized which substrate and receptor charac-

teristics would allow for rapid and accurate modeling using

only 2D[ 3D mol files. 2D[ 3D direct download can be

implimented by testing the quality of models via a rigorous

20 % Hold Out and 100 random generated training/test set

partitions. If hold-out test set results are acceptable, there is

good likelihood that affinity predictions for unknown

compounds using their 2D[ 3D conformations will also

be as accurate.
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