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Abstract

Analysis of patient genomes and transcriptomes routinely recognizes new gene sets associated 

with human disease. Here we present an integrative natural language processing system which 

infers common functions for a gene set through automatic mining of the scientific literature with 

biological networks. This system links genes with associated literature phrases and combines these 

links with protein interactions in a single heterogeneous network. Multiscale functional 

annotations are inferred based on network distances between phrases and genes and then 

visualized as an ontology of biological concepts. To evaluate this system, we predict functions for 

gene sets representing known pathways and find that our approach achieves substantial 

improvement over the conventional text-mining baseline method. Moreover, our system discovers 

novel annotations for gene sets or pathways without previously known functions. Two case studies 

demonstrate how the system is used in discovery of new cancer-related pathways with ontological 

annotations.
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1. Introduction

With significant advances in ‘omics technologies, it has become increasingly routine to 

identify functionally related sets of genes based on different biological patterns. For 

example, a gene set may be computationally derived based on differential expression1,2, 

based on associations to the same phenotypes3,4, or based on a high density of molecular 

interactions among the genes5–8. Because of their functional relationships, these gene sets 

can often be interpreted as cellular pathways or protein complexes, enabling a systems 

approach to studying human diseases beyond individual genes2–5.
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Given a gene set of interest, a critical task is to learn what is its overall function as a pathway 

or complex in the cell. There are two major approaches to address this task. The first 

approach is to search for significant overlap with known pathways in manually curated 

databases such as the Gene Ontology (GO)9 and the Kyoto Encyclopedia of Genes and 

Genomes (KEGG)10. However, it is very likely that little or no overlap can be found due to 

the limited coverage of these databases, especially when querying with gene sets related to a 

rare disease.

The second approach is to search for scientific articles that describe each gene in the set, and 

then summarize these articles to describe the aggregate function of the gene set. Manually 

performing this process requires substantial domain knowledge and does not scale to large 

pathways. While automatic summarization of free text has been proposed by many text-

mining methods11–12, these methods can describe only one gene rather than a gene set. In 

particular, automatic summarization for a gene set requires addressing several new 

challenges. First, the increased number of free text articles introduces diverse and noisy 

annotations compared to individual genes. Second, the relationship between pathway 

functions and gene interactions should be considered, since genes can perform very different 

functions when participating in different biological processes. Third, literature contains 

many potential and diverse function annotations, only some of which are relevant. Thus 

researchers need systematic approaches to filter, organize and display the most useful 

information in literature to better understand the biological pathways represented by a gene 

set. Many related approaches mine literature data to study the functions of a group of genes 

together. CoCiter tests the significance of co-citation of a gene set either from a user-defined 

queried gene sets or a known pathway13. Since the functions of this gene set are provided by 

user, CoCiter is not able to automatically mine new functional annotations to describe the 

gene set. Martini is a gene set comparison tool which assesses the similarity of two gene sets 

by using keywords extracted from Medline abstracts14. Although gene sets are compared 

using keywords, the functional description for each gene set is not explicitly generated.

Here we develop a novel approach to automatically mine functional annotations of pathways 

from a large corpus of literature supported by biological networks. Our approach has two 

major advantages over previous text mining methods. First, it integrates semantic 

information derived from literature with biological information derived from experimental 

and interactome data. In this framework, annotations and genes are linked through a 

comprehensive similarity network. By propagating information in the network, an 

annotation can be assigned to a gene even when the two were never mentioned together in 

the same literature. Second, we adopt a new way to organize and visualize functional 

annotations using a data structure called a “Hierarchical Concept Ontology”. This ontology 

reduces redundant information and visual complexity to display the complex structure 

embedded in the network. We evaluate our method on both manually-curated pathway 

annotations and gene sets derived from computational tools. We observe substantial 

improvement in predicting the manually curated annotations in comparison to a text-mining 

baseline (non-network) approach. We further explore two case studies to demonstrate how 

our method can combine text mining, molecular networks and advanced visualization to 

discover new pathways related to cancer.
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2. Methods

Our method consists of four major steps (Fig. 1). First, it constructs a vocabulary of high 

quality phrases (a sequence of one or more words) by processing a large corpus of PubMed 

journal articles15 using a software AutoPhrase16. Second, phrases are connected within a 

weighted network based on their probability of co-occurrence within the same articles. 

Third, our method builds a phrase-gene similarity network by joining the phrase-phrase 

network with an existing gene-gene network derived from experimental data. Fourth, phrases 

are ranked by how well they describe the function of a gene set. Finally, top-ranked phrases 

are projected into a low-dimensional space and hierarchically clustered to create a Concept 

Ontology.

2.1 Constructing a phrase-gene network

We construct a weighted network to quantify the functional similarities between both 

phrases and genes. The edge weight wAB between phrase A and phrase B is defined as:

(1)

where Pr(A) is the marginal probability that phrase A appears in any article and Pr(A, B) is 

the probability that phrase A and phrase B co-occur in the same article. Intuitively, two 

phrases receive a large edge weight if they co-occur together more often than expected given 

their individual probabilities. In practice, non-informative phrases such as ‘cell lines’ and 

‘system biology’ have many network neighbors with low edge weights; thus we retain only 

the top 50 edges for each phrase. To calculate the edge weight between two genes, we 

integrate multiple heterogeneous data sources, including gene co-expression, protein-protein 

interaction, protein-domain co-occurrence and genetic interaction (see section 3.1). We 

perform this integration in an unsupervised fashion using a network-fusion-based 

algorithmic framework17. To calculate the edge weight between a phrase and a gene, the 

name of the gene is considered as a phrase and the weight is then calculated by Eqn. 1. In 

this way, the phrase-phrase and gene-gene networks are joined into a single network 

consisting of both phrases and genes as nodes.

2.2 Ranking candidate annotations of a pathway

Based on connections in this initial phrase-gene network, we further identify non-obvious 

links between phrases and genes through a random walk transformation of the network. An 

association score between gene A and phrase B is defined as the probability of randomly 

walking from A to B in the network, with restart probability = 0.5. Similarly, the association 

score between a queried gene set (pathway) and a phrase is defined as the average 

association score between the phrase and all genes in the set. We then rank pathways based 

on these scores. To efficiently rank a large number of phrases in a reasonable time, we only 

consider phrases that are within a distance of <3 to any of the genes in a queried pathway. 

Use of this filter in practice did not result in any significant decrease in performance (as 

evaluated below). Finally, we select all phrases with scores above a threshold as the 
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candidate annotations of the queried pathway. We will discuss how to empirically pick this 

threshold in the below ‘Experimental results’ section.

2.3 Visualizing results as a Concept Ontology

The number of candidate annotations returned by the previous step can be very large, 

especially for large pathways. In general, synonyms are connected by the strongest weights 

because they are exchangeable in the literature. Phrases related to the same topic such as 

‘tumor suppressor’ and ‘driver mutations’ will also be assigned strong weights but weaker 

than synonyms. Such intuition encouraged us to organize the flat phrase networks into a 

data-driven hierarchical ‘concept’ ontology18–19. For this purpose we adopt a network 

embedding approach17 in which phrases are projected into a low-dimensional space and the 

cosine of two phrase embedding vectors is used as their pairwise distance. Given this new 

distance matrix, we then apply a network clustering approach, CLiXO18, to transform the 

flat phrase network into a data-driven ‘concept’ ontology, where leaf nodes are phrases and 

internal nodes are clusters of similar phrases suggestive of higher order ‘concepts’. Low-

level concepts tend to be relatively concrete, because all phrases are strongly connected with 

each other, while high-level concepts tend to be more abstract, because phrases are more 

loosely connected with each other. Similar to a manually curated ontology, we assign each 

concept a name using a representative phrase having minimum distance with all the other 

phrases in the same concept cluster. Cytoscape20 is then applied to visualize the data-driven 

Concept Ontology.

3. Experimental results

3.1 Dataset and experimental settings

We obtained 33,462,308 journal articles from PubMed published between 1994 to 2017. For 

each article, we only used the abstract and title rather than the whole article. We obtained 

41,367 gene descriptions and gene name synonyms from NCBI15. The lengths of 

descriptions ranged from 100 to 300 words. AutoPhrase16 then identified 727,289 phrases 

from the text corpus combining both gene descriptions and journal articles.

To calculate gene similarities, we aggregated various types of molecular networks using a 

Random Forest (RF) model trained to best recover the GO semantic distance between gene 

pairs. The trained model can be viewed as a nonlinear weighting of different kinds of 

features to reflect statistical pairwise correlations between two genes. The integrated data 

sources include coexpression networks, protein-protein interaction networks and protein-

domain co-occurrences and genetics interactions, as follows. For co-expression networks, 

we used 980 genome-wide datasets extracted from the Gene Expression Omnibus (GEO) 

database21. We also used co-expression networks from the Genotype-Tissue Expression 

(GTEx)22 project in which both global and tissue-specific co-expression are considered. In 

addition, we calculated a co-expression matrix on both the Human Protein Atlas and the 

Cancer Cell Line Encyclopedia23,24. For protein-protein interaction networks, we included 

all interactions in InBioMap25 and only physical interactions in BioGRID26. In addition, we 

included genetic interaction data inferred from radiation hybrid genotypes27 and domain co-

occurrence data from InterPro28 and PFAM29.
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3.2 Performance

3.2.1 Recovering curated names in GO—We examined the ability of our method to 

recover the names of known biological processes and cellular components in GO, given only 

information about their sets of annotated genes. For each GO term, we looked for its curated 

name among all candidate phrases ranked according to their association scores to the genes 

in the term (Section 2.2). Gene-term annotations were taken using experimental evidence 

codes (EXP, IDA, IPI, IMP, IGI, and IEP) but not in silico codes (e.g. IEA) to avoid potential 

leakage of labels.

We found that for 40% of terms in the biological process branch of GO, the curated name 

was among the top 50 candidates (Fig. 2a). Similarly, for 50% of terms in the cellular 

component branch, the curated name was among the top 50 candidates (Fig. 2b). More 

generally, we calculated the proportion of GO terms for which the curated name was among 

the top K candidate names of the term. For comparison, we set up a baseline approach in 

which a phrase is scored and ranked simply by the number of articles that mention this 

phrase together with any of the genes in the gene set. This simple but intuitive baseline 

mimics a search engine that ranks documents based on word frequency30. Our method 

substantially outperformed this baseline approach in naming terms across all three branches 

of GO (Fig. 2a–c). Here, for each term we only considered the curated name itself and did 

not reward returning the names of ancestors or descendants. In practice, however, we also 

observed the names of ancestors and descendants among the top ranked phrases (Fig. S1–3).

Further examining these results, we observed that the rank of the curated name identified by 

our method was positively correlated with the size of the gene set (Fig. 2d). That is, our 

method predicted more accurately when the gene set was small. For sets with fewer than 250 

genes, our method found the correct curated term among the top 10 phrases the majority of 

the time. When the gene set was larger than 750 genes, our method could only detect the 

curated name among the top ~75 phrases. An explanation for this result is that large gene 

sets tend to cover broad or diverse functions and thus are more difficult to summarize by a 

short phrase.

Next, we studied another critical problem: Given a ranking of phrases, how do we determine 

the threshold to select the most relevant phrases? To address this problem, for each GO term, 

we compared the ranking of its curated name with its association score. As shown in Figs. 

3a–b, better rankings of curated names were generally tied to stronger association scores. 

This implies that the association scores across different GO terms are comparable. 

Therefore, we applied a universal threshold on the association score to determine final 

annotations for every GO term. We found that when the score is larger than −6 (log domain), 

we could always find the curated name among top 40 ranked phrases, regardless of term size 

(Fig. 3b). Therefore, we used −6 as our universal threshold to determine annotations.

3.2 Functional annotations for unknown cancer pathways

Encouraged by the ability of our method to recover the curated names of known pathways, 

we set out to assign names to new gene sets inferred from molecular data. We analyzed a 

total of 2,132 gene sets detected by the hierarchical clustering algorithm CLiXO18 based on 
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a human gene similarity network with 19,035 genes and 181,156,095 edges (Section 3.1). Of 

these, we only considered those that did not significantly overlap with known pathways. In 

this section, we chose two example gene sets which were suggested to be highly related to 

cancer by our approach to demonstrate how our method can help to discover new biological 

knowledge.

As a first case study, we examined a pathway consisting of eight strongly interacting genes: 

NEDD4, PTEN, SLC11A2, SLC11A1, SFTPC, MT3, NDFIP1 and NDFIP2 (Fig. 4a). To 

our knowledge, this pathway was previously unknown, as it has poor overlap with all 

catalogued pathways in GO and KEGG (Jaccard Index ≤ 0.25). Our method identified 38 

literature phrases associated with this set of genes (Fig. 4a). Although each of these phrases 

might represent a distinct biological function, we found that some were highly related to one 

another, forming a hairball-like subnetwork of gene-phrase linkages (Fig. 4a). Thus, it would 

be very challenging for a human to summarize the overall functions of this pathway. To 

address this challenge, we applied CLiXO to hierarchically organize these phrases into a 

Concept Ontology. Visualization of this ontology revealed six major functions at multiple 

scales (Fig. 5). On a molecular level, this pathway has functions related to ‘ion transport’, 

‘acetoacetate decarboxylase activity’ and ‘ubiquitin ligase’. On a cellular and organismal 

level, it is involved in ‘epithelial cells’ and ‘lung disease’. These descriptions were supported 

by direct associations between phrases and genes in multiple articles, such as ‘lung disease’ 

and NEDD4 in Rotin et al.29,31 and ‘lung epithelial cell’ and PTEN in Mao et al.32, and by 

indirect associations learned through the random walk transformation. As validation of these 

descriptions, we found that genes in this pathway were recurrently mutated in lung 

squamous cell carcinoma (LUSC), a disease in epithelial cells33, based on MutSigCV 

scores34 in The Cancer Genome Atlas (TCGA)35. All evidence suggested that this is a novel 

functional pathway related to lung cancer.

As a second case study, we examined another pathway, consisting of eight genes FBXW7, 

ARL2, FBXW11, FBXW2, BTRC, PWP2, COPA and FBXW10. These genes strongly 

interacted with each other primarily through domain co-occurrence, suggesting their proteins 

share similar 3D structures (Fig. 6a). This pathway was also previously unknown (Jaccard 

Index ≤ 0.1 in GO and KEGG). Our method described its functions with 37 phrases, which 

could be hierarchically organized into six major concepts (Fig. 7). An interesting concept 

was ‘acute monoblastic leukemia’, suggesting this pathway was cancer-associated. As 

shown in Fig. 7, validation for this pathway was achieved by tracing back the actual 

literature referencing these genes and diseases simultaneously. One of the articles, Gelbard 

et al.36, related FBXW7 to sinonasal carcinoma, a kind of head and neck cancer. This is 

consistent with our finding that these genes were recurrently mutated in the HNSC and 

UCEC patient cohorts in TCGA (Fig. 6b). These two examples demonstrate how pathways 

can be automatically discovered and annotated by integrating years of biomedical 

knowledge with ‘omics datasets.

4. Conclusion

In this work, we have developed a novel text mining and visualization tool for automated 

pathway functional annotation. Our main idea is to integrate literature and molecular 
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interaction information into a large heterogenous network and then use a random walk-based 

approach to rank candidate pathway descriptions. In the final step, we use a Concept 

Ontology to visualize annotations as a more informative alternative to a flat network of 

biomedical phrases. In this work our primary focus is to annotate gene set, however, our 

framework can be well generalized to other applications. For instance, if the user provides a 

set of drugs, targets and their corresponding interaction networks, our method should be able 

to return the potential downstream and upstream pathways where these drugs might 

influence. Another application is that we can replace gene set with a group of disease 

symptoms and replace molecular network with symptom similarity network. Then our 

method might help to define the potential pathways and genes that lead to such symptoms.

One of the major limitations of our work is currently we can not accept users’ input to 

specify a particular context. For example, the user might want to know the roles of these 

genes in brain or the user only want to know the location information. Theoretically 

speaking, these information is all included in our result, however, they might not rank high 

enough to pass our filter. There are many interesting directions to explore in the future. To 

name a few, we plan to automatically generate sentences instead of phrases for new 

pathways. Sentences are more widely accepted and carry more information than phrases. 

Another direction is to improve our algorithm to move beyond the abstract and title to 

scanning complete articles and even figures. A more challenging direction is to link 

functional descriptions more deeply with molecular data. In our current method, the types of 

interactions among genes do not influence the final functional annotations. However, in 

practice, a rich protein-protein interactions and genetic interactions usually suggest a protein 

complex.
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Figure 1. 
Diagram of our method
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Figure 2. 
Comparison of our method and baseline on recovering term names of three Gene Ontology 

categories: Biological Process (a), Cellular Component (b) and Molecular Function (c). The 

fraction of terms for which the curated name was among the top K candidate phrases. (d) 

The correspondence between the rank of term names and the sizes of terms. The Y-axis 

shows the distribution of ranks of curated names with varying sparsity levels shown in the 

X-axis.
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Figure 3. 
Selecting relevant phrases based on the association score. (a) For each GO term, the 

association score of its curated name is plotted with the rank of this score among all 

candidate phrases. (b) Zoom-in of panel (a) reveals that applying a threshold of ≥ −6 on the 

association score guarantees that the curated name of a term is ranked among the top 40 

candidate phrases.
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Figure 4. 
Discovery and characterization of a new pathway by our method. (a) The pathway is defined 

by eight genes related by protein interactions, co-expression and protein shared domains. 

These functions of these genes are collectively described by 38 phrases. (b) Cancer types in 

which these genes are significant mutated in The Cancer Genome Atlas (TCGA).
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Figure 5. 
Summarization of biological function by a Concept Ontology. The 38 phrases describing the 

pathway in Fig. 4 were hierarchically clustered based on their semantic relations using the 

CLiXO algorithm. These phrases were organized into six major concepts. We list two of the 

journal articles, Mao et al.32 and Rotin et al.29,31, contributing to the concepts ‘lung disease’ 

and ‘epithelial cell’.

Wang et al. Page 13

Pac Symp Biocomput. Author manuscript; available in PMC 2018 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Discovery and characterization of another new pathway by our method. (a) The pathway is 

defined by eight genes related by protein interactions, co-expression, and protein shared 

domains. The functions of these genes are collectively described by 37 phrases set out 

around the periphery. (b) Cancer types in which these genes are recurrently mutated in 

TCGA.
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Figure 7. 
Summarization of biological function by a Concept Ontology. The 37 phrases describing the 

pathway in Fig. 6 were hierarchically clustered based on their semantic relations, using the 

CLiXO algorithm. These phrases were organized into six major concepts. We list two of the 

journal articles, Spinella et al.37 and Gelbard et al.36, from which the concept ‘acute 

monoblastic leukemia’ was inferred.
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