
Citation: Zhao, Y.; Yang, H.; Wu, F.;

Luo, X.; Sun, Q.; Feng, W.; Ju, X.; Liu,

G. Exploration of N-Arylsulfonyl-

indole-2-carboxamide Derivatives as

Novel Fructose-1,6-bisphosphatase

Inhibitors by Molecular Simulation.

Int. J. Mol. Sci. 2022, 23, 10259.

https://doi.org/10.3390/

ijms231810259

Academic Editors: Gloria Castellano,

Francisco Torrens and Jesús

Vicente de Julián-Ortiz

Received: 14 August 2022

Accepted: 3 September 2022

Published: 6 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Exploration of N-Arylsulfonyl-indole-2-carboxamide
Derivatives as Novel Fructose-1,6-bisphosphatase Inhibitors
by Molecular Simulation
Yilan Zhao 1, Honghao Yang 1, Fengshou Wu 1, Xiaogang Luo 1,2,3, Qi Sun 1,3, Weiliang Feng 1,*, Xiulian Ju 1 and
Genyan Liu 1,3,*

1 Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical
Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of
Technology, Wuhan 430205, China

2 School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue,
Zhengzhou 450001, China

3 Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical
Industry, Wuhan Institute of Technology, Wuhan 430205, China

* Correspondence: fengweiliangax@126.com (W.F.); liugenyan@wit.edu.cn (G.L.)

Abstract: A series of N-arylsulfonyl-indole-2-carboxamide derivatives have been identified as potent
fructose-1,6-bisphosphatase (FBPase) inhibitors (FBPIs) with excellent selectivity for the potential
therapy of type II diabetes mellitus. To explore the structure–activity relationships (SARs) and the
mechanisms of action of these FBPIs, a systematic computational study was performed in the present
study, including three-dimensional quantitative structure–activity relationship (3D-QSAR) modeling,
pharmacophore modeling, molecular dynamics (MD), and virtual screening. The constructed 3D-
QSAR models exhibited good predictive ability with reasonable parameters using comparative
molecular field analysis (q2 = 0.709, R2 = 0.979, rpre

2 = 0.932) and comparative molecular similarity
indices analysis (q2 = 0.716, R2 = 0.978, rpre

2 = 0.890). Twelve hit compounds were obtained by virtual
screening using the best pharmacophore model in combination with molecular dockings. Three
compounds with relatively higher docking scores and better ADME properties were then selected
for further studies by docking and MD analyses. The docking results revealed that the amino acid
residues Met18, Gly21, Gly26, Leu30, and Thr31 at the binding site were of great importance for the
effective bindings of these FBPIs. The MD results indicated that the screened compounds VS01 and
VS02 could bind with FBPase stably as its cognate ligand in dynamic conditions. This work identified
several potential FBPIs by modeling studies and might provide important insights into developing
novel FBPIs.

Keywords: fructose-1,6-biphosphatase inhibitor; 3D-QSAR; virtual screening; molecular docking;
molecular dynamics

1. Introduction

Diabetes mellitus (DM) is one of the most common chronic diseases characterized by
hyperglycemia in both the fasting and postprandial states of patients [1]. In recent years,
the incidence rate of DM has increased exponentially worldwide, which has seriously
threatened human lives [2]. Although many effective drugs have been invented in the past
hundred years, the prevalence and number of patients with DM have still grown rapidly.
According to the International Diabetes Federation report, there were more than 430 million
diabetic patients worldwide by 2020, and more than 700 million by 2045 as predicted [3].
DM is divided into three different types: Type I (T1DM), type II (T2DM), and gestational
type. As calculated, T2DM accounts for more than 90% of all diabetes [4].

As for the pathogenesis of T2DM, the decrease in glucose utilization and the increase
in endogenous glucose production (EGP) lead to an increase in blood glucose levels.
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EGP in the liver plays an important role in the regulation of blood glucose levels and
involves two main processes: Glycogen decomposition and gluconeogenesis (GNG), in
which GNG contributes more to the increase in EGP [5,6]. Therefore, the inhibition of
GNG is a potential strategy for the treatment of T2DM [7–9]. The liver is the major organ
that conducts GNG which refers to the process of transforming simple non-carbohydrate
precursors such as lactic acid, glycerol, and alanine into glucose or glycogen. Some crucial
enzymes are involved in this process, including glucose-6-phosphatase (G6Pase), fructose-
1,6-bisphosphatase (FBPase), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate
carboxylase (PC) [10,11]. Liver FBPase has been identified as a promising target for the
development of new drugs for T2DM as its inhibition results in smaller adverse interactions
than other liver enzymes [12–14]. For instance, the inhibition of the enzymes PC and
G6Pase could lead to fatty liver and severe hypoglycemia symptoms [15].

Human liver FBPase catalyzes the second step of the GNG pathway by hydrolyzing
fructose-1,6-diphosphate (FDP) into fructose-6-phosphate and inorganic phosphate. It is
a homo-tetramer, and each monomer contains 337 amino acid residues (36.7 kDa). Two
types of binding sites are found in each monomer: An FDP binding site and an adenosine
monophosphate (AMP) allosteric binding site [16–18]. Besides, a binding pocket was
reported to be located at the interface of the two dimers. The AMP binding site has been
explored more than the other two sites since it is easier to be bound by small ligands
according to the previous reports [19,20].

At present, FBPase inhibitors (FBPIs) could be classified into three types according
to their different binding sites: Competitive inhibitors including FDP and endogenous
inhibitors that bind to the substrate-binding site, noncompetitive inhibitors that bind to the
AMP allosteric site, and anti-competitive inhibitors that bind to another allosteric site at the
subunit interface. The reported noncompetitive FBPIs involve purine, benzimidazole, thia-
zole, and indole derivatives [21]. Representative noncompetitive FBPIs include MB05032 (5-
[2-amino-5-(2-methylpropyl)-4-thiazolyl]-2-furanyl]phosphonic acid), MB06322 (L-analine,
N,N′-[[5-[2[amino-5(2-methylpropyl)-4-thiazolyl]-2-furanyl]phosphinylidene]bis-, diethyl
ester, CS-917), MB07803 (N,N′-[[5-[2-amino-5-(2,2-dimethyl-1-oxopropyl)-4-thiazolyl]-2-
furanyl]phosphinylidene] diethyl ester), and MDL-29951 (3-(2-carboxyethyl)-4,6-dichloro-
1H-indole-2-carboxylic acid) (Figure 1). CS-917 and MB07803 were successfully advanced
into clinical trials, and CS-917 is the prodrug of MB05032. The phase II study of CS-917
was halted in 2005 due to the toxicity of its metabolite and the adverse effect, which was
lactic acidosis in patients when it was administrated with metformin clinically. MB07803 is
currently in a phase II clinical trial [22–24]. The anti-competitive inhibitors mainly include
quinolone and anilinoquinazoline derivatives [25,26].

A novel series of N-arylsulfonyl-indole-2-carboxamide derivatives that are modified
from a potent FBPI MDL-29951 has recently been identified as noncompetitive FBPIs with
powerful inhibitory activity [27]. To better understand their structure–activity relationships
(SARs) and mechanism of action with FBPase, a systematical in silico study, including 3D-
QSAR modeling, pharmacophore modeling, molecular docking, and molecular dynamics
(MD) simulations, was carried out in this study. To explore novel FBPI hit compounds,
virtual screening was then performed using the constructed pharmacophore model, molec-
ular dockings, and ADME predictions. MD simulations were also applied to validate
the stability of the screened hits in the active site of FBPase. This study might provide
important information on the design of novel FBPIs and could nominate more potential
FBPI candidates for future studies.
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Figure 1. Chemical structures of representative FBPIs.

2. Results and Discussion
2.1. 3D-QSAR Model

A set of 85 N-arylsulfonyl-indole-2-carboxamide derivatives as FBPIs (Table S1) was se-
lected for 3D-QSAR modeling to investigate their inhibitory activity and structural features.
The statistical results of the internal and external validations of the constructed comparative
molecular field analysis (CoMFA) and comparative molecular similarity indices analysis
(CoMSIA) models are summarized in Tables 1 and 2, respectively. In the CoMFA model,
the obtained parameters (q2 = 0.709, R2 = 0.979, F = 391.215, rpre

2 = 0.932, RMSE = 0.136,
and MAE = 0.227) suggested that this model exhibited good predictive ability and stability.
The contribution rates of steric (S) and electrostatic (E) fields for this model were 72.0%
and 28.0%, respectively, indicating that substituent volumes might be the dominant factor
for the inhibitory activity of these sulfonamide FBPIs compared to the electrostatic effect.
Based on different combinations of S, E, hydrophobic (H), H-bond donor (D), and H-bond
acceptor (A) fields, fourteen CoMSIA models were generated, and the contributions of
different fields reflected their influence on the activity of compounds. The CoMSIA-SEDA
model was selected for further analysis due to its relatively better predictive capacity with
the following parameters: q2 = 0.716, R2 = 0.978, F = 255.130, rpre

2 = 0.8898, RMSE = 0.1730,
and MAE = 0.2227. Four force fields that constitute the CoMSIA-SEDA model had different
influences on the activity of compounds, and the contribution rates of S, E, D, and A fields
were 21.0%, 45.3%, 16.4%, and 17.3%, respectively. These data indicated that the E field had
a relatively higher influence on the activity in this model. As shown in Figure 2, the actual
and predicted activity of all compounds were near the trend line, indicating the rationality
and reliability of the 3D-QSAR models.



Int. J. Mol. Sci. 2022, 23, 10259 4 of 20

Table 1. Statistical results of the constructed 3D-QSAR models.

Model q2 ONC SEE R2 F
Field Contributions (%)

S E H D A

CoMFA S + E 0.709 8 0.097 0.979 391.215 0.720 0.280

CoMSIA

S + E + D + A 0.716 9 0.100 0.978 255.130 0.210 0.453 0.164 0.173
S + E + H + D + A 0.688 7 0.137 0.957 169.816 0.174 0.396 0.159 0.164 0.107

S + E + H + D 0.680 8 0.108 0.974 242.510 0.191 0.444 0.200 0.165
S + H + D + A 0.674 10 0.127 0.965 129.665 0.310 0.292 0.231 0.167
E + H + D + A 0.656 7 0.151 0.948 139.441 0.482 0.194 0.200 0.165
S + E + H + A 0.645 8 0.111 0.972 229.649 0.207 0.472 0.201 0.120

S + E + D 0.709 8 0.125 0.965 197.980 0.250 0.572 0.178
S + E + A 0.684 8 0.109 0.974 240.297 0.251 0.551 0.198
E + H + D 0.647 9 0.106 0.975 224.324 0.543 0.268 0.189
S + E + H 0.632 7 0.132 0.961 185.138 0.233 0.563 0.204
S + H + A 0.628 9 0.144 0.955 120.028 0.404 0.362 0.234
S + H + D 0.608 8 0.114 0.940 101.829 0.374 0.322 0.303

E + D 0.702 8 0.157 0.945 111.999 0.779 0.221
S + E 0.682 6 0.171 0.932 123.398 0.284 0.716

q2: Cross-validated correlation coefficient; ONC: Optimal number of components; SEE: Standard error of estimate;
R2: Non-cross-validated correlation coefficient; F: F-statistic values.

Table 2. External validation parameters of the 3D-QSAR models.

Parameters rpre
2 k k′ r2−r 2

0
r2

r2−r ’2
0

r2
rm

2 rm
′2 r 2

m RMSE MAE

CoMFA 0.932 0.994 1.006 0.001 0.003 0.901 0.879 0.890 0.136 0.227
CoMSIA 0.890 0.996 1.003 0.051 0.012 0.720 0.821 0.770 0.173 0.223

rpre
2:Predictive correlation coefficient; k (predicted vs. actual activities) and k′ (actual vs. predicted activities):

The slope of regression lines with a zero intercept; r2: The regression line coefficient of correlation for the test set
compounds; r0

2 (predicted vs. actual activities) and r0
′2 (actual vs. predicted activities): The correlation coefficient

of regression lines with a zero intercept; rm
2: Calculated by [r2 (1−(r2 − r0

2)1/2)]; rm
′2: Calculated by [r2 (1−(r2 −

r0
′2)1/2)]; r 2

m : The average value of rm
2 and rm

′2; RMSE: Root mean square error for the test set compounds; MAE:
Mean absolute error for the test set compounds.
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Figure 2. Scatter plots of actual vs. predicted pIC50 values for the training (black squares) and test set
(red dots) compounds by the CoMFA (A) and CoMSIA (B) models.

2.2. Contour Map Analysis

The CoMFA and CoMSIA contour maps are shown in Figure 3 using compound 75 as
a reference and provide useful information about the SARs of these sulfonamide FBPIs. In
the steric contour maps of the CoMFA and CoMSIA models (Figure 3A,B), the green area
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indicates that the introduction of bulky groups into this position might be beneficial to the
activity, whereas the yellow area represents the idea that bulky groups are not suitable for
increasing the activity. Large green contours were found to cover the whole R6-substituted
phenyl ring of compound 75 in both CoMFA and CoMSIA models, indicating that bulky
groups at the C4-position of the indole ring might be favorable for activity. This could
be proved by the fact that the inhibitory activities of compounds 17, 18, 25, and 14 with
N-aryl groups at the C4-position were higher than those of the corresponding compounds
76, 77, 80, and 85 with small groups in the same place, respectively. Another small green
contour was close to the R1 position in the CoMSIA model, implying that bulky groups
there might be beneficial for increasing the activity. It could be verified by the activity
orders of 3 (R1-3-methoxyphenyl) > 2 (R1-Ph) > 1 (R1-cPr) and 12 (R1-naphthalen-2-yl)
> 11 (R1-thiophen-2-yl) > 13 (R1-Ph). The large yellow areas were distributed near the
amide bond as a linker in the middle of the skeleton in both CoMFA and CoMSIA models.
Another yellow contour was found around the R6 position of the phenyl ring in the CoMFA
model, suggesting that bulky substituents there were not beneficial to activity, which could
be supported by the following activity order: 50 (R6-acetamido) > 51 (R6-3,5-dimethoxy) >
52 (R6-3,4,5-trimethoxy).
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Figure 3. Contour maps of the CoMFA and CoMSIA models using compound 75 as a reference.
(A) The steric field contour map of the CoMFA model. (B) The steric field contour map of the CoMSIA
model. (C) The electrostatic field contour map of the CoMFA model. (D) The electrostatic field
contour map of the CoMSIA model. (E) The H-bond donor field contour map of the CoMSIA model.
(F) The H-bond acceptor field contour map of the CoMSIA model.
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The electrostatic contour maps are shown in Figure 3C,D. The blue areas indicated
regions where more positively charged substituents are favored, and the red areas suggested
regions where more negatively charged substituents are favored. In both CoMFA and
CoMSIA models, two large blue contours were located near the N-aryl moiety of the indole
ring and the sulfonamide group, respectively, indicating that positively charged groups
there might be helpful for the binding affinity. Another medium blue contour was found
around the R2 and R5 positions of the indole ring in the CoMFA model, which could
be verified by the following activity orders: 3 (R2-H) > 46 (R2-Et) and 54 (R5-NO2) > 56
(R5-Cl). The red contours were mostly found in the R6 position of the phenyl ring in the
CoMSIA model, as observed in the activity orders: 3 (R6-3-OMe) > 17 (R6-3-Me) and 31
(R6-4-Cl-3-OMe) > 28 (R6-dimethoxy). Another red contour was close to the R3 position of
the indole ring in the CoMFA model, which could be supported by the activity orders: 34
(R3-F) > 35 (R3-Cl) and 38 (R3-F) > 37 (R3-H).

As exhibited in Figure 3E,F, the H-bond donor and H-bond acceptor contour maps
revealed the favorable locations where H-bond donors and H-bond acceptors might en-
hance inhibitory activity. Two cyan contours were exactly near the two imino groups of
compound 75, suggesting that imino groups as H-bond donors at this position might be
useful to improve the inhibitory activity. Two large magenta contours were close to the
R6 position of the phenyl ring and the sulfonamide group connected to the indole ring,
respectively, indicating that H-bond acceptors there might contribute to the activity. This
could be corroborated by the following activity orders: 16 (R6-3-OCF2H > 17 (R6-3-Me), 4
(R6-3-OMe) > 18 (R6-3-Et), and 54 (R6-OMe) > 48 (R6-Me).

In summary, the following structural features are considered to be conducive to the
inhibitory activity of FBPIs: (a) Positively charged and/or bulky groups at the R1 position;
(b) positively charged and/or small groups at the R2 and R5 positions; (c) negatively
charged and/or small groups at the R6 position of the phenyl ring; and (d) H-bond donors
in the linker moiety and H-bond acceptors at the R6 position of the phenyl ring.

2.3. Pharmacophore Modeling

To further explore the key structural features of these FBPIs, a cluster of eight com-
pounds with diverse structures and relatively high activities were selected to generate
pharmacophore models. The top ten models were listed in Table 3. MODEL _04 was
comprehensively considered to be the best model with the following parameters: SPECI-
FICITY = 4.327, N_HITS = 8, FEATS = 9, PATERO = 0, ENERGY = 68.89, STERICS = 2241.9,
HBOND = 716.2, and MOL_QRY = 184.60. The model was then validated by the decoy set
method to determine its quality and reliability. The calculated validation parameters were
EF = 13.741 (EF > 1) and GH = 0.675 (0.6 < GH < 0.8), suggesting that the best model was
able to distinguish active compounds from inactive compounds and could be used in the
following experiment on virtual screening.

Table 3. Statistical results of the ten top-scoring pharmacophore models.

Name SPECIFICITY N_HITS FEATS PARETO ENERGY STERICS HBOND MOL_QRY

MODEL_01 3.439 7 10 0 375.51 2500.6 730.9 213.08
MODEL_02 4.480 5 9 0 1066.94 2531.6 729.7 253.40
MODEL_03 3.410 7 9 0 31.81 2210.7 694.3 146.23
MODEL_04 4.327 8 9 0 68.89 2241.9 716.2 184.60
MODEL_05 4.113 7 10 0 40.75 2092 694.8 210.56
MODEL_06 3.475 5 10 0 57.5 2456.3 688.6 195.00
MODEL_07 4.661 8 9 0 210.92 2459.1 728.9 171.08
MODEL_08 4.001 6 12 0 714.62 2523.8 652.8 296.56
MODEL_09 4.328 7 9 0 487.87 2358 734.5 172.41
MODEL_10 4.681 7 8 0 173.61 2459.1 716.6 107.49
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Moreover, this model has nine pharmacophore features, including three hydrophobic
centers (HYs), two H-bond donors, three H-bond acceptors, and one negative center
(NC). The hydrophobic centers were distributed in the indole ring and the aromatic ring,
two H-bond donors were distributed in the imino group, three H-bond acceptors were
distributed in the carbonyl group and the sulfonyl group, and the negative center was
distributed in the imino group of the sulfonamide moiety. The structural features from
the best pharmacophore model in combination with those from the 3D-QSAR analysis are
summarized in Figure 4.
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2.4. Virtual Screening

The virtual screening process is displayed in Figure 5 and mainly comprises four
rounds of screenings. In the first-round screening, the best pharmacophore model (MODEL_04)
was primarily transformed into a UNITY search query for screening against the ZINC15
database that contained approximately 20 million compounds. To assess the drug-like prop-
erties of the compounds in the database and whether they meet the pharmacophore features
concluded from the best pharmacophore model, the ZINC15 database was screened by the
Flex search query with the specified query option of using Lipinski’s rule of five. Through
this step, 24,450 compounds were obtained in the UNITY search.

The QFIT value reflects the consistency of compound structures with the pharma-
cophore features. A high QFIT value indicates a high matching degree of a compound
with the best pharmacophore model. Thus, in the second-round screening, a high QFIT
standard (QFIT > 65) was applied, and 678 compounds were selected in this step. Then,
the third-round screening was performed using molecular docking. The screened 678
compounds from the last step were docked into FBPase by the Surflex-Dock method. The
docking score > 5 was the range of the docking scores of these highly active N-arylsulfonyl-
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indole-2-carboxamide derivatives (Table S1) and was set as the screening parameter, which
might help select compounds with ideal activity. Twelve compounds with a docking score
> 5 were obtained in this step. Their chemical structures and docking scores are listed in
Table S2. These compounds all contained a sulfonamide group as a linker moiety of two
aromatic rings. The indole rings of several compounds were connected to the sulfonamide
groups, and the substituents on the benzene rings were negatively charged and/or small
groups. These structural features were consistent with the results of the SAR analysis.

Next, in the fourth-round screening, the two web servers SwissADME and pkCSM
were used in a complementary way to predict the ADME properties of these twelve com-
pounds to evaluate whether they could be further developed as drug candidates. The
physiochemical properties, water solubility, lipophilicity, gastrointestinal (GI) absorption,
and the blood–brain barrier (BBB) penetration of these compounds were predicted by
SwissADME. The drug-like properties and synthetic accessibility (SA) were predicted by
pkCSM. The selected 12 compounds were subjected to the prediction of their pharmacoki-
netic properties, and only three compounds VS01 (ZINC code: 15733809), VS02 (ZINC
code: 02961023), and VS03 (ZINC code: 02961075) (Table 4) satisfied all the following con-
ditions: 150 < molecular weight (MW) < 500 g/mol; 20 < total polar surface area (TPSA) <
130 Å2; H-bond donors < 5; H-bond acceptors < 10; no violation in drug-like properties [28].
Besides, the screened three compounds were predicted to have good lipophilicity and
high GI absorption. They could not penetrate the BBB and could be easily synthesized
with low synthetic accessibility (SA) scores [29]. The prediction data of compounds 75,
VS01, VS02, and VS03 are summarized in Table S3. The other compounds in Table S2
were eliminated due to their poor lipophilicity, low GI absorption, or some violations in
drug-like properties.
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Table 4. Chemical structures and docking scores of compounds 75, 86, and the screened hits (VS01,
VS02, and VS03).

No. Structure Total Score

75
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2.5. Molecular Docking

The crystal structure of FBPase in complex with compound 75 was resolved in 2020
(PDB code: 6LW2) [27]. In this work, the co-crystallized compound 75 was extracted and
then redocked into FBPase by the Surflex-Dock Geom module in SYBYL-X 2.1 software
to validate the docking method. The root mean square deviation (RMSD) between these
two docking conformations was 0.62 Å, which was less than 2.0 Å, demonstrating that
the docking method was reliable. The 86 N-arylsulfonyl-indole-2-carboxamide derivatives
were docked into the AMP site of FBPase using the same method. The docking scores of
these compounds were found to be basically consistent with their actual activities. The
initial and redocked conformations of compound 75 are shown in Figure 6A. Five H-bonds
were formed between compound 75 and residues Gly26 (Gly26-O . . . HN, 2.1 Å), Leu30
(Leu30-NH . . . O=S, 2.3 Å), and Thr31 (Thr31-NH . . . O=S, 1.9 Å; Thr31-OH . . . O=C, 1.7 Å,
Thr31-OH . . . O=S, 2.8 Å). These H-bonds might be significant for the stable binding of
compound 75 in FBPase. Besides, two hydrophobic interactions existed between the indole
ring and phenyl ring of 75 and the alkyl chains of Gly21 and Leu30, respectively, further
enhancing the protein–ligand binding. These interactions were supported by previous
reports [18,30], which also confirmed that this docking method was accurate. Then the
screened compounds were docked into the AMP site of FBPase to explore their binding
modes and key interactions of these FBPIs with FBPase. The structure of FBPase and the
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AMP binding site are shown in Figure S1. As shown in Figure 6, the FBPIs were inserted
into the same binding pocket composed of amino acid residues Met18, Gly21, Gly26, Leu30,
and Thr31. Their binding modes were basically consistent.
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As shown in Figure 6B, VS01 formed H-bonds with Leu30 (Leu30-NH . . . O=S, 2.2 Å)
and Thr31 (Thr31-NH . . . O=S, 1.8 Å; Thr31-OH . . . O=S, 2.8 Å). Another different H-bond
existed between VS01 and Met18 (Met18-O . . . HN, 3.1 Å). Two hydrophobic interactions
were also found between the indole ring and phenyl ring of VS01 and the alkyl chains of
Gly21 and Leu30, respectively. Compared to VS01, VS02 (Figure 6C) formed equivalent
H-bond interactions with Leu30 (Leu30-NH . . . O=S, 2.2 Å) and Thr31 (Thr31-NH . . .
O=S, 1.8 Å; Thr31-OH . . . O=S, 2.8 Å). VS03 (Figure 6D) formed H-bond interactions with
Leu30 (Leu30-NH . . . O=S, 3.6 Å) and Thr31 (Thr31-NH . . . O=S, 1.3 Å; Thr31-OH . . . O=S,
1.6 Å). The H-bond between the sulfonyl group of VS03 and the imino group of Leu30
with a length of 3.6 Å was longer than those of VS01 and VS02, which might explain the
weaker H-bond strength and its lower docking score. The same hydrophobic interactions
were found between the aromatic rings of both VS02 and VS03 and the residues Gly21
and Leu30. The above-mentioned results revealed that some key amino acid residues in
the binding pocket, including Gly26, Leu30, and Thr31, were crucial for the formation of
H-bond interactions with these FBPIs. The hydrophobic interactions also mattered to the
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effective binding between these FBPIs and the residues. Besides, Met18 was found to be a
noticeable residue that formed an H-bond with VS01 in addition to those with Leu30 and
Thr31, which might explain its higher docking score than VS02 and VS03. The docking
results showed that these screened hits could bind to the protein effectively and might
provide some reference for developing novel FBPIs.

2.6. MD Simulation

Molecular docking and MD simulation have been regarded as two complementary
strategies to identify the molecular interactions between ligands and proteins [31]. By
performing MD simulations, the rationality of docking results could be validated, and
the dynamic behavior of molecular arrangements could be probed at different timescales,
allowing the identification of conformational changes in ligands at the active site of the
protein [32]. The tetrameric structure of FBPase was used in the MD simulations. To
examine the stability of the screened hits in complex with FBPase in a dynamic environment,
50 ns MD simulations were performed on the following complexes: FBPase without am
inhibitor, FBPase-75, FBPase-86, FBPase-VS01, and FBPase-VS02. Compound 86 was used
as a negative control to validate that the MD simulations could identify the compounds
with good binding affinities. Since VS01 had an apparently higher docking score and VS02
had a slightly lower score than compounds 75, VS01 and VS02, instead of VS03, were
tested by MD simulations on their binding stability with FBPase.

The 50 ns simulation of the FBPase-75 complex was extended to 150 ns, and the results
are displayed in Figure S2. The results of 150 ns were very similar to those of the 50
ns simulation, indicating that 50 ns simulation might be enough for the FBPase protein.
Thus, we finally chose to conduct 50 ns MD simulations for these systems. In order to
improve the quality of the MD simulations, triplicate runs of 50 ns were performed on the
four complexes: FBPase-75, FBPase-86, FBPase-VS01, and FBPase-VS02, respectively. The
obtained results of the triplicate runs for each system are demonstrated in Figures S3–S7.
Some dynamic parameters, including the RMSD, root mean square fluctuation (RMSF),
and gyration radius (Rg), were calculated during the simulations to evaluate the binding
stability of these ligand–protein complexes. The RMSD value revealed the changes in the
distance of atoms from their original positions, which reflected the stability of different
objects in the system [33]. The RMSF values of ligands in the complex reflect the change
in the position of each atom. For different atoms, a higher RMSF value implies a greater
position change and greater flexibility in the binding pocket during the simulation. The
overall fluctuation trend reflects the binding stability of the ligand. The RMSF value of the
chain residues was adopted to measure the degree of amino acid residue fluctuation and
flexibility in the protein. The Rg value was applied to illustrate the tightness of the protein
throughout the simulation. As demonstrated in Figure S5, the third simulation (MD3) of
each system with the most stable trajectories. which could be exhibited by the relatively
lowest RMSF value of the ligand among the triplicate simulations for each system, was
chosen for further analysis.

As shown in Figure 7A, the RMSD values of the protein backbone in these systems
had fluctuations in the first 30 ns and became stable at 0.2 nm after 30 ns. The RMSD values
of the three ligands reached convergence after 30 ns. The RMSD values of VS01 and VS02
showed similar fluctuations in the first 30 ns and were stable after 30 ns. As displayed
in Figure 7B, the RMSD value of compound 75 had greater fluctuations in the first 30 ns,
implying that it underwent bigger conformational changes in this period than VS01 and
VS02. The RMSD values of compound 86 exhibited continuous fluctuations during the
whole simulation, which indicated that the system of compound 86 in the complex with
FBPase was less stable than the others. What is more, VS01 reached equilibrium at the
lowest RMSD value of 0.24 nm among the three systems, which indicated that VS01 might
bind more stably to the receptor than the other two ligands.
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Figure 7. The MD results of the five complex systems: apo FBPase (purple), FBPase-75 (magenta),
FBPase-86 (green), FBPase-VS01 (orange), and FBPase-VS02 (blue). (A) The RMSD of the backbone
atoms of the proteins. (B) The RMSD of the ligands (75, 86, VS01, VS02). (C) The RMSF of the Chain
A residues. (D) The Rg of the proteins.

As shown in Figure 7C, the fluctuation magnitude of the Chain A residues in the
three systems was approximately the same, suggesting that the ligands in these systems
had similar binding patterns with FBPase. The key residues from Met18 to Thr31 at the
binding pocket exhibited low flexibility with RMSF values of less than 0.2 nm. As displayed
in Figure 7D, the Rg values maintained a stable state between 3.38 and 3.43 nm without
significant changes in the five systems. Comparing the results of the apo and inhibitor-
bound FBPase complexes, both the RMSD and the Rg of the protein backbone reached
equilibrium at relatively lower values in the inhibitor-bound FBPase systems than in the
apo FBPase system, indicating that the binding of inhibitors enhanced the stability of the
systems.

The initial and final binding conformations of the compounds were retrieved from the
MD trajectories at 0 ns and 50 ns, respectively. As shown in Figure 8, compounds 75, VS01,
and VS02 displayed a small conformational change with slight rotations of some bonds.
By contrast, compound 86 exhibited a relatively conformational change during the MD
simulation, which indicated the less stable binding of compound 86 with FBPase compared
with the other three compounds.

The binding free energies of the three systems were calculated by the MM-PBSA
method to analyze the binding affinities of these compounds. As shown in Table 5, the
binding free energies of compounds 75, 86, VS01, and VS02 in FBPase were−82.73,−42.87,
−107.42, and −97.40 kJ/mol, respectively. The results implied that VS01 and VS02 might
interact with FBPase with stronger binding affinities than compounds 75 and 86, and
VS01 might have the strongest binding ability. The van der Waals energy of VS01 was
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significantly lower than those of compounds 75, 86, and VS02, which might result in their
more favorable binding free energies. Besides, the polar solvation energy of compound
75 was relatively high, which was unfavorable for the total binding free energy. Hence,
the van der Waals and polar solvation energies made great contributions to the binding
affinities of these compounds. According to these analyses, the screened hits VS01 and
VS02 might be potential candidates for the development of FBPIs.
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Table 5. Binding free energies (kJ/mol) of the screened hit compounds (VS01 and VS02) in FBPase
using compounds 75 and 86 as reference molecules.

System FBPase-75 FBPase-86 FBPase-VS01 FBPase-VS02

van der Waal energy −143.12 ± 7.43 −74.52 ± 4.41 −181.10 ± 5.94 −145.09 ± 12.29
Electrostatic energy −68.41 ± 8.80 −34.62 ± 5.47 −61.10 ± 9.40 −46.80 ± 13.98

Polar solvation energy 145.28 ± 10.45 81.69 ± 7.72 153.16 ± 13.12 111.41 ± 23.14
SASA energy −16.49 ± 0.96 −15.42 ± 3.13 −18.38 ± 0.99 −16.92 ± 0.83

Binding free energy −82.73 ± 8.60 −42.87 ± 6.31 −107.42 ± 10.48 −97.40 ± 16.10
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3. Materials and Methods
3.1. Dataset and Optimization

The chemical structures and pIC50 (-logIC50) values of 85 N-arylsulfonyl-indole-2-
carboxamides as novel FBPIs are shown in Table S1 [27]. Compounds 75 (IC50 = 0.029 µM)
and 86 (IC50 > 50 µM) were used as positive and negative controls in this study, respectively.
The 3D structures were constructed by the sketch module of SYBYL-X 2.1 software (Tripos
Inc., St. Louis, MO, USA) and were then optimized by the Tripos force field using Gasteiger–
Hückel charges with a gradient of 0.0005 kcal/(mol·Å) and a maximum iteration number
of 10,000. The other parameters were set as default [34]. The optimized 85 compounds
were stored in a new database.

3.2. 3D-QSAR Study

The dataset of the 85 N-arylsulfonyl-indole-2-carboxamides was subjected to molecular
alignment using compound 75 as a template as it had the second-lowest IC50 value and
the best bioavailability among all the molecules. The molecular alignment of the database
was conducted by the alignment tool in SYBYL-X 2.1 software. By selecting the common
skeleton (shown in blue color) of these structures on the template molecule, the molecules
were superimposed onto the selected common skeleton automatically. The alignment result
was displayed in Figure 9. The 85 compounds in the aligned database were then randomly
divided into a training set of 61 compounds and a test set of 24 compounds. The training
set molecules were utilized to generate 3D-QSAR models, and the test set molecules were
used to further validate the prediction ability of the constructed models.
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In this study, the 3D-QSAR models were constructed using the CoMFA and CoMSIA
methods by the QSAR analysis tool in SYBYL-X 2.1 software [35]. First, the CoMFA and
CoMSIA properties of the training set were calculated, respectively. The CoMFA model
involves two different fields: Steric and electrostatic fields. The CoMSIA model involves
five different fields, including steric, electrostatic, hydrophobic, H-bond donor, and H-bond
acceptor fields, and the CoMSIA model could be generated using different combinations
of these five fields. The constructed CoMFA and CoMSIA models were transformed to
contour maps, which were used for the SAR analysis. To accomplish the constructions of
the CoMFA and CoMSIA models, the training set was subjected to the partial least squares
(PLS) regression analysis. The optimal number of compounds (ONC) was first set to 10
as a test value in the Leave-one-out (LOO) cross-validation. Then the actual ONC and
cross-validated coefficient (q2) were calculated by the LOO cross-validation. q2 is defined
by the following formula:

q2 = 1− ∑
(
rpre − rexp

)2

∑
(
rexp − rmean

)2 (1)
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in which rexp, rmean, and rpre
2 represent the experimental, mean, and predicted pIC50 values,

respectively.
Then the ONC was set to the actual ONC, and the generated models were validated

by the calculated non-cross-validation parameters, including the squared correlation coeffi-
cient (R2), standard error of estimate (SEE), and Fischer test value (F). The above-mentioned
parameters were internal validation parameters. A reliable CoMFA or CoMSIA model
should satisfy the following internal parameter ranges: q2 > 0.5, R2 > 0.6, SEE << 1, and
F > 100 [36]. Subsequently, external validation was conducted to further examine the
quality of the constructed models. The activities of the test set compounds were predicted
by the constructed models, and the predicted pIC50 and actual pIC50 values of the test
set compounds were used to perform the linear regression analysis and generate scatter
plots. The external validation parameters mainly involve k, k′, r2, r0

2, r0
′2, rm

2, rm
′2, ∆rm

2,
rm2, rpre

2 , and root mean square error (RMSE), which were calculated in our previous
reports [37–39]. The constructed 3D-QSAR models are judged to have good prediction
ability by the following requirements: (r2 − r0

2)/r2 < 0.1, 0.85 ≤ k (or k′) ≤ 1.15, ∆rm
2 < 0.2,

rm2 > 0.5, and rpre
2 > 0.5 [40].

3.3. Pharmacophore Modeling

The pharmacophore model was constructed using the Genetic Algorithm with Linear
Assignment of Hypermolecular Alignment of Database (GALAHAD) module of SYBYL-X
2.1 software (Tripos Inc., St. Louis, MO, USA), and 20 models with varied parameters
including SPECIFICITY, N_HITS, STERICS, and ENERGY were firstly generated. The phar-
macophore model suitable for screening should basically meet the following requirements:
SPECIFICITY > 4; N_HITS equals the number of compounds used for the construction;
relatively low energy indicating stability. After comprehensively evaluating the parameters
generated by the 20 models, the model with the most favorable values was chosen for
further analysis. A decoy set method was then applied to evaluate the quality of the
model. The decoy set in this study was composed of 1519 compounds downloaded from
the DUD-E database (http://dud.docking.org/, accessed on 16 April 2021) [41] and 77
active compounds from Table S1 except for the compounds used for the construction of
the model. The enrichment factor (EF) and Güner-Henry (GH) Score were used to judge
the reliability of the model. When the values of EF and GH Score meet EF > 1, 0.6 < GH
< 1, the model could be deemed viable for further study [42,43]. EF and GH are defined
by the following formulas (2) and (3), in which Ha, Ht, A, and D represent the number of
true positive compounds in the hit list generated by the pharmacophore-based screening,
the number of all compounds in the hit list, the number of true positive compounds in the
database, and the number of all compounds in the database, respectively.

EF =
Ha/Ht

A/D
(2)

GH =

[
Ha(3A + Ht)

4Ht A

](
1− Ht − Ht

D− A

)
(3)

3.4. Molecular Docking

Molecular docking is an in silico method employed to foresee the binding modes of
molecules with a receptor [44]. In this study, the crystal structure of human liver FBPase
(PDB code: 6LW2) in a complex with compound 75 was used for the dockings. This
structure showed that N-arylsulfonyl-indole-2-carboxamides bind to the AMP allosteric
site of FBPase. Some pretreatments of the protein were performed before the dockings,
including hydrogen addition, charge addition, repair of side chains, water removal, and the
extraction of co-crystallized ligand. The docking site was generated using the ligand-based
mode with a default threshold of 0.5 Å by the Surflex-Dock Geom module in SYBYL-X 2.1
software. The co-crystallized ligand of FBPase was first redocked into the binding pocket

http://dud.docking.org/
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to examine whether the docking method was reasonable. The conformational distance
between the redocked and original ligands was evaluated by the RMSD values. RMSD
< 2.0 Å is regarded as a standard of the dependability of the docking method [45]. The
selected FBPIs were then docked into the binding site using the same docking method,
and a total of 20 different conformations were generated for each compound. The docking
conformation with the highest total score was picked for further analysis.

3.5. Virtual Screening

In this study, the screening process was virtual and mainly involved four rounds of
screenings. The first-round screening aimed to select the compounds that matched the
pharmacophore features of the best pharmacophore model and had drug-like properties.
The best pharmacophore model (MODEL_04) was first converted into a UNITY search
query by the UNITY search system in SYBYL-X 2.1 software. The screening was performed
against the ZINC15 purchasable database (http://zinc.docking.org, accessed on 2 June
2021). In order to eliminate the molecules inappropriate for being developed as drug
candidates and narrow the scope of screening, Lipinski’s rule of five was used for the
preliminary screening against the database. To start the search, the query type was set as a
Flex Search and the query option was specified by activating the option of Lipinski’s rule
of five. Then the molecules in the database that mismatched the pharmacophore model
and failed to obey Lipinski’s rule of five were filtered out simultaneously. The compounds
that fitted the pharmacophore model and satisfied Lipinski’s rule of five were retrieved
from the database.

After the first round of screening, a column of QFIT parameters was loaded with the
screened compounds. QFIT is a value between 0 and 100, where 100 is the best. It represents
how close the ligand atoms of the compounds match the query target coordinates. The
QFIT value is not specified and is generally set to a high value (usually more than 50) to
reduce the number of hits and to ensure the screened compounds have a higher matching
degree with the pharmacophore characteristics [46]. In this study, the minimum standard
of QFIT was first set to 50, and 5728 compounds with QFIT > 50 were obtained. In order
to improve the screening efficiency and further exclude compounds, the minimum QFIT
value of these compounds was raised to 65. Therefore, the compounds with a high QFIT
value (QFIT > 65) were finally selected by the second-round screening. In the third-round
screening, the compounds with QFIT > 65 were docked into FBPase by the Surflex-Dock
method. The docking scores of the 85 compounds (Table S1) with IC50 values < 1 µM all
yielded docking scores of more than 5. The compounds with docking scores > 5 were
selected for potentially strong activities. Finally, in the fourth-round screening, the selected
compounds were subjected to the predictions of their physiochemical and pharmacokinetic
properties by the two web servers: SwissADME (http://www.swissadme.ch, accessed on 2
June 2021) and pkCSM (http://structure.bioc.cam.ac.uk/pkcsm, accessed on 16 June 2021).
The compounds that obey all the following basic principles, including appropriate MW
and TPSA, no more than five H-bond donors and ten H-bond acceptors, and no Lipinski
violation, were selected for further study [47,48].

The hit compounds with desirable pharmacophore compatibility, preferable docking
scores, and ideal prediction results of ADME properties were further studied in their
mechanism of action by molecular dockings and their binding stability with FBPase by MD
simulations. The molecular dockings helped identify the reasonable binding conformation
of each screened hit by comparing it with the co-crystallized compound 75. The key
residues in the binding site of FBPase and the interactions that might influence the activities
of the compounds were also revealed, which might explain the fundamental reason for the
different activities. The binding stability of each compound was reflected by the fluctuation
of various parameters in the MD simulations and the conformation comparisons of the
compound before and after the simulations. Smaller changes indicated a more stable
binding of the compound with FBPase.

http://zinc.docking.org
http://www.swissadme.ch
http://structure.bioc.cam.ac.uk/pkcsm
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3.6. MD Simulation

To examine the dynamic stability of the screened hits in the receptor, 50 ns MD simula-
tions were performed on the docked conformers in complex with URAT1 by GROMACS
2019.5 software (Uppsala University, Stockholm University, and the Royal Institute of
Technology, Sweden). The pdb2gmx tool was subjected to generating the topology files of
the protein under the AMBER99SB force field [49]. The ACPYPE tool was used to generate
the topology files of the ligands optimized by the Tripos force field in SYBYL-X 2.1 software
before the MD simulations. The complexes were then placed in a cubic box with a radius of
12 Å filled with water molecules, and six chloride ions were added to neutralize the systems.
Then the energy minimizations of the systems were performed by the steepest gradient
descent method to converge at an energy tolerance of 10 kJ/mol [50,51]. After that, the
NVT and NPT equilibrations of 100 ps were reached at the temperature of 300 K and under
the pressure of 1 atm. After MD simulations, some parameters including RMSD, RMSF,
and Rg were measured using inbuilt commands to analyze the stability changes in the
protein during the simulation process. In addition, the binding free energy of each ligand
in the protein was calculated using the molecular mechanics Poisson–Boltzmann surface
area (MM-PBSA) method from the equilibrium trajectory of the last 5 ns in the whole MD
simulation, which contained 50,000 snapshots [52–54]. ∆Gbind is calculated according to the
following equation:

∆Gbind = Gcomplex − Greceptor − Gligand (4)

where Gcomplex, Greceptor, and Gligand are the calculated Gibb’s free energy of the ligand-
receptor, the receptor, and the ligand, respectively. The free energies for each of these terms
were estimated as the sum of the four terms below:

G = EMM + Gpsolv + Gnpsolv − TSnmode (5)

where EMM is the molecular mechanics energy calculated as the sum of the molecular
internal energy, the electrostatic, and van der Waals interactions. Gpsolv and Gnpsolv are the
polar and nonpolar contributions to the molecular solvation energy, respectively. T is the
absolute temperature, and S is the entropy of the molecule estimated by normal-mode
analysis.

4. Conclusions

In this study, a series of N-arylsulfonyl-indole-2-carboxamide derivatives as novel
FBPIs were studied to identify their SARs and mechanism of action by systematically
computational studies. The SARs of these compounds were revealed by the constructed 3D-
QSAR models and the pharmacophore model from the perspective of molecular modeling.
The sulfonamide group as a linker could serve as an H-bond donor and/or receptor. The
negatively charged and/or small substituents on the benzene ring and the positively
charged and/or small substituents on the indole ring might be helpful for the inhibitory
activity. The indole moiety and the positively charged and/or bulky substituents connected
to the linker could form hydrophobic interactions with relative amino acids in the binding
pocket of FBPase, which might be significant for the inhibitory activity of these derivatives
against FBPase. Further modifications to the N-arylsulfonyl-indole-2-carboxamide scaffold
were necessary, and the concluded SARs could provide some guidance for the design of
novel FBPIs.

Three hit compounds (VS01, VS02, and VS03) were obtained by systematical virtual
screening methods, including pharmacophore- and docking-based screenings as well as
ADME predictions. The docking results indicated that VS01, VS02, and VS03 interacted
with FBPase via a similar pattern with compound 75. The amino residues Met18, Leu30,
and Thr31 were crucial for the hydrogen-bond formations with FBPIs, and Gly21 and
Leu30 were essential for the hydrophobic interactions with the aromatic rings of FBPIs. The
MD simulations indicated that VS01 and VS02 could bind stably to the receptor without
significant conformational changes in the binding pocket during the dynamic simulation.
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VS01 had the most potential to be a highly active inhibitor in the screened compounds
due to its lowest binding energies as calculated. These screened compounds remain to
be synthesized and examined for their inhibitory activity against FBPase. We expect that
these results will be helpful for the rational design of novel FBPIs, and the screened hit
compounds might be useful in the further development of novel FBPIs.
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com/article/10.3390/ijms231810259/s1.
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