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ABSTRACT
Antifungal resistance to Candida pathogens increases morbidity and mortality of immunosup-
pressive patients, an emerging crisis worldwide. Understanding the Candida prevalence and 
antifungal susceptibility pattern is necessary to control and treat candidiasis. We aimed to 
systematically analyse the susceptibility profiles of Candida species published in the last ten 
years (December 2011 to December 2021) from mainland China. The studies were collected 
from PubMed, Google Scholar, and Science Direct search engines. Out of 89 included studies, 
a total of 44,716 Candida isolates were collected, mainly comprising C. albicans (49.36%), 
C. tropicalis (21.89%), C. parapsilosis (13.92%), and C. glabrata (11.37%). The lowest susceptibility 
was detected for azole group; fluconazole susceptibilities against C. parapsilosis, C. albicans, 
C. glabrata, C. tropicalis, C. guilliermondii, C. pelliculosa, and C. auris were 93.25%, 91.6%, 79.4%, 
77.95%, 76%, 50%, and 0% respectively. Amphotericin B and anidulafungin were the most 
susceptible drugs for all Candida species. Resistance to azole was mainly linked with mutations 
in ERG11, ERG3, ERG4, MRR1–2, MSH-2, and PDR-1 genes. Mutation in FKS-1 and FKS-2 in C. auris 
and C. glabrata causing resistance to echinocandins was stated in two studies. Gaps in the studies’ 
characteristics were detected, such as 79.77%, 47.19 %, 26.97%, 7.86%, and 4.49% studies did not 
mention the mortality rates, age, gender, breakpoint reference guidelines, and fungal identifica-
tion method, respectively. The current study demonstrates the overall antifungal susceptibility 
pattern of Candida species, gaps in surveillance studies and risk-reduction strategies that could be 
supportive in candidiasis therapy and for the researchers in their future studies.
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Introduction

Antimicrobial resistance is a worldwide public health 
concern and is particularly worrisome regarding fungal 
infections. The fewer antifungals’ drugs for invasive 
infections and the emergence of multidrug-resistant 
(MDR) fungal pathogens have been associated with 
increased mortality. Candida species are the most com-
mon opportunistic pathogens that cause severe infec-
tions in the immunosuppressive host. The Candida 
species can cause superficial, vaginal, and oral mucosa 
infections and invasive candidiasis, such as deep tissue 
infections and bloodstream infections [1]. Candida 
albicans is the leading cause of candidiasis around the 
world. Besides this, the other common non-C. albicans 
species such as C. parapsilosis, C. glabrata, and 
C. tropicalis have emerged as health concerns over the 

past few decades [2]. In addition, the emergence and 
high prevalence of antifungal drugs resistant (AFR) 
C. albicans and MDR non-C. albicans species such as 
C. auris, have caused great concern for health care 
officials across the globe [1,3,4]. Phylogenetic analysis 
of C. auris shows five major clades that cluster geogra-
phically and are renowned for various single nucleotide 
polymorphisms [5,6]. Therefore, it is imperative to fully 
comprehend and monitor the trend of local epidemiol-
ogy, and antifungal drug susceptibility to take smart 
decisions in the treatment of candidiasis [7].

The threat due to MDR C. auris further increases in 
the current COVID-19 epidemic as the ratio of hospi-
talized patients increases, providing a vulnerable envir-
onment for nosocomial infections. A recent study 
reported a mortality rate of 67.85% for coronavirus- 
associated C. auris infections [8]. Timely diagnosis 
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and proper antifungal treatment are required to 
improve clinical outcomes and manage candidiasis 
[7,9]. However, laboratory-based technique like 
Candida culture is still inefficient for sensitive and 
rapid diagnosis of candidiasis. Therefore, the physicians 
most often prescribed empirical antifungal drugs 
[10,11]. The selection of empirical antifungal drugs 
mainly depends on epidemiological antifungal sensitiv-
ity data, which differs for every geographic region [3,7]. 
Hence, locally and country-wide antifungal surveillance 
data are required to select antifungal drugs accurately.

The molecular epidemiology of AFR Candida species is 
relatively less studied than the resistance mechanisms of 
bacteria [12]. The AFR Candida species needs to be 
addressed because of its high risk to human health as it 
ranked fourth amongst hospital-acquired and bloodstream 
pathogens [13]. In mainland China, the China Hospital 
Invasive Mycosis Surveillance Network (CHIF-NET) is an 
excellent project reporting antifungal susceptibility and 
epidemiology trends since 2009, functional in 30 out of 33 
provinces (http://chifnet.com/login.cshtml). C. albicans is 
highly prevalent in China, but the proportion of emerging 
non-C. albicans species are increasing (reported >67% in 
2020), mainly due to their AFR ability [14]. On this ground, 
several studies individually reported the epidemiology of 
AFR Candida species from various regions of China. 

However, there is no comprehensive systematic acquisition 
data on the antifungal susceptibility pattern of Candida 
from China. Therefore, in the current study, we planned 
to analyse the overall landscape of the distribution and 
antifungal susceptibility pattern of Candida from the pub-
lished literature in China, which has not been documented. 
The outcomes of the present study will highlight the gaps in 
surveillance studies and provide recommendations for 
researchers [62]. Furthermore, the current study will pro-
vide directions for health care officials and prescribers 
about the resistance magnitude of Candida species to dif-
ferent antifungal agents, allowing them to devise strategies 
to combat and manage AFR in the region.

Methods

Literature search

The original research articles about Candida species in 
mainland China were collected from NCBI PubMed, 
Google Scholar, and Science Direct search engines. The 
preferred reporting items for systematic reviews and 
meta-analyses (PRISMA) guidelines and checklists were 
followed for article selection (Figure 1) [15]. The studies 
were searched by using keywords like; (“Candida” AND 
“Antifungal resistance” AND/OR “Antifungal susceptibil-
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Figure 1. Studies identification and selection based on PRISMA guidelines.
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ity” AND China); (“Candidemia” AND “Antifungal resis-
tance” AND/OR “Antifungal susceptibility” AND China) 
and (“Candidiasis” AND “Antifungal resistance” AND/ 
OR “Antifungal susceptibility” AND China). 
Additionally, the bibliographies of selected research arti-
cles were thoroughly reviewed to access all the studies in 
the domain.

Articles selections

All the articles found on the Databases were down-
loaded, and duplicates were removed. Initially, the 
title and abstract were reviewed to select only relevant 
studies from mainland China. Further article selections 
were performed by three researchers (HB, MS, and BH, 
independently) based on the full-text review of each 
article following the inclusion and exclusion criteria.

Inclusion criteria

The included articles had at least ten Candida species 
isolated from clinical specimens and mentioned the 
total number of isolates. The articles had data on anti-
fungal susceptibility tests (AST), written in English and 
published from December 2011 till December 2021 in 
mainland China.

Exclusion criteria

All the articles were excluded, with isolates size less 
than ten, isolates not from human origin, did not per-
form the susceptibility tests or incomplete data, articles 
that did not use the standard authenticated protocols 
for AST, and review articles.

Data extraction

The three researchers, HB, MS, and MNK, separately 
collect the data from each article into a pre-prepared 
Excel sheet (2016). The collected data were about 
publication year, location of the study, sampling dura-
tion, inpatient or outpatient, gender, age, infection 
types, species type, total number of isolates, identifica-
tion method, AST method, breakpoint reference guide-
lines, tested drugs, susceptibility profile, mortality rate, 
the molecular mechanism of AFR, and molecular phy-
logeny of the Candida isolates. The duration of the 
samples was determined by the year in which the sam-
pling concluded. All the patients aged less than 18 years 
were considered paediatric. Only the susceptible or 
wild-type isolates percentages were counted, and the 
intermediate or susceptible dose-dependent were not 
considered.

Statistical analysis

The number of occurrences and percentages for each 
variable were counted in Excel sheet. The antifungal 
susceptibility pattern for each Candida species against 
every antifungal agent in the form of median suscepti-
ble or median wild type (MS/WT) with a 95 % con-
fidence interval (CI) was determined to estimate 
a consistent ratio for combined data. The student’s 
t-test or the Wilcoxon signed-rank test was performed 
to measure the statistical significance of the antifungal 
susceptibility data against each drug. The P-values 
smaller than 0.05 were considered significant, calcu-
lated for two-tailed with a Gaussian approximation. 
For C. albicans, C. tropicalis, C. glabrata, 
C. parapsilosis, and C. krusei, due to isolation from 
different infection types, subgrouping M.S/WT, with 
95% CI were also calculated. For each species, three 
subgroups were compiled i.e. isolates from all publica-
tions, invasive candidiasis and bloodstream infection 
(IC/BSI), and vulvovaginal and oral candidiasis (VVC/ 
OC). Additionally, subgroup analysis was performed 
for different susceptibility testing methods i-e., BMD, 
ATB fungus 3, Sensititre YeastOne kit, and agar diffu-
sion methods. The statistical analysis and graph design-
ing were performed using the GraphPad Prism v8.0.2 
software. Three researchers performed the calculation 
separately to negotiate any possible bias.

Results

Studies characteristics

Eighty-nine articles were included for systematic ana-
lysis containing 44,716 Candida isolates. High propor-
tion of articles was published in 2019 and 2020 (13 in 
each), while for the duration of sampling, 40 studies 
were reported from 2010 to 2015 (supplementary file; 
figure S1). The maximum studies were reported from 
east China (n = 43), followed by north China (n = 33). 
Among the subregions, the highest number of articles 
were from Beijing (n = 20) and Shanghai (n = 18), 
while we did not find any study from two subregions 
of southwest China, i-e., Guizhou (province) and 
Tibet (autonomous region), and one province 
(Qinghai) of the northwest region (Supplementary 
file: figure S2). The number of articles stated the data 
about patient demography and AST are presented in 
Table 1. The median age with 95% CI from the ages 
mentioned articles (n = 47) was 57.45 years (53–62.5). 
The all-causes mortality rate was mentioned in 18 
studies in which C. albicans associated median mor-
tality was 27.3%, interquartile range (IQR) (13.60– 
38.30%). The median mortality rates (IQR) of 
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Table 1 Characteristics of articles include in current systematic analysis (n = 89)

Characteristics
Frequency 
(%) References

Species
C. albicans 65 (73.03%) (14, 26, 27, 37-42, 44, 47-54, 56-60, 67-108)
C. tropicalis 47 (52.81%) (14, 37-43, 47-49, 51, 52, 54, 57-60, 67-76, 93, 94, 97-102, 104, 107-117)
C. glabrata 43 (48.31%) (14, 17, 37-40, 42-44, 47-52, 56-59, 67-76, 96-102, 104-106, 108, 118-120)
C. parapsilosis 37 (41.57%) (5, 14, 37-41, 43, 48, 49, 51-58, 60, 71-76, 93-95, 97-102, 108, 118, 121)
C. krusei 16 (17.98%) (14, 38, 43, 44, 56, 59, 97, 99-101, 104-106, 108, 122, 123)
C. guilliermondii 6 (6.74%) (14, 97, 98, 108, 124, 125)
C. pelliculosa 3 (3.37%) (98, 102, 108)
C. lusitaniae 3 (3.37%) (14, 97, 108)
C. auris 2 (2.25%) (16, 24)
C. haemulonii 1 (1.12%) (126)
C. africana 1 (1.12%) (103)

Patient type
Inpatients 35 (39.32%) (16, 24, 26, 37-41, 47-54, 57-60, 68, 71, 72, 76, 89, 93, 102, 104, 105, 107, 111, 113, 115, 116, 118, 121)
Outpatients 3 (3.37%) (70, 80, 96)
Both 12 (13.48%) (14, 41, 55, 69, 94, 97, 98, 108, 110, 119, 120, 124)
NM 39 (43.82%) NA

Age group
Adult 42 (47.19%) (5, 24, 26, 37, 39, 40, 42, 44, 49, 51-54, 56, 57, 59, 60, 67, 69-72, 75, 78-80, 84, 85, 90, 91, 93, 95, 96, 100, 103, 106, 107, 

115, 118-120, 124)
Adult/ Pediatrics 18 (20.22%) (14, 17, 38, 47, 48, 50, 55, 58, 76, 94, 97-99, 101, 102, 108, 110, 121)
Age group NM 29 (32.58%) NA

Gender
Female 19 (21.34%) (26, 44, 69, 70, 75, 77-80, 85, 89-91, 95, 96, 100, 103, 106)
Male/Female 46 (51.68%) (5, 14, 17, 24, 37-40, 42, 47-60, 67, 71, 72, 76, 87, 88, 93, 94, 97, 99, 102, 104, 107, 108, 110, 113, 115, 116, 118-121, 

124)
NM 24 (26.97%) NA

Infection types
Invasive Candidiasis 27 (30.33%) (5, 14, 37, 41, 43, 47, 49, 50, 59, 60, 68, 73, 74, 94, 97-99, 102, 105, 108, 114, 115, 117, 120, 123-125)
Bloodstream 

infection
15 (16.85%) (17, 39, 40, 48, 51-55, 57, 58, 71, 72, 76, 93)

Vulvovaginal 
candidiasis

20 (22.47%) (26, 44, 69, 70, 75, 77-80, 83-85, 89-91, 95, 96, 100, 103, 106)

Oral candidiasis 5 (5.61%) (42, 56, 67, 104, 107)
Multiple infections 8 (8.99%) (16, 86, 87, 109-111, 116, 121)
UTI 1 (1.12%) (113)
Not Mentioned. 13 (14.61%) NA

Phenotypic identification methods
CHROMagar media 41 (46.06%) (26, 37, 42, 44, 47, 50, 55, 56, 59, 67-70, 72, 75-83, 85-88, 91, 95, 96, 98, 99, 101-103, 105, 106, 109, 111, 112, 123)
MALDI-TOF MS 29 (32.58%) (5, 16, 24, 38, 40, 43, 47, 48, 50, 57, 59, 67, 68, 80, 94, 97, 99, 102, 108, 110, 111, 113, 114, 116, 120, 121, 123, 124, 126)
API 20C AUX 21 (23.59%) (26, 37, 41, 42, 55, 56, 70, 75, 77, 78, 83, 85, 87, 88, 95, 98-101, 105, 122)
VITEK 2 COMPACT 17 (19.10%) (39, 41, 51-54, 58, 60, 67, 69, 72, 73, 76, 82, 96, 99, 106)
BD BACTEC™ FX 5 (5.61%) (39, 40, 52, 53, 93)
VITEK MS system 2 (2.24%) (14, 16)
Microscopy 2 (2.25%) (85, 103)
DL-96A ID/AST 2 (2.25%) (71, 118)
yeast identification 

kit
1 (1.12%) (109)

ATB ID32C strips 1 (1.12%) (27)
Brilliance Candida 

agar
1 (1.12%) (41)

NM 4 (4.49%) NA
Molecular identification methods

ITS sequencings 32 (35.95%) (5, 14, 16, 24, 38, 41-43, 55, 67, 72-74, 79, 84, 85, 90, 92, 94, 97, 99, 102, 104, 107, 108, 110, 115, 120, 123-126)
D1/D2 analysis 6 (6.74%) (24, 37, 41, 73, 84, 110)
Molecular beacon 

assay
1 (1.12%) (96)

Susceptibility testing method
Broth microdilution 35 (39.32%) (14, 17, 26, 56, 60, 67, 72-74, 77, 79-83, 85, 86, 89-92, 97, 99-101, 106, 109, 112-116, 120, 122, 123)

(Continued )
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Candida pathogens in included literature are stated in 
supplementary file (figure S3). Molecular typing of 
Candida isolates was performed only in 16 (17.98%) 
articles. The three different genotyping methods, 
i-e multilocus sequence typing (MLST), random 

amplified polymorphic DNA (RAPD) analysis, and 
microsatellite markers typing, were used in these stu-
dies. The detail about the molecular typing methods 
for the genotyping of Candida species is presented in 
Table 2.

Table 1 (Continued). 

Characteristics
Frequency 
(%) References

ATB FUNGUS 3 kit 24 (26.97%) (27, 37, 39, 40, 47, 49-54, 57-59, 68-70, 78, 87, 88, 93, 96, 105, 119)
Sensititre Yeast-1 

kit
16 (17.98%) (5, 16, 24, 38, 42, 43, 48, 94, 102, 110, 111, 117, 120, 121, 124, 126)

Agar Diffusion 
method

12 (13.48%) (41, 44, 75, 76, 95, 98, 103, 104, 107, 108, 110, 118)

ETEST method 2 (2.25%) (37, 55)
kit of Autobio 1 (1.12%) (71)
Neo-Sensitabs 1 (1.12%) (84)

Breakpoint reference guidelines
CLSI 82 (92.13%) (5, 14, 16, 17, 24, 26, 27, 37-43, 47-52, 55-57, 59, 60, 67-70, 72-75, 77-83, 85-126)
EUCAST 3 (3.37%) (40, 52, 93)
NM 7 (7.86%) NA

Footnote: The sum of percentages is not equal to 100 because some studies stated more than one variable, and we counted each study separately with each 
variable. 

NM= Not mentioned, NA= Not applicable, UTI= urinary tract infection, ITS=internal transcribed spacer, CLSI= clinical laboratory and standard institutes, 
EUCAST= European committee of antimicrobial sensitivity testing 

Table 2 The molecular typing of Candida species mentioned in the included studies

Species/ 
Method

Outcomes/Detail References

C. albicans
MLST DSTs: 

79, 435, 1867, 365, 1395, 254, 443, 365, and CC 69  
(26, 27)

Microsatellite 
markers

CAI and CP6 (37, 72)

RAPD analysis Primer: 
5’-ACGGCCGACC-3’ and 
5’-CCAGATGCAC-3’

(78, 87)

C. tropicalis
MLST DSTs; 

225, 639, 329, 615, 506, 508, 519, 169, 345, 399, 300, 546, 376, 321, 322, 323, 324, 325, 114, 169, 326, 327, 328, 331, 
332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 164, 341, 342, 343, 344, 346, 347, 348, 349, 99, 350, 351, 352, 353, 
354, 355, 356, 181, 615, 852, 984, 996, 991,482. 901, 330, 980, 337, 522, 990, 982, 998, 723, 983, 997, 977, 730, 489, 
993, 403, 184, 139, 833, 889, 999, 995, 992, 986, 434, 981, 994, 394, 994, 437, 978, 525, 985, 923, 979, 986, 987, 988, 
1000, 1001, 1002,

(72, 111, 113, 
115, 116)

Microsatellite 
markers

ctm1, ctm3, ctm24 (117)

C. glabrata
MLST STs: 

ST7, ST10, ST22, ST45, ST55, ST3,
(17, 72, 120)

Microsatellite 
markers

GLM5, RPM2, GLM4, ERG3, MTI, GLM6, (17, 120)

C. parapsilosis
Microsatellite 

markers
CAI, CP6, B5, CP1, CP4, (72, 121)

C. krusei
Microsatellite 

markers
33 markers were selected; Cakr001–Cakr033 (123)

C. guilliermondii
Microsatellite 

markers
sc15, sc32, sc72 (125)

Footnote: DSTs; Diploid sequence types, ST; Sequence types, MLST; multilocus sequence type. RAPD; Randomly amplified polymorphic DNA. 
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Prevalence of Candida species

C.albicans accounted for 49.36% of all Candida isolates 
reported in 65 articles. Among the non-C. albicans 
species, C. tropicalis (21.89%) was the most prevalent 
specie, followed by C. parapsilosis (13.92%) and 
C. glabrata (11.37%). C. africana (0.03%) was the 
most rarely reported Candida species. The percentages 
and number of all Candida species reported in the 
current study are presented in Figure 2(a). Broadly, 
mainland China is divided into seven regions, among 
which differences in the distribution of Candida species 
in various regions were observed. The highest number 
of isolates were reported from north China (23.07%), 
followed by east (15.20%), south (13.95%), northeast 
(11.12%), southwest (9.11%), central (8.69%), and 
northwest region (8.20%), while 10.64% of the isolates 
were from multiple locations. C. albicans and 
C. tropicalis were highly reported in the north 
(23.61% and 24.67%), followed by east (17.22%, and 
14.08%) and south China (16.67%, and 13.57%). 
C. parapsilosis proportion was highest in the north 
(17.63%), followed by the east (15.63%) and northeast 
region (14.52%). C. glabrata was highest in the north 
(23.48%), northeast (13.99%), and south China 
(12.13%). C. krusei was high in the southwest 
(18.56%) while C. auris were only reported in northeast 
China. The complete depiction of Candida species dis-
tribution in various regions of China is presented in 
Figure 2(b).

Regarding infections type, the high proportion of 
Candida species was associated with invasive candidia-
sis (IC) (49.36%), followed by vulvovaginal candidiasis 
(VVC) (22.17%), bloodstream infections (BSI) (6.07%), 

and oral candidiasis (OC) (3.04%), while 10.31% of 
isolates were reported with multiple infections and for 
8.09% strains the infections types were not mentioned. 
C. albicans were almost equally reported for IC and 
VVC (37.805% and 37.23% out of 22,063 isolates). 
C. tropicalis and C. parapsilosis were highly associated 
with IC (48.30%/9786 and 78.93%/6244). Similarly, 
C. glabrata and C. krusei were highly reported with 
IC (57.44% and 59.65%) followed by VVC (24.35% 
and 25.94%) out of 5080 and 528 isolates, respectively. 
Among 108 C. auris isolates, 86.11% of isolates were 
involved in multiple infection types, while for 13.89% 
of isolates, the infection types were not mentioned. The 
percentages of Candida species associated with various 
infection types are shown in Figure 2(c).

Antifungal susceptibility pattern

The median susceptibility or wild-type (M.S/WT) with 
a 95% confidence interval (CI) was calculated for 
C. albicans, C. tropicalis, C. glabrata, C. parapsilosis, 
C. krusei, C. guilliermondii, C. pelliculosa, 
C. lusitaniae, and C. auris. The C. haemulonii and 
C. africana were reported in one study; therefore, 
their MS was not determined. The susceptibility rates 
of all antifungal agents were statistically significant (P  
= < 0.05) except few; terbinafine against C. albicans was 
not significant (P = 0.4164), voriconazole against 
C. auris (P = 0.4114), clotrimazole in case of 
C. glabrata (P = 0.1158), and clotrimazole, ketocona-
zole, and miconazole against C. tropicalis were not 
significant (P = 0.3308, 0.0574, and 0.1065, respec-
tively). The P- values of antifungal agents against all 

Figure 2. Prevalence of Candida species, (a) the total occurrence of Candida species, the numerical on the top of the bar is the 
number of specific Candida species, (b) the occurrence of Candida species in different regions of China, each region is represented by 
specific colour as shown in the box, Multiple locations mean the that studies mentioned more than one region of China, (c) 
Prevalence of Candida species in association with various infection type, OC; oral candidiasis, UTI; urinary tract infection, NM; not 
mentioned the infection type, MI; multiple infections, involved in more than one infections, VVC; vulvovaginal candidiasis, BSI; 
bloodstream infection, IC; invasive candidiasis.
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tested Candida isolates are mentioned in supplemen-
tary file (table S1). For the subgroup analysis based on 
different susceptibility testing methods, it was observed 
that the susceptibility rates obtained by agar diffusion 
methods are comparatively low than BMD, ATB fungus 
3, and Sensititre YeastOne kit method almost for all 
antifungal agents against all tested Candida species 
(supplementary file; table S2)

AST of 22,063 C. albicans were performed against 14 
antifungal drugs, in which high proportions of isolates 
were tested against fluconazole, itraconazole, voricona-
zole, and amphotericin B. The highest susceptibility was 
observed for polyenes, followed by echinocandins and 
5-flucytosine. The azole class was comparatively less 
susceptible as the MS (95%CI) for miconazole, ketoco-
nazole, and fluconazole were 52.95% (40–97.60), 85.3% 
(32.5–99.60), and 91.6% (85.85–95), respectively. In the 
IC/BSI group, C. albicans were tested against nine anti-
fungal drugs, with susceptibility rates greater than 95% 
for all tested drugs. The micafungin and amphotericin 
B were the most susceptible drugs against C. albicans in 
VVC/OC group, having MS (95%CI) of 100% (93.80– 
100) and 99.4% (97.50–100), while the lowest suscept-
ibilities were reported against miconazole (52.95% (40– 
97.60)) and itraconazole (79% (55.10–90.60)). AST pat-
tern of C. albicans against all tested drugs and subgroups 

analysis is presented in Figure 3. AST of C. tropicalis was 
examined against 13 antifungal drugs, in which 100% 
susceptibility was reported against amphotericin B, while 
posaconazole (MS; 45.95, 95%CI; (29.3–88.1)) was less 
susceptible among all tested drugs. The susceptibility 
against echinocandins was in the range of 98–99%. 
Among the azole class, the highest MS (95%CI) was 
observed for voriconazole (83.96%, (73–89.4)) while flu-
conazole (77.95%, (65.4–83.3%)) was among the less 
susceptible drugs. For 5-flucytosine, variations in sus-
ceptibilities were reported between IC/BSI and VVC/ 
OC groups, in which the MS (95% CI) were 99.8% 
[68–71] and 92.57% (89.7–100), respectively. The AST 
pattern of C. tropicalis against all antifungal drugs is 
depicted in Figure 4.

A total of 6244 C. parapsilosis isolates were exam-
ined for AST and showed the highest susceptibility 
rates to polyenes and echinocandins compared to the 
azole class. The susceptibilities of C. parapsilosis against 
all drugs were comparatively high than other Candida 
species. None of the isolates was resistant to amphoter-
icin B, while the MS (95% CI) against fluconazole was 
93.25% (88.8–95.3). The susceptibilities of the VVC/OC 
group containing C. parapsilosis against echinocandins 
and azole drugs were comparatively low than isolates of 
the IC/BSI group (Figure 5). For C. glabrata the lowest 
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Figure 3. Antifungal susceptibility patterns of Candida albicans in the form of median susceptibility/wild type with 95% confidence 
interval.
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Figure 4. Antifungal susceptibility patterns of Candida tropicalis in the form of median susceptibility/wild type with 95% confidence 
interval.
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MS (95%CI) was reported against ketoconazole 
(48.7% (42.1–62.1)), followed by clotrimazole 
(73.7% (16.6–91.9)) and fluconazole (79.4% (54.4– 
86.4)), while was 100% susceptible against ampho-
tericin B. Overall, the C. glabrata of the IC/BSI 
group were more susceptible to antifungal drugs 
than VVC/OC group containing isolates. The com-
plete antifungal susceptibility pattern of C. glabrata 
is presented in Figure 6. C. krusei were 100% sus-
ceptible against amphotericin B and to two drugs of 
echinocandin class i-e., anidulafungin and micafun-
gin, while the lowest MS (95%CI) were observed 

against caspofungin (93,75% (86.70–100). Similarly, 
in IC/BSI group, the lowest MS (95%CI) was 
reported against caspofungin (91.5% (86.7–100)), 
while other echinocandins, 5-flucytosine, and poly-
ene were 100% susceptible (Figure 7). Among the 
rare Candida species, the lowest MS (95% CI) was 
found against fluconazole, which was 94.6% [59] - 
[67], 76% (46.2–90.9), 50% (44.80–80.5), in the case 
of C. lusitaniae, C. guilliermondii, and C. pelliculosa 
respectively. None of the C. auris isolates was sus-
ceptible to fluconazole, while the highest MS (95% 
CI) was observed against itraconazole (96.75% 
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Figure 5. Antifungal susceptibility patterns of Candida parapsilosis in the form of median susceptibility/wild type with 95% 
confidence interval.
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Figure 6. Antifungal susceptibility patterns of Candida glabrata in the form of median susceptibility/wild type with 95% confidence 
interval.
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Figure 7. Antifungal susceptibility patterns of Candida krusei in the form of median susceptibility/wild type with 95% confidence 
interval.
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(93.50–100)). The complete susceptibility pattern of 
C. guilliermondii, C. pelliculosa, C. lusitaniae, and 
C. auris is presented in Figure 8.

Molecular mechanism of antifungal resistance

Among the selected articles, 25 studies reported muta-
tions in ergosterol biosynthesis genes lead to azole 
resistance. Only two studies reported echinocandins 
resistance due to FKS1 mutation in C. auris and FKS2 
mutation in C. glabrata [90,100]. The gene mutations 
were detected mainly by PCR amplification and 
sequence analysis, except for one study that performed 
the whole-genome sequence of C. auris [100]. 
Resistance to azole due to the overexpression of regu-
latory genes was also detected in some studies by qRT 
PCR. The overall detail about the mutations in various 
genes, leading to amino acid substitutions and over-
expression of genes causing the antifungal resistance in 
different Candida species from the included literature 
are mentioned in Table 3.

Discussion

The current study systematically analysed the distribu-
tion and AST pattern of Candida isolates from main-
land China to provide reference points for upcoming 

studies. Among the selected articles, C. albicans was 
found in a high proportion (49.36% of all the isolates). 
C. albicans is a worldwide highly prevalent opportunis-
tic pathogen [103]. Among the non-C. albicans species, 
C. tropicalis (21.89%) was the most prevalent, followed 
by C. parapsilosis (13.92%) and C. glabrata (11.37%). 
This drift contrasts with many European countries and 
North America, where the C. glabrata is more prevalent 
among the non-C. albicans isolates [104]. However, 
a similar trend of Candida species prevalence resem-
bling our study was also reported in India, Nigeria, and 
Cameroon [105]. Among the infection types, a high 
proportion of C. albicans was associated with VVC. 
This is mainly due to the colonization of C. albicans 
in the human vagina, and getting the opportunity 
causes vaginal infection [106]. The invasive candidiasis 
and bloodstream infections are also reported in associa-
tion with C. albicans and non-C. albicans species, The 
three main factors i.e. misuse of broad-spectrum anti-
biotics, cytotoxic chemotherapy-induced mucositis, and 
iatrogenic immunosuppression, are the causes of the 
high proportion of invasive candidiasis [107]. The 
rare Candida species were not explicitly observed with 
candidemia. However, the C. guilliermondii, 
C. pelliculosa, C. lusitaniae, and C. auris were reported 
to cause invasive candidiasis. This is mainly due to their 
MDR properties which lead to treatment failure and 
a longer duration of invasive candidiasis [108].
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Figure 8. Antifungal susceptibility patterns of C. auris, C. pelliculosa, C. guilliermondii and C. lusitaniae in the form of median 
susceptibility/wild type with 95% confidence interval.
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Table 3 Molecular mechanisms of antifungal drug resistance stated in the included studies

Mechanism Detail Outcome Reference

C. albicans
ERG11 

mutation
Amino acid substitution: 
A114S*, Y132H*, F449Y*, Q474K*, T123I*, Y257H*, G448E*, G464S*, F72S*, G450E*, Y132F*, 

K143Q*, K143R*, Y257H*, D116E, P56S, V88I, V437I, E266D, V488I, D116E/D, R523G, N440S, 
A114V, T285A, S457P, I333T, S24G, K90R, N168S, V234G, N237D, E260G, T285A, A317T, 
K344E, E517V, V332L, K128T, G448R, V488I, G448R/G, G465S, D225H, S199N, F104V, L935S, 
E260V, N435V, G472R and D502E, D117E, E165K, E174A, V234F, G346A, A434V, and L480F

Azole 
resistance

(26, 27, 70, 74, 80, 82, 
83, 86, 88, 125)

Mrr2 mutation Amino acid substitution: 
L144V*, T145A*, V451A*, S466L*, A468G*, S480P*, H31Y, T83A, H149Y, S165N, T386I and 

D404N

Azole 
resistance

(85)

ERG4 mutation Silent mutation: 
CA133 and C435T

Azole 
resistance

(86)

ERG3 mutation Amino acid substitution: 
A18P/A, R365G/R, W219C and R352H 
Silent mutations: 
T342G, T435C, C441T, T1047C

Azole 
resistance

(26, 89)

Efg1 mutation Amino acid substitution: 
V86I 
Silent mutation: 
A150T, A165C, G210A, G267A, G279A, A285T, A744C, A786G, T954A, C1071T, A1055C, A1317G

Azole 
resistance

(89)

Cap1 mutation Amino acid substitution: 
A390T, S381N, P311S, G481E

Azole 
resistance

(90)

Mrr1 mutation Amino acid substitution: 
R557K*, K844E*, F1032L*, S1037L*, N937K, E1020Q, T917M and T923I

Azole 
resistance

(90)

Overexpression ADH1, CDR1, CDR2, MDR1, FLU1, ERG11, TAC1, Cap1, MDR1, Mrr1 Azole 
resistance

(26, 27, 77, 81, 85,  
90, 106)

C. glabrata
ERG 11 

mutation
Mutations: 
T1328C, T1394C, G1487A, A1583G 
Amino acid substitution= no

Fluconazole 
resistance

(119)

MSH2 mutation Polymorphism: 
V239L, E456D, R636 M

Azole 
resistance

(17)

PDR1 mutation Amino acid substitution: 
G348C*, N764D*, E259G, E555D, N764D, D876N, S98L, R250K, G389V, R293G, S942F, L139I, 

E818G, Y336H, I378T, L669F, A848V, P76S, P143T, D243N, I91V, L732S, P927S

Azole 
resistance

(17, 119)

FKS2 mutation S663F and S663P mutation in FKS2 HS1 Echinocandins 
resistance

(17)

Overexpression CDR1, CDR2, Azole 
resistance

(119)

C. tropicalis
ERG 11 

mutation
Amino acid substitution: 
Y132F*, S154C*, A114S*, Y132H*, V125A, Y257H, and G464S

Azole 
resistance

(68, 94, 111, 112,  
114)

Overexpression Erg11, CDR1, MDR1 Azole 
resistance

(114)

C. krusei
ERG 11 

mutation
Codon substitution: 
T939C, T642C, A756T

Azole 
resistance

(122)

Overexpression Erg11 Azole 
resistance

(122)

C. auris
ERG 11 

mutation
VF125AL and I74L mutation Azole 

resistance
(16)

FKS1 mutation S639F mutation Echinocandins 
resistance

(16)

C.   

guilliermondii
ERG 11 

mutation
Non-synonymous mutations: 
W37C, P518R, P430Q, D492N, Y41F, L328T, S346T, V410M, S420T, F39L, N485K, Y132F, S346T, 

G16S, M332I, R247K, G459S, G459K, K143R, Q469K

Azole 
resistance

(125)

C. haemulonii
ERG 11 

mutation
Amino acid substitution: 
Y132H*

Azole 
resistance

(94)

*= Validated: mean all the amino acids found only in resistant strains and not in the susceptible isolates, and the authors discussed their azole resistance 
validity. 
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The overall C. auris clades reported in China belong 
to South Asian and South African clades [100,101]. The 
discovery of C. auris in multiple clades is mainly due to 
the increasing business exchange and global travelling in 
recent years, as reported previously in the United States 
[109]. In the included articles, only two studies per-
formed the MLST of C. albicans, revealed that most of 
the strains belong to novel DSTs, which indicates that 
genetic diversity is largely unknown. However, most of 
the DSTs known strains belong to clades 1 and 18, 
suggesting their nosocomial dissemination [16,17]. 
Interestingly, the worldwide distributed clade of 
C. albicans is clade 2, which is not identified in China 
[17,110]. It might be due to the highly distinct global 
distribution of C. albicans clades. Furthermore, it is also 
reported that different body sites are associated with 
different clades, like Candida of superficial infections 
mostly belongs to clade 1 and BSI from clade 4 [17]. 
Further studies regarding molecular epidemiology tar-
geting different body sites and populations are required.

The summary of the antifungal susceptibility profile 
showed that testing of azole, echinocandins, and poly-
enes is standard in China. In most Candida species, low 
susceptibility was observed for the azole group. Like in 
C. albicans the lowest susceptibility rates were observed 
for miconazole, ketoconazole, and fluconazole; 52.95%, 
85.3%, and 91.60%, respectively. Similar trends of low-
est susceptibility trend of azoles were also observed for 
non-C. albicans species. For C. tropicalis, the flucona-
zole and itraconazole susceptibility rates were 77.95% 
and 83.1%, respectively. Likewise, the fluconazole sus-
ceptibility rates for C. glabrata and C. parapsilosis were 
79.4% and 93.25%, respectively. The C. glabrata and 
C. tropicalis are considered to have low susceptibility 
against azole worldwide. In the United States, Australia, 
and several European countries, 85% to 94% of 
C. glabrata isolates were reported susceptible to fluco-
nazole [1,111,112]. In the United States, the 
C. tropicalis isolates were >97% susceptible to flucona-
zole [113]. For Latin America, Asia -Pacific regions, 
and Chile, nearly 90% of Candida isolates were azole 
susceptible [1,14,111]. The azole susceptibility of the 
current study is lower compared to other regions of 
the world and from tested polyenes and echinocandins 
drugs in the present study. This might be due to the 
high use of azole drugs in China, leading to molecular 
alteration of ergosterol biosynthetic pathways 
[114,115]. The reasons for their often prescriptions 
are that they are economical, available for oral admin-
istration, and reveal less toxicity [116]. The C. auris was 
reported in only two studies, which showed 100% resis-
tance to fluconazole and 57% susceptibility to vorico-
nazole. The highest susceptibility to amphotericin 

B was observed for all Candida species. It is mainly 
due to its less prescription as it is costly and causes 
severe renal toxicity [117]. The rapid emergence of 
echinocandins resistance has been observed worldwide, 
owing to their high use. In the United States, > 10% of 
C. glabrata isolates showed resistance to echinocandins 
[3]. In the current study, the echinocandins resistance 
is relatively low (0.8–2.5%) against C. glabrata. Their 
accurate prescriptions and usage must be maintained as 
the chances of acquiring resistance to echinocandins 
due to mutations in hotspot regions of FKS are very 
high [118]. The variation in susceptibility pattern of 
certain Candida species against azole drugs depends 
on various factors. The susceptibility reported in the 
early years was high compared to detected later in 2020 
and 2021, which indicates that the susceptibility 
decreases due to misuse of azole drugs. For example, 
a study reported 85% fluconazole susceptibility in 2013, 
while in 2020, 48% susceptibility was reported against 
C. glabrata [18–21]. Likewise, a study for C. parapsilosis 
in 2012 reported 98.6% susceptibility, while 76.93% 
susceptibility was reported in 2020 against itraconazole 
[22,23]. Likewise, a study in 2014 reported 100% itra-
conazole susceptibility rate against C. krusei, while in 
2016, a study reported 16.7% susceptibility rate [24,80]. 
Also, we reported that the median susceptibility values 
obtained by agar diffusion methods are lower than 
other methods in most cases (Supplementary table 
S2). Our finding contradicts earlier studies in 2002 
and 2007, as they reported the same results for agar 
diffusion and other methods [45,119]. Further com-
parative studies need to evaluate the results of antimi-
crobial susceptibility methods based on the molecular 
known susceptible and resistant magnitudes. 
Additionally, many other factors like geography, study 
population, usage of azole drugs, and isolates obtained 
from various body sites cause variation in the anti-azole 
susceptibility pattern among various studies [46, 120].

Many samples were isolated from the long-term 
ICU, and hospitalized patients indicated that nosoco-
mial disease is an important predisposing factor for 
candidiasis [20,25–31,101]. Besides this, the co- 
morbidities like hypoproteinemia, cardiovascular dis-
ease, diabetes, respiratory dysfunction, renal failure, 
cancer, HIV, and thrombocytopenia are reported to 
be significant for candidiasis development 
[21,27,29,30,32,33,94]. Apart from this, catheteriza-
tion, mechanical ventilation, elderly patients, empiri-
cal antifungal therapy, and surgeries are secondary 
risk factors [21,26,27,29–37,94,101]. The risk factors 
reported in the present study are comparable to the 
findings of other studies [105,61,121,122]. The health 
care workers need special attention to hand washing 
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or decontamination and provide an aseptic environ-
ment to minimize the horizontal transmission of 
candidiasis in the hospital.

The overall proportion of molecular studies regard-
ing the genotyping and resistant mechanisms was unsa-
tisfactory. The data obtained from molecular analysis 
give in-depth knowledge about the epidemiological ori-
gin and source of infections. Based on this, the health 
official eradicates the pathogens from their origins and 
inhibits their emergence and transmissions. Moreover, 
the molecular AFR study is essential to understand the 
intrinsic and acquired resistance mechanism, which 
may help to prevent the resistance and to design alter-
native and novel therapeutic agents [63,123]. To pro-
vide new insights, further molecular studies with 
a precise mode of action through genotyping and resis-
tant mechanisms are required to understand pathogeni-
city and resistant magnitude.

Many gaps in the surveillance studies were noted, i.e. 
we did not find any study according to our inclusion 
criteria from Qinghai and Tibet Autonomous Region. 
The mortality rate was not mentioned in 79.77% of the 
studies. Nine studies did not mention the mortality rate 
concerning specific Candida pathogen. Similarly, 
43.82% of the studies did not mention the patient 
types, as the inpatients are more vulnerable to candi-
diasis. Moreover, 47.19 %, 26.97%, 7.86%, and 4.49% of 
the studies did not mention the age, gender, breakpoint 
reference guidelines, and identification method, respec-
tively. More importantly, such gaps in the studies make 
the data suspicious and difficult to analyse for practical 
applications. We recommend that the researchers fulfill 
these gaps in their future studies.

The current study focuses on the antifungal suscept-
ibility pattern of Candida species from mainland China; 
however, its implication is worldwide. It is well known 
that resistant species are rarely limited to specific loca-
tions; any area with high drug resistant strains can act 
as a reservoir, from which the resistant species can be 
transmitted to other parts of the globe via humans, 
water, agricultural products, and animals [64,124]. 
Moreover, the current study is a point of reference for 
subsequent studies, as we identified the gaps in surveil-
lance studies that need to be addressed in future stu-
dies. The information provided here may help for the 
development of treatment recommendations in the 
future that may need to be regionally tailored. 
Additionally, this study would dictate the overall AST 
profiles of Candida species, which will help the policy-
makers and health care officials to eradicate and exert 
a curative effect of antifungal agents dealing with can-
didiasis in mainland China.

Limitations

Most of the studies included in this systematic report 
were from Beijing (n = 20) and Shanghai (n = 18) 
regions; there is a risk of selection bias. However, 
Beijing is political, and Shanghai is the economic 
hub of China, and people from all around the country 
are directly or indirectly connected with these two 
cities. There is also a chance of bias due to the not 
mentioned patient type in numerous studies; usually, 
the Candida species isolated from inpatients are less 
susceptible than outpatient [65,125]. In addition, it 
would be preferable to include studies that contain at 
least 30 isolates to ensure high-quality data accuracy 
[66,126]. However, due to the fewer existing studies, 
inclusion criteria regarding the isolates in each study 
had set at ten to cover high number of studies. 
Furthermore, data acquired through various methods 
from diverse patient groups were assembled in the 
present study. However, many studies used microdilu-
tion methods and followed CLSI guidelines; the degree 
of variation should be marginal.

Conclusion

This study summarizes the antifungal susceptibility 
pattern of Candida species from mainland China and 
found that azole had the lowest, while amphotericin 
B and anidulafungin had the highest susceptibility 
rates among the tested antifungal drugs. The clinician 
can select their empirical antifungal therapy based on 
the outcomes of the current study. We noted sub-
stantial gaps in the surveillance studies, like no stu-
dies were found in Qinghai and Tibet regions among 
the included articles. Also, the number of articles for 
some Candida species was insufficient to calculate 
their susceptibility pattern. Furthermore, fewer stu-
dies performed genotyping and molecular analysis of 
antifungal resistance. Therefore, continuous molecu-
lar surveillance studies by researchers focusing on the 
mentioned gaps are of paramount importance in 
combating candidiasis. Along with that, precaution-
ary measures from health staff following the guide-
lines of health care policymakers are necessary to halt 
the nosocomial dissemination and antifungal drug 
resistance.
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