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Abstract

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease selectively affecting upper and lower motor
neurons. Patients with ALS suffer from progressive paralysis and eventually die on average after three years. The underlying
neurobiology of upper motor neuron degeneration and its effects on the complex network of the brain are, however,
largely unknown. Here, we examined the effects of ALS on the structural brain network topology in 35 patients with ALS
and 19 healthy controls. Using diffusion tensor imaging (DTI), the brain network was reconstructed for each individual
participant. The connectivity of this reconstructed brain network was compared between patients and controls using
complexity theory without - a priori selected - regions of interest. Patients with ALS showed an impaired sub-network of
regions with reduced white matter connectivity (p = 0.0108, permutation testing). This impaired sub-network was strongly
centered around primary motor regions (bilateral precentral gyrus and right paracentral lobule), including secondary motor
regions (bilateral caudal middle frontal gyrus and pallidum) as well as high-order hub regions (right posterior cingulate and
precuneus). In addition, we found a significant reduction in overall efficiency (p = 0.0095) and clustering (p = 0.0415). From
our findings, we conclude that upper motor neuron degeneration in ALS affects both primary motor connections as well as
secondary motor connections, together composing an impaired sub-network. The degenerative process in ALS was found
to be widespread, but interlinked and targeted to the motor connectome.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative

disease, characterized by selective loss of lower motor neurons in

the spinal cord and upper motor neurons in the brain. Patients

suffer from progressive paralysis and eventually die from

respiratory failure. Besides motor symptoms, a subset of patients

develop cognitive disturbances or even frontotemporal dementia

(FTD), indicating ALS can involve extra-motor brain regions. The

peak incidence of this devastating disease lies between 50 and 75

years of age and the average time of survival is about 3 years after

onset of symptoms [1].

The effects of upper motor neuron degeneration on the brain

are largely unknown. Enhancing the insight in these degenerative

effects of ALS is essential towards better treatment. Conventional

magnetic resonance imaging (MRI) of the brain does not show

characteristic changes indicating upper motor neuron loss in ALS

[2]. Computational MRI analysis techniques have shown to be

more promising in demonstrating the degenerative effects of ALS

[3,4,5]. Previous DTI studies have mainly been focused on the

corticospinal tract, the white matter ‘highway’ connecting the

upper and lower motor neurons, showing reduced white matter

integrity in ALS [6,7,8,9,10]. In addition, recent studies have

consistently demonstrated involvement of the corpus callosum,

being the primary intracerebral motor connection [4,5]. However,

the involvement of other intracerebral structural connections has

only been partly explored. A small number of DTI studies have

included analysis of fractional anisotropy (FA) data in a voxelwise

manner showing widespread degenerative effects [11,12]. It is

unknown, however, whether these widespread effects occur

independently or linked to each other.

Brain regions are interconnected as a network, thereby strongly

influencing each other [13,14]. A mathematical framework to

examine the topology of complex network systems has been

adopted to study the organization of these connections [15,16,17].

Modern neuroimaging techniques, e.g. DTI, permit reconstruc-

tion of white matter tracts of the human brain [18]. Studies using

complexity theory – like graph theory - demonstrated that the

organization of the brain network or connectome plays a crucial

part in healthy brain functioning [19,20,21].

As the brain is a complex system of interacting regions, local

degeneration of upper motor neurons in ALS may have a

widespread effect on the brain network. Here, by combining DTI

and graph theory, we examined the integrity of the structural
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brain network in patients with ALS to provide further insight in

whether the degenerative effects of ALS occur independently or as

a connected system.

Methods

Ethics statement
The medical ethics committee for research in humans of the

University Medical Center Utrecht, the Netherlands has approved

this research. Informed written consent was obtained from all

participants. All clinical investigation has been conducted

according to the principles expressed in the Declaration of

Helsinki.

Participants
Thirty-five patients with ALS (mean age 50.8; SD 13.0 years; 28

males and 7 females) and 19 age-matched healthy control subjects

participated in this study (mean age 53.1; SD 10.5 years; 14 males

and 5 females). Patients diagnosed with ALS according to the El

Escorial criteria were recruited from the ALS outpatient clinic of

the University Medical Center, Utrecht. The clinical character-

istics are listed in Table 1. No patients fulfilled the clinical criteria

of FTD [22]. Subjects with a history of brain injury, epilepsy,

psychiatric illness and other neurodegenerative diseases were

excluded, resulting in the group of participants described. Clinical

status of the patients was evaluated using the ALS Functional

Rating Scale-Revised (ALSFRS-R). The ALSFRS-R is a validated

rating instrument for monitoring the progression of disability in

patients with ALS [23]. Disease progression rate was calculated,

defined as the average decline in ALSFRS-R-score since disease

onset ((48 - ALSFRS-R-score)/disease duration in months).

MRI Acquisition
All participants underwent a 35-minute scanning session, in

which Diffusion Tensor Imaging (DTI) - for reconstructing the

white matter tracts of the brain network - and T1 images - for

anatomical reference - were acquired and manually checked. MRI

scans were made on a 3 Tesla Philips Achieva Clinical scanner at

the University Medical Center Utrecht using a sixteen channel

SENSE receiver head-coil. Within each scanning session, first, 2

DTI sets, each consisting of 30 weighted diffusion scans and 5

unweighted B = 0 scans, were acquired (DTI-MR using parallel

imaging SENSE p-reduction 3; high angular gradient set of 30

different weighted directions [4,14,24,25], TR/TE = 7035/68 ms,

26262 mm, 75 slices, b = 1000 m/s, second set with reversed k-

space read-out). Directly after the acquisition of the DTI scans, an

anatomical T1-weighted image was acquired (3D FFE using

parallel imaging; TR/TE 10/4.6 ms; FOV 2406240 mm, 200

slices, 0.75 mm isotropic voxelsize).

Image preprocessing
DTI preprocessing and fiber tracking. The DTI

preprocessing and reconstruction of the white matter pathways

included the following steps. First, the 5 B = 0 images of each of

the two DTI sets were averaged, improving the signal to noise

ratio of the B = 0 images. Next, susceptibility distortions were

corrected by computing a field distortion map using the two

average unweighted B = 0 images, based on the fact that they were

acquired with an opposite k-space read-out direction [26]. The

resulting field map was then applied to the two B = 0 images and

the two sets of 30 weighted images [26], resulting in a single set of

30 weighted directions which were realigned with a corrected

B = 0 image [27]. Third, eddy-current distortions, often observed

in acquisition of single-shot EPI images, were corrected [27].

Fourth, for each voxel, the diffusion profile was fitted a tensor

using a robust tensor fit method based on M-estimators [28]. The

principal eigenvector of the eigenvalue decomposition of the fitted

tensor was computed, marking the preferred diffusion direction in

each voxel. For each voxel the FA was computed [29,30], with

high FA values indicating a preferred, diffusion direction of the

water molecules. Next, in the final (fifth) step, for each individual

DTI dataset, white matter tracts of the brain were reconstructed,

often referred to as fibers or tracts, using the Fiber Assignment by

Continuous Tracking (FACT) [31,32,33]. Tracking parameters were

set as follows: from each white voxel in the brain mask, a single

seed was started, following the main diffusion direction of each

voxel, traveling from voxel to voxel, reconstructing the white

matter fiber step-by-step. Fiber tracking was stopped when the

fiber trace reached a voxel with a FA value lower than 0.1, when

the trajectory of the traced fiber exceeded the brain mask or when

the streamline made a turn of more than 45 degrees. Only

streamlines with a length that exceeded 30 mm were considered

for further analysis. Furthermore, to indicate the integrity of a

reconstructed fiber tract, each point of the fiber tract was colored

with the FA values of the voxels along the 3D path of the fiber

[14,34,35,36].

T1 preprocessing and brain region parcellation. Cortical

and sub-cortical brain regions were selected by parcellating the

cerebrum into distinct, anatomically separated brain regions on

the basis of the T1-weighted image, using the well-validated

Freesurfer suite (V4.5, http://surfer.nmr.mgh.harvard.edu/). In

short, this included the automatic segmentation of grey and white

matter tissue, followed by parcellation of the segmented grey

matter mask into distinct brain regions, based on a normalized

template, parcellating the brain into a number of brain regions,

including left and right caudate nucleus, globus pallidum, nucleus

accumbens, thalamus, amygdala, hippocampus and 70 cortical

brain regions. In total, 82 distinct brain regions were parcellated

[37,38].

Table 1. Demographic and clinical characteristics of all study
participants.

Healthy controls
(n = 19)

ALS patients
(n = 35)

Mean±SD
(range)

Mean±SD
(range)

Age (years) 53.1610.5 (33-67) 50.8613.0 (26-78) a

Sex (male/female) 14/5 28/7 b

Site of onset (n) Bulbar 5 (14%)

Cervical 18 (51%)

Lumbosacral 12 (35%)

Side of onset (n) Left 19 (54%)

Right 9 (26%)

Symmetrical 7 (20%)

Disease duration
(months)

17.7618.0 (3-59)

ALSFRS-R 40.164.3 (30-47)

Progression rate 0.660.5 (0.1-2.0)

SD = standard deviation. ALSFRS-R = revised ALS functional rating scale.
acomparison of age between the groups, did not result show any significant
differences (t-test statistics, p = 0.49).

bthe proportion males and females is not significantly different in patients
versus controls (Fisher’s exact test, p = 0.42).

doi:10.1371/journal.pone.0024239.t001

Impaired Structural Motor Connectome in ALS
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Construction of structural brain networks
Using the collection of all reconstructed DTI fiber tracts and the

collection of parcellated brain regions, for each individual dataset

a structural brain network was constructed, using a validated

network framework [13,19,39]. This procedure included the

following steps, illustrated one-by-one in Figure 1. A graph

G = (V,E) is a mathematical description of a network, consisting of

a collection of nodes V and a collection of connections E, that

interconnect the nodes of the network. Within this framework, the

brain network can be expressed as a collection of nodes, reflecting

the different anatomical regions and a collection of connections

between the nodes, representing the white matter tracts intercon-

necting cortical and sub-cortical regions. Two nodes i and j of the

network (i.e. brain region i and region j) were defined as being

connected when there was a reconstructed white matter tract in

the collection of DTI fibers that interconnected region i and region

j. This selection covered the following specific steps. First, for each

individual dataset, the brain regions (i.e. nodes of the G) were

defined as the individually segmented brain regions. Next, the

existence of connections between the nodes (i.e. anatomical brain

regions) was computed: for each pair of regions in the individual

specific parcellation map it was determined whether the two

regions were connected by a white matter pathway [14,36]. When

the fiber selection procedure did not reveal any fibers between

region i and j, no connection was included in G. This procedure

was repeated for all regions i and j in the parcellation map.

Furthermore, for each connection in G, the strength S of the

connection was taken as its average FA (believed to reflect the level

of microstructural organization of the tract). Repeating this

procedure for all combinations of regions i and j in the network

resulted in a sparsely weighted connectivity matrix M, with

weighted connections between those brain regions that are

structurally connected and zeros otherwise. Next, to correct for

possible individual differences in overall connectivity strength, the

connectivity matrix M was scaled to the maximum FA value

within M [25]. As a result, each individual matrix M expressed the

connectivity structure of the brain network, with the cells of M

representing the connections and their values representing the

connectivity efficacy between brain regions. Please note that,

related to the noise of the DTI signal, it is known that streamline

tractography may result in the construction of some incorrect

streamlines, possibly leading to the inclusion of false positives.

However, as a falsely constructed streamline is likely to only occur

in a single subject or in a small subgroup across the total group of

subjects - otherwise it is more likely to represent a true (i.e. true

positive) existing white matter pathway - false positives were

controlled for by taking into consideration only those connections

that were present in 2/3 of both the patients and controls. Hereby

minimizing the effect of incorrect streamlines on the analysis.

Overall topology of the brain network
Overall topology of the structural brain networks - in both

patients and healthy controls - were examined by computing the

overall connectivity strength S (sum of the connectivity matrix), the

Figure 1. Overview of the network selection procedure and the Network Based Statistics (NBS). (a) Using the DTI data, white matter
tracts of the brain were reconstructed. (b) Cortical and sub-cortical brain regions were selected by automatic parcellation of the cerebrum. (c) An
individual brain network was defined, consisting of nodes (i.e. the parcellated brain regions) and connections between nodes i and j that were
connected by a white matter pathway. (d) Repeating this for each region i and j in the collection of parcellated brain regions, resulted in a (weighted)
connectivity matrix M. Connections were weighted by their FA value, as determined from the DTI measurement. Next, using Network Based Statistics
(NBS), the connectivity matrices of ALS patients and controls were compared. (e1) First, each connection between region i and j was tested between
patients and controls using t-statistics. (e2) This resulted in a binary difference matrix, with 1s for those connections that showed a (absolute) t-value
between controls and patients higher than a set T-threshold T, and 0 otherwise. Third, the sizes of the (largest) connected components in the
difference matrix was computed, revealing sub-networks of regions showing affected connectivity in patients. Fourth, permutation testing was used
to define a distribution of (largest) component size that could occur under the null-hypothesis (i.e. no difference between patient and controls). 5000
permutations, permuting group assignment, were computed. Finally, the original observed component size (i.e. difference between patients and
controls) was given a p-value based on the computed null-distribution, by defining the percentage of the null-distribution that exceeded the size of
the observed impaired network in patients.
doi:10.1371/journal.pone.0024239.g001
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average shortest path length L (as a measure of global

connectivity), the average clustering coefficient C (as a measure

of local connectivity in the network). Typically C and L values are

normalized to the clustering-coefficient and path length of a

collection of random graphs to examine how the graph metrics C

and L relate to the properties of a randomly organized network.

To this end, C and L were compared to the metrics of 100 random

graphs with equal degree and degree distribution as the examined

brain networks [40]. Furthermore, providing insight in the

distribution of connectivity, the average connectivity distribution

- i.e. a histogram of how many times a certain level of node-

specific strength S occurs in the network - of the brain networks of

patients and controls was computed. Possible differences in S, C, L,

normalized C and/or normalized L between the two groups were

examined using permutation testing (5000 permutations) [25].

Statistical testing for impaired networks
Next, using the individual brain networks (i.e. matrices M) of

patients and controls, it was examined whether patients with ALS

showed impaired structural connections (i.e. reduced connectivity

strength of specific node-to-node connections), compared to the

brain networks of the healthy controls. Network Based Statistic

(NBS), as proposed by Zalesky et al [41], was used to identify

impaired sub-network(s) in patients in comparison to healthy

controls. The rationale behind NBS expands the notion of

Statistical Parameter Mapping, marking that impaired connec-

tions that form a network (i.e. together make up a connected

component in the network) have a higher probability of

indicating true abnormality, than single connections (i.e. not

forming a connected component), hence providing control for the

high number of tests performed (i.e. good control for type I error

in the problem of multiple comparison). A detailed description of

the NBS methodology is given by Zalesky et al. [41]. The

performed NBS analysis consisted of the following steps. First, for

each connection in the brain network the mean difference in

connectivity strength between the group of patients and the group

of controls was tested using a two-sample t-test (leaving out zeros).

Within the NBS framework, differences in connectivity strength

between the group of patients and the group of controls with a t-

value larger than a set threshold T were marked by 1 in a

difference matrix D, and 0 otherwise. Within the NBS procedure,

the choice of T-threshold is rather arbitrary [41]. However, in

this context it is worth mentioning that type I error is always

ensured with NBS, irrespectively of the choice of T-threshold as

illustrated by simulations performed in the original NBS paper of

Zalesky and colleagues [41]. However, type II error (false

negative rate) may be impacted by the choice of T-threshold.

Therefore, two analyses were performed: (1) using a two-sided T-

threshold reflecting a p-value of 0.0075 [41]; (2) using a more

exploratory one-sided threshold matching a p-value of 1/N, with

N the number of nodes in the network. From the resulting matrix

D the size of the largest interconnected component was

computed, marking the size of the cluster of affected connections

in the group of patients related to the group of controls. Thirdly,

permutation analysis was used to create a distribution (i.e. null-

distribution) of component size that can occur under the null-

hypothesis. For each of the permutations, (1) subjects (patients

and controls) were randomly assigned to two random groups (of

similar size as the original patient and control groups); (2) the

difference matrix D between these two groups was computed; (3)

matrix D was thresholded; (4) the size of the largest component

(i.e. the number of nodes and connections involved) was

computed. In the present study, 5000 permutations were

performed to create a null-distribution. Fourthly, given the

obtained null-distribution, a corrected p-value of the components

observed in the original difference matrix D between the patients

and controls was computed as the percentage of the null-

distribution that had a higher value than the observed component

size [41].

Examining the topology of impaired sub-network(s)
The observed impaired structural network(s), expressing

reduced connectivity strength in patients compared to controls,

was taken for further analyses on topology [25,40,41]. For all

individual subjects (both patients and controls) a sub-network

was formed out of the connections of the reported NBS

network(s), by extracting the connectivity values out of the

individual connectivity matrices M. Next, for each of the

individual sub-network(s) the level of connectivity strength S

was computed, expressing how strong the nodes of the impaired

network(s) were interconnected, together with the level of

efficiency E, expressing the level of efficiency of how each

region was connected to other regions in the network. In

addition, to S and E, the level of local clustering (expressed by

the clustering-coefficient C) was computed, providing informa-

tion on possible changes in the level of local efficiency or local

cliqueness of the affected sub-network [40]. Furthermore, to

examine the role of each of the nodes in the impaired sub-

network(s), the node-specific connectivity strength Si and the

node-specific efficiency Effi were computed. The connection

strength Si of each node i expresses how strong a node is

connected to the other nodes of the network and was computed

by summing up the weights of all its connections. The level of

efficiency Effi of node i was defined as the sum of the inverse

distances between node i and all other nodes j in the network,

indicating how efficient information from node i can be shared

with the other nodes of the network [40].

Linking graph organizational measures to clinical scores
A possible association between the topology of the impaired

network(s) - revealed by the NBS procedure - and clinical scores

was explored. ALSFRS-R and disease progression rate was

examined against Si and Effi metrics of the impaired network(s)

using linear regression.

Results

Overall network topology
Table 2 summarizes the global graph metrics of the brain

networks of ALS patients and healthy controls, supporting the

results of recent studies, indicating a high level of local clustering

and a short overall path length [25,42]. The average connectivity

distribution of patients and controls is given in Supplemental

Figure S1. As expected, no differences were found in any of the

overall graph metrics in ALS (permutation testing, 5000

permutations), suggesting an intact organization of the global

brain network in patients.

Impaired sub-network
The NBS revealed a single impaired sub-network, consisting of

9 nodes and 10 (bidirectional) connections, of reduced connectivity

in patients with ALS (NBSa; p = 0.0108, permutation testing). This

impaired network overlapped with the left and right precentral

gyrus, left pallidum, left hippocampus, left and right caudal middle

frontal gyrus, right paracentral gyrus, right posterior cingulate and

right precuneus (Figure 2a and 3). Interestingly, although a whole

brain analysis was performed without any a priori selection of

motor regions, the regions of this impaired network strongly

Impaired Structural Motor Connectome in ALS
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overlap with regions that are known to play a key role in motor

movement and control. To further examine this overlap an

additional analysis was performed (see below).

Furthermore, using a NBS-threshold matching a p-value of 1/

N, a more extended network was found, including frontal and

temporal regions as shown in Figure 2b (NBSb; p = 0.0084,

permutation testing). Similar to the more conservative selected

network, the sub-network overlapped with the primary motor

regions (bilateral precentral gyrus and paracentral lobule),

supplemental motor regions (bilateral caudal middle frontal gyrus,

superior frontal gyrus and pallidum), but also with a number of

other frontal cortical regions (right rostral middle frontal gyrus and

right pars triangularis), temporal cortical regions (right middle and

superior temporal gyrus), parietal cortical regions (bilateral

postcentral gyrus, posterior cingulate and precuneus) and the

bilateral hippocampus and right amygdala. The involved cortical

regions are shown in Figure 2b. [A post-hoc analysis including age

as a covariate in the NBS analysis revealed no fundamental

changes in the significance and/or topology of the observed NBS

network (Figure 2)].

Overlap with the motor network
To further examine this consistency between the impaired

network and the motor network, we determined the overlap

between the regions that form the motor network and the observed

impaired sub-network in patients with ALS. The overlap was

statistically assessed using Fisher’s exact test. First, the healthy

Table 2. Global graph metrics.

FA weighted brain network

Healthy controls ALS patients

Graph metrics Mean±SD Mean±SD

Connectivity strength S
(sum of M)

840675.8 843672.8

Shortest path length L 3.0460.18 3.0460.14

Clustering coefficient C 0.3760.02 0.3660.02

Normalized characteristic
path length

1.1160.014 1.0860.017

Normalized clustering-
coefficient

2.260.16 2.160.17

Table summarizes the global values of connectivity strength S, shortest path
length L, normalized path length, and normalized clustering coefficient C
(normalized to 100 random graphs).
FA = fractional anisotropy. SD = standard deviation.
doi:10.1371/journal.pone.0024239.t002

Figure 2. Cortical brain regions with impaired structural connectivity in ALS. (a) The NBS procedure revealed a sub-network of brain
regions showing significantly reduced structural connectivity in ALS patients, compared to the healthy controls. Figure shows the set of involved
parcellated cortical regions (p = 0.0075, see materials and methods). (b) Using an NBS threshold of p = 1/N (N being the number of nodes of the
network), a similar but more extended network was revealed. This model-free approach revealed a sub-network consistent with known motor
regions, including precentral and paracentral gyri (primary motor), caudal middle frontal and superior frontal gyri (supplemental motor areas, BA6).
The subcortical structures found with the NBS procedure were not included in this figure. Right = Right; Left = Left.
doi:10.1371/journal.pone.0024239.g002

Impaired Structural Motor Connectome in ALS
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motor network was determined by selecting the (direct) connec-

tions of the left and right precentral gyrus - as primary motor

regions - with other brain regions in the group of healthy controls.

The connectivity matrix M of the group of healthy controls was

used to extract the direct connections of the left and right

precentral gyrus. Figure 3a illustrates the regions that together

form the (direct) motor network, i.e. those regions that show a

direct connection with the left and right primary motor regions in

the majority of the group of healthy subjects. Comparing this

motor network to the found impaired sub-network in ALS

patients, the NBSa network (Figure 2a) showed large overlap with

the motor network. The regions found with the NBSa procedure

were 89% motor regions and non-NBSa regions were 66% non-

motor regions (Fisher’s exact test: p = 0.0025). Furthermore, the

overlap with the extended NBSb network (Figure 2b) was found to

be significant as well (p,0.0001); 76% of the NBSb regions were

motor regions and 75% of the non-NBSb regions were non-motor

(the overlap is illustrated in Figure 3b). Exact numbers of

overlapping regions are given in Table 3.

Topology of the impaired NBS network
Examining the topology of this impaired network (NBSa,

Figure 2a) revealed a significantly reduced level of network

efficiency E (p = 0.0095, t-test, df = 52), as well as a reduced level of

overall clustering C (p = 0.0415, t-test, df = 52). Also overall

connectivity density S was found to be reduced in patients, but

this effect did not reach the set statistical threshold (p = 0.062).

Examination of the node-specific organizational measures, re-

vealed a significant lower efficiency Effi of the left precentral

(q,0.05, q = FDR corrected p-value), left caudal middle frontal

gyrus (q,0.05), right paracentral (q,0.05), right precuneus and

posterior cingulate cortex (q,0.05). The left precentral gyrus

(p = 0.042, df = 52) and right paracentral lobule (p = 0.0150) also

showed a reduced level of connectivity strength Si, but these effects

did not survive FDR correction.

ALSFRS or progression rate scores were not significantly

correlated with network topology measures.

Discussion

The main finding of this study is a reduced efficiency of a

widespread motor connectivity network in ALS. Patients revealed

a significantly impaired structural network overlapping bilateral

primary motor regions (precentral gyrus and paracentral lobule,

Brodmann area (BA) 4), bilateral supplementary motor regions

(caudal middle frontal gyrus, BA 6), parts of the left basal ganglia

(pallidum) and right posterior cingulate and precuneus (Figure 2).

Specifically examining the structural topology of the NBS network

using graph analysis, revealed a significant decrease in efficiency E

of this community of regions, most pronounced in left and right

primary and supplemental motor regions (Figure 4). These results

suggest that ALS not only affects primary motor connections, but

also the capacity of primary motor regions to connect and

communicate to supplemental motor regions. In addition, motor

connections to the precuneus and posterior cingulate regions,

strong connected regions or hubs of the brain network [25,42],

were found to be affected in ALS. Hub regions are known to play a

central role in the communication between remote brain regions

[36,43]. Taken together, our findings suggest that not only the

primary motor network is affected, which tends to be the current

opinion on ALS [4,5], but that ALS may have a much more global

effect on connectivity and communication efficiency of the human

connectome.

As shown in Figure 3b, the impaired sub-network in patients

strongly overlapped with the motor network as we found in

healthy controls. Based on the central role of the primary motor

regions in the NBS network (see Figure 4b), it is tempting to

Figure 3. Overlap between motor network and impaired NBS network. (a) Direct cortical connections of the primary motor network. The direct
connections of the left and right precentral gyri in the group of healthy controls are shown. Figure illustrates (per region) the percentage of healthy control
subjects that showed a direct structural white matter connection to the left or right precentral gyrus. The primary motor network was selected as those regions
that were connected to the primary motor regions in the majority of healthy controls (.75%). (b) Figure shows the overlap (right column) between the
exploratory NBS network (left column, NBSb network, Figure 2b) and the regions of the healthy motor network (middle column, showing regions of Figure 3a).
The impaired NBS network was found to strongly overlap the motor network (p,0.0001, Fisher’s Exact test). Right = Right; Left = Left.
doi:10.1371/journal.pone.0024239.g003
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speculate about the idea that the disease starts in the precentral

gyrus and progresses along the structural connections of the

primary motor regions towards secondary motor regions. Our

current study did not, however, show direct correlations of

network impairment with severity or progression rate of the

disease. Alternatively, brain plasticity could have potentially

attributed to the reduced motor connectivity. Longitudinal and

combined structural and functional MRI studies are needed to

validate our hypothesis of disease progression along functional and

structural connections of the motor network from primary motor

regions towards secondary motor regions. Measurements of

functional connectivity were not included in this study, but

previous data have suggested that functional connectedness of the

motor network is correlated with a faster disease progression [4].

Our finding, of degenerative effects in extra-motor regions in

ALS, is in line with previous imaging studies on ALS. A number of

grey and white matter voxel-based morphometry (VBM) studies

[12,44,45,46] as well as DTI studies [9,11,47,48,49] have reported

extra-motor degenerative effects in ALS. These studies mostly

resulted in an enumeration of found affected brain regions.

Interpretation of this type of findings, however, is difficult and

often limited to linking the function of the found regions to the

clinical features in ALS. In contrast, the graph analytical network

approach applied in this study provides the opportunity to

examine ALS as a network disease, focusing on how the disease

affects the white matter connectivity structure between brain

regions. Our study may now provide a new insight into ALS,

showing that the affected extra-motor regions are highly

connected to the precentral gyri (primary motor regions) as the

center of the degenerative process. The notion of a more

widespread effect on brain connectivity, is supported by recent

findings of impaired functional connectivity in patients [50,51]. A

study on resting-state fMRI data of patients with ALS showed a

reduced level of functional communication in the so-called

Table 3. Overlap between the impaired sub-network in ALS
and the motor network.

(Figure 3a) NBSa non NBSa

motor 8 25

non-motor 1 48

p = 0.0025

(Figure 3b) NBSb non NBSb

motor 19 14

non-motor 6 43

p,0.0001)

The overlap of included regions is depicted for both NBS thresholds (see
methods). The resulting p-value of the Fisher’s exact test is included.
NBS = network based statistics.
doi:10.1371/journal.pone.0024239.t003

Figure 4. Network of impaired structural connectivity in ALS. (a) The nodes and interconnections of the NBS network (NBSa network,
Figure 2a) as viewed from an anatomical perspective. (b) The NBS network from a network perspective (optimizing free Kamada-Kawai energy,
constructed with pajek http://vlado.fmf.uni-lj.si/pub/networks/pajek/). Nodes and connections showing significantly reduced efficiency in patients
are highlighted.
doi:10.1371/journal.pone.0024239.g004
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‘default-mode network’, a clustered network overlapping medial

inferior and lateral superior frontal, precuneus and inferior

parietal and superior temporal brain regions [51]. This reduced

default mode connectivity is in accordance with our findings of

impaired structural connectedness of the motor network to the

precuneus and posterior cingulate regions, key regions of this

‘default-mode network’ [14,43].

Recent studies have reported an association between structural

and functional connections in the brain network, confirming that

anatomical connectivity - to some extent - bounds and shapes

functional communication and connectivity between brain regions

[14,36,42,52,53]. Most importantly, a recent study showed that

apparent local structural effects, for example focal damage to a

primary motor node, can have widespread effects on whole brain

functional network communication [54]. As such, our findings of

impaired structural efficiency in ALS may suggest strong functional

implications for efficient information processing and integration in

the motor network. Indeed, reduced levels of global efficiency and

affected functional connectivity of the brain network have been

reported in neurological and psychiatric brain disorders, like

Alzheimer’s disease [55,56], Parkinson [57,58] and schizophrenia

[25,59], diseases known to affect cognitive processing. Higher levels

of global brain network efficiency (and especially of frontal and

temporal brain regions) are known to play a key role in cognitive

functioning [19,20,60]. Our current results, together with recent

studies examining whole-brain functional connectivity in ALS, show

that ALS may affect more than simply the regions and topology of

the motor network and that this underlying reduction of brain

efficiency may be related to (subtle) cognitive dysfunction, observed

in quite a large number of patients [61,62,63]. This calls for future

studies including ALS patients with FTD and quantitative

neuropsychological testing. Examining this sub-population in a

similar graph analytical approach may provide further information

on whether brain network efficiency metrics are related to an

increased probability of FTD development in ALS.

A potential weakness of our study is the disproportionate

number of control subjects compared to patients, as well as the

lack of longitudinal measures. The study was, however, set up to

examine potential effects of disability and disease progression on

motor network connectivity, and therefore to include a large group

of patients. The total group included less disabled patients

(ALSFRS-R.40), as well as patients with major disabilities

(ALSFRS-R,40). Much to our disappointment, no effects were

found to correlate with either the functional impairments, disease

duration or disease progression rate. In addition, turning to the

methodological aspects of this study, although DTI is an

established method for investigating white matter integrity, the

biological substrate of FA changes is still not completely

understood. Fractional anisotropy is widely used as a measure of

white matter integrity, it is influenced by multiple factors,

complicating a direct interpretation of the results. Well-known

influences are crossing fibers, fiber re-organisation, increased

membrane permeability, destruction of intracellular compart-

ments and glial alterations [64,65].

Second, in this study, connectivity between brain regions was

taken as the average FA along a tract [25], rather than the number

of streamlines interconnecting a pair of regions [42,66]. The latter

measure has been argued to be more sensitive when the impairment

of a tract is relatively local, a streamline is in that case likely to

terminate at the point of impairment, resulting in a reduced

streamline count. This in contrast to using FA as a measure of

connectivity, when local impairment may then be attenuated as the

remaining part of the fiber streamline is not affected. However, this

argument only holds when the impairment is severe, bringing the

FA value along a point of the fiber below the stopping threshold of

the tracking procedure (in this study 0.1). Based on previous DTI

studies in ALS, such a severe impairment in microstructural

integrity is unlikely to occur. FA alterations along the corticospinal

and corpus callosal tracts - being the most extensively affected white

matter tracts in ALS – appear to be rather modest (approximately

10%), despite profound motor disability among studied patients

[4,5,47,67]. As a result this will likely not have a strong effect on the

tracing procedure; the FA value along the tracts in patients will still

exceed the stopping criteria of ,0.1, resulting in normal

reconstructed tracts. Indeed, no differences were found in overall

number of streamlines - overall and in corticospinal and corpus

callosal tracts - in this study and in previous studies of our group [4].

Furthermore, as expected, performing a post-hoc analysis in which

the NBS analysis was performed on the number of streamlines

instead of FA (i.e. connectivity matrices were constructed from the

(scaled) number of streamlines that could be found between region i

and j in the network) did not reveal a subnetwork of affected regions

related to ALS. These post-hoc results support our overall

conclusion, suggesting that most fiber tracts are still present in

patients with ALS, but that their microstructural organization is

altered due to disease.

Third, in this study, streamline fiber tracking was used to

reconstruct the connections of the brain network. The used

deterministic fiber tracking algorithm (FACT) is based on having

sufficient directional information at each point along the tract.

When however the directional information at some point along a

fiber stream is not univocal - for example due to ‘crossing fibers’ -

ambiguous information on the diffusion direction may lead to low

FA values, which could prematurely terminate a fiber streamline.

As a result, some fiber pathways may be only partly reconstructed,

leading to a reduced streamline count or some key fiber pathways

may be missed at all. Alternative methods have been suggested,

including tracing methods based on shortest paths [68] and

probabilistic fiber tracking [69]. In addition to false negatives, due

to noise in the DTI data, streamline tractography may sometimes

lead to false positives, meaning the construction of incorrect

streamlines, which in turn may result in an incorrect connection

between region i and j in the connectivity matrix M. To control for

the effect of false positives in the analysis, a group threshold of 2/3

was applied, stating that only connections that were present in

more than 66% of both the group of patients and the group of

controls were considered for analysis (see for a full description the

Methods section). A useful alternative method to control for false

positives, might be to include an initial streamline-threshold at the

individual level, stating that only a connection between region i

and j is said to be present when it consists out of more than a

certain number of streamlines. Performing such an additional

analysis, including a streamline threshold of 10 (i.e. taking only

connections into consideration that included . = 10 streamlines,

identical NBS procedure, 5000 permutations) revealed a similar

affected sub-network (p,0.0030, NBS), covering the same regions

as presented in Figure 2a. These additional analyses suggest that

the effect of false positives to our presented results (Figure 2 and 3)

is minimal. Fourth, brain networks were examined on a

macroscopic scale at a relative low spatial resolution, representing

the brain as a graph of 82 segmented brain regions (i.e. nodes).

Recent studies have, however, suggested the use a more high-

resolution approach (going up to more than a 1000 smaller

regions) [39,41,70]. ‘Graph resolution’ has been reported to have

an effect on the topological properties of brain networks

[41,71,72].

Based on our present findings, we conclude that besides primary

motor regions - as the center of the degenerative process in ALS -
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the motor connectome as a whole is affected in ALS including

secondary motor connections. The widespread effects on the brain

network were found to result from an interconnected degenerative

process, suggesting that focal damage in primary motor regions in

ALS may ultimately manifest in connectivity disturbances

elsewhere in the brain.

Supporting Information

Figure S1 Average connectivity distribution of the group of

patients with ALS and the group of healthy controls.
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