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Abstract

Essential aspects of the innate immune response to microbial infection appear to be conserved between insects and
mammals. Although signaling pathways that activate NF-kB during innate immune responses to various microorganisms
have been studied in detail, regulatory mechanisms that control other immune responses to fungal infection require further
investigation. To identify new Drosophila genes involved in antifungal immune responses, we selected genes known to be
differentially regulated in SL2 cells by microbial cell wall components and tested their roles in antifungal defense using
mutant flies. From 130 mutant lines, sixteen mutants exhibited increased sensitivity to fungal infection. Examination of their
effects on defense against various types of bacteria and fungi revealed nine genes that are involved specifically in defense
against fungal infection. All of these mutants displayed defects in phagocytosis or activation of antimicrobial peptide genes
following infection. In some mutants, these immune deficiencies were attributed to defects in hemocyte development and
differentiation, while other mutants showed specific defects in immune signaling required for humoral or cellular immune
responses. Our results identify a new class of genes involved in antifungal immune responses in Drosophila.
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Introduction

Innate immunity is the first line of defense in multicellular

organisms, and effectively prevents or limits infection after

exposure to microbes [1]. The innate immune response to

microbes triggers diverse humoral and cellular activities via signal

transduction pathways that exhibit transphyletic conservation in

animals [2–4]. In mammals, the adaptive immune system is

recruited for complete elimination of microbes or microbial debris

after initial neutralization or clearance by the innate immune

system. However, Drosophila relies on humoral and cellular innate

immune responses for protection against the barrage of microbes

that thrive in its habitats [3–6].

A hallmark of the humoral response in Drosophila is the massive

synthesis of antimicrobial peptides (AMPs) after immune chal-

lenge. AMPs are produced primarily by the fat body, the

anatomical equivalent of the mammalian liver, and are secreted

into the hemolymph where they directly kill invading microor-

ganisms [6]. Genetic analysis has shown that AMP genes are

regulated by various immunogenes through the Toll and Imd

pathways [3,6]. The Toll pathway is activated by both Gram-

positive bacteria and fungi. Recognition of microbial components

triggers proteolytic cleavage of the Toll ligand Spatzle (Spz)

leading to activation of the Rel proteins, Dif and Dorsal [7–10]. In

contrast, the Imd pathway mainly responds to Gram-negative

bacteria and controls the expression of specific AMP genes by

activating Relish [9,11,12].

In addition to strong antimicrobial activities provided by the

humoral response, cell-mediated defenses also play an important

role in the elimination of apoptosed cells and invading microbes or

parasites [13–18]. The Drosophila hemocyte population consists of

three cell types: plasmatocytes, crystal cells, and lamellocytes

[19,20]. Plasmatocytes represent 90–95% of all mature Drosophila

hemocytes and function in the phagocytic removal of dead cells

and microbial pathogens [15,16]. Crystal cells, which constitute

approximately 5% of the hemocyte population, are non-phago-

cytic cells that facilitate innate immune responses and promote

wound healing through the process of melanization [15,17,21].

Lamellocytes are relatively large (15–40 mm), flat, adherent cells

that facilitate the encapsulation and neutralization of objects too

large to be engulfed by plasmatocytes [18]. These hemocytes are

activated by microbial molecules through the same pattern

recognition receptors as in the fat body, but the mechanisms

leading to the activation of cellular immune responses are not fully

understood.

Significant effort has focused on identifying components of the

signaling pathways involved in regulating the innate immune

response. Previous studies have identified a number of genes that

are differentially regulated in hematocytes during microbial

infection [22,23]. However, the role of these genes in the immune

response is only known for a few of them. To evaluate the role of

these genes in antifungal immune responses, we examined the

effect of individual mutations on the immune response of flies

against Beauveria bassiana infection, and identified 16 mutants with

increased sensitivity to B. bassiana. Examination of the sensitivities

of these mutants to infection with several types of bacteria

identified several mutants that were required mainly for defense

against fungal infection. Examination of cellular immune respons-
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es revealed that transcription factors involved in chromatin

remodeling or lineage specific differentiation were required for

proper hemocyte development. Mutation of genes involved in

cytoskeletal remodeling caused a strong defect in phagocytosis,

while Trx-2 and DDB1 were required for development of

functional crystal cells. The screen also identified several novel

genes required for activation of antimicrobial peptide genes,

indicating their involvement in signaling during pathogen specific

immune responses. The distinct requirement of these genes for

defense against different microbial infections also reveals the

complexity of innate immune responses designed to compete with

diverse offensive mechanisms used by microbes. In this paper, we

present new findings on the regulation of cellular and humoral

immune responses of Drosophila against fungal infection.

Results

Screening of immune defective mutant flies
Previously we identified genes that were differentially induced in

SL2 cells after treatment with LPS/PGN or curdlan using

Drosophila cDNA microarrays [24]. These LPS/PGN-or curdlan-

induced genes are probably involved in diverse immune responses,

such as activation of signaling pathways downstream of pathogen

associated molecular pattern recognition receptors, induction of

phagocytosis, and differentiation into a specialized immune

effector cell type. Because these immune responses require

crosstalk between different cell types in a physiological condition,

expression profile analysis of SL2 cells alone may not provide a

complete picture of gene regulation during infection. However,

because SL2 cells display important characteristics of macrophag-

es in an in vitro assay, we assumed that their expression pattern

may reflect regulatory mechanism underlying some immune

responses of macrophages. To identify key regulators of innate

immunity, we obtained mutants of the genes that are differentially

regulated following treatment with microbial components, and

monitored their requirement for defense against infection. Out of

5,405 genes screened on the microarray, 231 and 1,151 genes

were induced more than 1.6 fold after the LPS/PGN or curdlan

treatment of SL2 cells, respectively. A search for congenic EP

(Enhancer-Promoter) lines in which these differentially regulated

genes were disrupted by a P-element insertion identified 130 lines

(110 and 20 lines with a P-element inserted at the untranslated and

coding regions of the differentially regulated genes, respectively)

from the GenExel library (Daejeon, Korea). The P-element

insertion positions of all the GenExel EP lines were confirmed

twice independently by direct sequencing of the inverse PCR

fragment amplified with P-element specific primers (data not

shown). These results suggest that most of the defects associated

with the EP lines are related to disruption of the candidate genes.

About one-third (47 lines) of the EP lines obtained were

homozygous lethal, indicating that the P-element insertion

effectively disrupted function of the target genes. None of the 83

homozygote viable EP lines showed obvious developmental

abnormalities. These results indicated that the EP lines could be

used to screen for genes involved specifically in defense against

microbial infection. Therefore, adult homozygote flies were

screened for survival after infection with entomopathogenic fungi

(B. bassiana) (Table S1). Although a developmental defect caused

by heterozygocity of a gene is rare, functional insufficiency of a

heterozygote is often observed under strong environmental stress

such as infection, and can influence survival of the heterozygotes

as shown in the study of Dif 1 heterozygotes [8]. Based on this

assumption, adult heterozygote flies were monitored for survival

after fungal infection in the case of the homozygous lethal lines. To

identify EP lines with a compromised defense against fungal

infection, 30 adult flies from each of the 130 lines were pricked on

the leg disc with a needle dipped into a concentrated solution of

live B. bassiana, and the survival rate was followed over a six day

period at 25uC. The septic infection with B. bassiana resulted in

approximately 10% mortality in the wild type flies. Under the

same infection conditions, most of the mutant flies showed similar

levels of survival (Figure 1A, Table S1). However, 16 mutant lines,

including six heterozygote flies (Pcl, DDB1, shg, Rab6, CG6181, and

CG7263), were significantly more sensitive to fungal infection

(p,0.002) (Figure 1A). In these cases, death was clearly associated

with uncontrolled fungal growth, as the dead flies were covered

with fungal hyphae (Figure S1).

To confirm the defects of the 16 lines, we first compared their

survival rates after fungi infection with wild type and spz mutant as

negative and positive controls, respectively, in three independent

experiments. The repeated experiments revealed that the 16 EP

lines had a clear defect in survival (Figure 1B). We next examined

the survival rates after natural infection with B. bassiana to rule out

the possibility that reduced viability resulted from septic injury

rather than from fungal infection. When the flies were raised after

being covered with spores for 1 min, the 16 mutant lines showed

remarkably less survival comparable to that of the spz mutant,

while wild type showed only a minor decrease in survival

(Figure 1C). This result indicated that we have identified Drosophila

mutants that have a reduced ability to defend against B. bassiana

infection.

Rescue of the mutant phenotype by precise P-element
excision or by overexpressing the disrupted genes from
an EP promoter

To confirm that the increased sensitivity of these mutants to

fungal infection is caused by specific disruption of the candidate

genes by the P-element, we excised the P-element from the mutant

flies by crossing with P[ry+D2–3](99B)Sb/TM6B, TB. After excising

the P-element from the germ cells, white-eye progeny were

established as homozygous lines for all mutants. Excision of the P-

element in each line was confirmed by PCR with primers specific

to one end of the P-element (PF) and to target sequences

surrounding the P-element insertion sites (F and R) (Figure 2A).

The PF and R primer pairs amplified specific fragments (fragment

Author Summary

The innate immune response is the first line of defense
against microbial infections in insects and mammals. In
Drosophila, multiple defense mechanisms that contribute
to the innate immune response include antimicrobial
peptides (AMP), reactive oxygen species, phagocytosis and
melanization. A search for genes involved in these immune
processes identified sixteen mutants that exhibited in-
creased lethality after infection. The diverse functions
annotated to these genes indicate the complexity of the
regulatory mechanisms required for defense against fungal
infection. Lineage specific transcription factors and chro-
matin modifiers appeared to be required for proper
development of functional hemocytes, while cytoskeletal
regulators were required for phagocytotic activities of
hemocytes. In addition, we identified several genes
involved in the immune signaling required for AMP
synthesis or melanization. These results may lay the
foundation for defining a new class of genes that are
involved in humoral and cellular antifungal immune
responses.

Antifungal Immune Response Genes in Drosophila
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II) from the P-element mutant lines confirming the mutation sites,

but failed to amplify this fragment in any of the excised lines. On

the other hand, F and R primer pairs that amplify the undisrupted

target gene sequences (fragment I) failed to amplify specific

fragments from the homozygous mutant flies and produced

reduced levels of the amplification products from the heterozygous

mutants (Pcl, DDB1, shg, Rab6, CG6181, and CG7263). These PCR

primers specifically amplified products from all of the excised lines

Figure 1. Screening of immune defective mutant flies. (A) The survival rate on day six after Beauveria bassiana (B. bassiana) septic infection is
shown for the 130 mutant lines examined. Of 130 mutant lines, 16 had dramatically reduced resistance to B. bassiana infection, with a survival rate of
less than 50% after six days (p,0.002). (B, C) Survival rate kinetics from three independent experiments are shown for the 16 mutants with increased
sensitivity, (B) septic infection (C) natural infection. The spzrm7 mutant was used as a positive control for B. bassiana infection. WT is wild type, and D3
and D6 stands for the survival at day 3 and day 6, respectively, post-infection.
doi:10.1371/journal.ppat.1000168.g001
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(Figure 2B). To confirm that these excised lines did not contain a

small deletion or insertion at the P-element insertion sites, we

cloned fragment I amplified from each excision line and sequenced

them together with fragment II obtained from the corresponding

P-element insertion mutants. This sequencing analysis confirmed

that precise excision lines had been obtained for all mutants except

CG12004 and CG6181 (data not shown).

After obtaining the precise excision lines for all mutants, we

examined whether excision of the P-element from the mutants

could revert their sensitivity to fungal infection to that of wild type

flies. As shown in Figure 2C, similar survival rates (90%) were

observed in both the wild type and the precise excision

homozygous lines following fungal infection that caused complete

death of the spz mutant (Figure 2C).

In addition to rescuing the increased lethality following infection

by precise excision of the P-element, we tested whether

overexpression of disrupted genes with the EP promoter inserted

in front of the coding region could reverse the mutant phenotype.

Half of the mutants contained a Gal4-dependent promoter (EP

element) at the 59 UTR in a forward orientation to the disrupted

gene. Heat shock in combination with an hs-Gal4 driver induced

overexpression of the disrupted gene in this half of the EP mutant

lines (Table S2). Thus, we generated flies carrying a copy of hs-

Gal4 driver and homo- or heterozygous P-element insertions,

depending on the corresponding mutant configuration used for the

screen. Quantitative RT-PCR analysis of the mutant EP lines

revealed that the disrupted gene transcript was significantly less

than that in the wild type. However, heat shock treatment (1 h at

37uC) in the presence of the hs-Gal4 driver activated transcription

of the target genes above the level observed in wild type flies

(Figure S2). Consistent with this observation, lethality of the

mutant lines reverted completely to wild type levels (Figure 2D).

These results demonstrate that the genes identified from our

screen are required for Drosophila antifungal immunity.

These genes identified in our screen encode proteins from many

different functional classes including transcription factors involved

in chromatin remodeling or lineage specific transcription (spen, Pcl,

CG12744, jumeaux, inv, and Lmpt), cytoskeletal regulation (coro, shg,

Figure 2. Confirmation of precise excision lines from P-element inserted mutant flies. (A) Relative positions and orientations of PCR
primers used to confirm the position of P-element insertions and their precise excision. Primers F and R are complementary to the genomic DNA
surrounding each P-element insertion site, while the PF primer is complementary to the P-element. PCR fragments amplified by the gene-specific
primers (F and R) or by the P-element- and gene-specific primers (PF and R) are indicated as (I) and (II), respectively. (B) PCR fragments (I) and (II)
amplified from wild type (W) or mutant (M) flies are shown in the left panel. The right panel shows corresponding PCR fragments amplified from the
precise excision lines (M’) of each mutant. Names of the specific precise excision alleles used in the analysis are indicated at the right. Survival kinetics
of the precise excision lines (C) and the flies overexpressing wild type transgenes in mutant background (D). The spzrm7 mutant was used as a positive
control for B. bassiana infection.
doi:10.1371/journal.ppat.1000168.g002
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loco, and Rab6), DNA fragmentation, apoptosis and redox signaling

(CG7263, DDB1 and Trx-2), along with a few genes (CG6181,

CG12004 and JhI-21) of unknown function. Therefore, genes

involved in immune responses ranging from development to cell

movement were identified in this fungal defense screen.

Specificity of genes for antifungal defense
To determine whether reduced survival of the mutant flies

resulted from defective immune responses specifically to fungal

infection, we examined the effect of these mutations on wound

healing and defense against bacterial infection. When mutant flies

were pricked with a sterile tungsten needle, the majority of the flies

survived the wounding and only the spen mutant showed a minor

decrease in survival (Figure 3A), suggesting that the reduced

survival rates of these mutants, except spen, were caused by a

defective defense against microbial infection. Septic infection with

Gram-negative bacteria does not normally affect the viability of

wild type flies. However, loss of a major antibacterial gene, such as

imd, severely reduces survival following infection with Gram-

negative bacteria. When the mutant flies were tested for

susceptibility to Ecc-15 infection, most showed no significant

defect in survival. However, spen and imd mutants were highly

sensitive to infection. Interestingly, imd was not required for

defense against Micrococcus luteus (Gram-positive bacteria) [9,25].

On the other hand loss of spz caused a minor defect in immune

response against M. luteus infection as was shown [9,26]. Similar

infection analysis with M. luteus showed significantly more lethality

in spen, CG12744, and CG12004 than in spz mutants without

affecting survival in most of the other mutants (Figure 3B, 3C).

These results indicate that most of the genes except spen are not

required to defend against Gram-negative bacteria, while two

novel genes (CG122744 and CG12004) are required to defend

against Gram-positive bacterial infection. We also tested survival

of the mutant flies after Staphylococcus aureus infection. In addition to

the three mutants susceptible to M. luteus infection, jumeaux, Lmpt,

shg, and Trx-2 mutants were highly susceptible to S. aureus infection

(Figure 3D). This result indicated that more sophisticated immune

responses are required to control the highly pathogenic S. aureus.

Therefore, of the 16 genes found to be essential for anti-fungal

defense, spen appears to be required for general immune responses,

while nine genes (Pcl, inv, DDB1, coro, loco, Rab6, JhI-21, CG6181,

and CG7263) are specifically required for anti-fungal defense. The

other six genes (CG12744, jumeaux, Lmpt, Trx-2, shg, and CG12004)

are differentially required, to defend against Gram-positive

bacteria, depending on the pathogenic activities of the infecting

bacteria. Because flies utilize several defense mechanisms against

microbial infection, Gram-negative bacteria may be easily cured

even if some mechanisms are not functional, while both cellular

and humoral defenses may be needed to eradicate highly

pathogenic microbes such as S. aureus and fungi.

Effects on antimicrobial peptide gene expression
To determine whether the immune response was defective in

each mutant, particularly in adults, we first examined the synthesis

of diverse antimicrobial peptides (AMPs) in response to fungal

infection. Quantitative RT-PCR analysis of five major AMP

transcripts (AttA, CecA2, Dpt, Drom, and Def) revealed very low AMP

transcript levels that are comparable to those in wild type flies

prior to fungal infection in all of the mutants, indicating no major

defect in the regulation of basal AMP expression in the mutants

(data not shown). When the flies were challenged with fungal

spores, all the five AMP genes were highly induced in wild type

flies, and the expression of these genes was strongly reduced or

abolished by mutation of the Toll-dependent transcription factor,

Dif. Under the same infection condition, most of the mutant flies

were defective in activation of certain types of AMP gene

expression, and different AMP genes appear to require different

genes for their activation in response to fungal infection (Figure 4).

Figure 3. Survival rates of wild type and mutant flies following bacterial infection. (A). Survival rate kinetics for the 16 mutants with
respect to wound healing. (B, C, D) Survival rates of the 16 mutants following septic infection with bacteria are shown, Ecc-15 (Gram-negative) (B), M.
luteus (Gram-positive) (C), and S. aureus (Gram-positive) (D). Imd and spz mutants were used to control for sensitivity to bacterial infections. The color
code of each line is the same as in right side of figure.
doi:10.1371/journal.ppat.1000168.g003
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AttA, Drom, and Dpt synthesis in response to fungal infection was

not affected in most of the mutants. However, mutations in Trx-2,

coro, CG6181 and spen caused moderate defects in their activation. In

contrast, the induction of CecA2 and Def by fungal infection was

significantly reduced in most of the mutants analyzed. CecA2

expression was defective in most of the mutants except DDB1. In

particular, CecA2 expression was completely abolished in JhI-21 and

CG6181 mutants, and was highly repressed in spen and jumeaux

mutants. Activation of Def expression was affected in most of the

mutants except CG12744, jumeaux, and CG7263, with the most severe

defects found in Trx-2, CG12004, and JhI-21 mutants. Therefore,

spen, Trx-2, coro, and CG6181 appear to be required to activate most

of the antimicrobial peptide genes upon fungal infection, while

CG12004 and JhI-21 appear to be required to activate Def and CecA2,

respectively. However, DDB1 does not seem to be required to

activate AMP expression induced by fungal infection.

In vivo assessment of phagocytosis
Along with the humoral response, which is mediated mainly by

the synthesis of specific antimicrobial peptides, the phagocytosis of

invading microbes by hemocytes is another major defense

mechanism of adult flies. Hemocytes are mostly sessile and cannot

easily be removed from adult flies. However, these cells can be

observed through the cuticle, and clusters of hemocytes are present

under the dorsal surface of the abdomen, along the dorsal vessel

[27,28]. To assay the phagocytic activities of mutant hemocytes in

vivo, wild type and mutant adult male flies were infected with

Alexa Fluor 488-labeled spores of B. bassiana, and the level of

fluorescence from phagocytosed spores was measured after

quenching the signal from spores outside the hemocytes

(Figure 5, A and C). Wild type flies showed a strong fluorescence

signal from the phagocytosed spores; however, eleven (spen, Pcl,

CG12744, Lmpt, coro, shg, loco, Rab6, CG12004, JhI-21, and CG7263)

of the sixteen EP mutants had a weak fluorescence signal,

indicating that the mutant hemocytes were defective in uptake of

the spores. To determine whether the reduction in phagocytosed

spores in some of the mutant flies resulted from the reduced

hemocytes, we measured the number of hemocytes present under

the dorsal surface of the abdomen of each of the mutant flies.

Hemocytes were visualized by injecting India ink, and the amount

of black particles taken up by each mutant hemocyte was

quantified. India ink staining revealed that most of the mutants

contained hemocytes that were comparable to or even higher (spen,

jumeaux, CG12004, JhI-21, and CG7263) than wild type (Figure 5B).

Therefore, the reduced fluorescent signals appear to reflect defective

phagocytosis rather than fewer hemocytes in the mutants. When the

fluorescent signal of the phagocytosis assay was normalized to the

number of hemocytes estimated by India ink staining, we observed a

moderate defect in jumeaux mutant in addition to the eleven mutants

that showed clear phagocytic defects (Figure 5D). In addition, these

fluorescent signals appeared to depend on the phagocytotic

machinery of the hemocytes since injection of excessive latex beads

competed out the signal completely (Figure 5C). Therefore, in

addition to obvious phagocytotic components (cytoskeletal regula-

tors; coro, shg, loco, and rab6), genes in diverse categories, such as

transcription factors (spen, Pcl, CG12744, and Lmpt), cell death

regulators (CG7263), and other novel factors (CG12004 and JhI-21),

appear to be required to phagocytose fungal spores.

Figure 4. Expression profiles of antimicrobial peptide genes in wild type and mutant flies. Quantitative real time PCR analysis of
antimicrobial peptide genes is presented. Wild type and mutant adult flies were infected with live spores of B. bassiana, total RNA was isolated from
adult flies, and subjected to real time PCR analysis six hours after injection. The amount of transcripts in each sample were normalized to RpL32
transcripts (AMP transcripts = normalized target mRNA expression in sample61000). The mean and standard deviation of three independent
experiments are shown. AttA, Attacin A; CecA2, Cecropin A2; Drom, Drosomycin; Dpt, Diptericin; Def, Defensin.
doi:10.1371/journal.ppat.1000168.g004
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We next examined whether similar genes are required to

phagocytose bacteria. The E. coli phagocytosis signal was strongly

reduced in flies carrying a mutation in the cytoskeletal regulators

(coro, shg, loco, and rab6) or in some of the genes required to

phagocytose fungal spores (spen, Pcl, JhI-21, and CG7263). In

addition, CG6181 appeared to be required specifically for E. coli

phagocytosis (Figure 5, E and F). In addition to genes required to

phagocytose E. coli, phagocytosis of S. aureus requires additional

genes that function as transcription factors (CG12744, jumeaux, and

Lmpt) or as a redox regulator (Trx-2) (Figure 5G, 5H). These results

Figure 5. In vivo phagocytosis in adult flies. (A) Adult males of the indicated genotypes were injected with Alexa Fluor 488-labeled heat killed
spores of B. bassiana. (B, C, E, G) Quantitation of in vivo phagocytosis of India ink, spore and bacteria. (B) India ink, (C) Alexa Fluor 488-labeled heat
killed spores of B. bassiana, (E) Fluorescein conjugated E. coli (K-12), (G) Fluorescein conjugated S. aureus. Phagocytosed signals were observed under
a Zeiss Axioplan 2 microscope. Phagocytic index was derived by multiplying the area of the India ink and fluorescence signal measured. Phagocytosis
was inhibited by prior injection of latex beads in wild type. LXB, CML latex beads. (D, F, H) A phagocytic index was obtained by multiplying
phagocytosing signals with the mean area of internalized India ink. (D) spore, (F) E. coli, (H) S. aureus. The mean and standard deviation of 10–16 adult
flies were analyzed for each genotype. p-values were calculated by Student’s t-test. India ink, **p,0.1. Fungi and bacteria, **p,0.007.
doi:10.1371/journal.ppat.1000168.g005

Antifungal Immune Response Genes in Drosophila
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indicate that genes involved in cytoskeletal and cell death

regulation, along with spen (chromatin regulator) and JhI-21

(transporter induced by juvenile hormone), are generally required

for phagocytosis of diverse microorganisms. In contrast, jumeaux

and Trx-2 are required to specifically phagocytose S. aureus, which

is known to utilize diverse immune evading mechanisms [29–31].

Therefore, hemocytes appear to require genes involved in diverse

cellular functions to mediate a proper cellular immune response

against fungal and bacterial infection.

Analysis of Drosophila larval hematopoiesis
The analysis of hemocytes in adult flies revealed that some

mutants are defective in the activation of both phagocytosis and

AMP synthesis, and showed an abnormal number of hemocytes.

This observation suggested that some of the immune defects were

caused by inappropriate hematopoiesis. To test this idea we

examined whether hemocyte development in these mutants

occurred normally. We first compared the number of circulating

plasmatocytes in third instar larvae of mutant and wild type flies.

Since the number of circulating hemocytes increases rapidly during

development, we staged the wandering larvae according to the

presence or absence of food in the gut [32]. Because the mutants

showed no obvious developmental defects or delay, this method

enabled us to measure the circulating hemocytes of each mutant at a

comparable developmental stage. However, we cannot rule out the

possibility that hemocyte development in certain mutant larvae was

affected in some degree by the mutations. When we counted the

circulating hemocytes, late third instar larvae of six mutants (spen, Pcl,

jumeaux, CG12004, JhI-21, and CG7263) displayed a 2- to 6-fold

increase in the number of plasmatocytes (Figure 6A), which is

consistent with the higher number of hemocytes observed in the

adult of the same mutants. Therefore, the defective immune

responses observed in many mutants appear to be related to

abnormal plasmatocyte proliferation.

The defects in plasmatocyte proliferation in some of the

immune compromised mutant flies prompted us to examine the

effect of the mutations on crystal cell development. To measure

the number of crystal cells in the larvae of each mutant, third

instar larvae were heated to 60uC for 10 min to induce blackening

of mature crystal cells. spen, Pcl, CG12744, Trx-2, and DDB1 mutant

larvae showed fewer crystal cells than did wild type larvae

(Figure 6B). We also tested the functional activity of crystal cells in

each mutant by injuring third instar larvae with a clean needle and

measuring the level of melanization in each mutant larva. Strong

melanization at the injury site was observed in wild type larvae and

most of the mutant larvae. However, spen, Pcl, CG12744, Trx-2, and

DDB1 mutant larvae showed much less melanization induced by

injury, consistent with their defects in crystal cell proliferation

(Figure 6C, Figure S3). Therefore, spen and Pcl, which are involved

in chromatin regulation, appear to function in the development of

both plasmocytes and crystal cells. It is intriguing that genes

involved in the recognition of damaged DNA (DDB1), redox

regulation (Trx-2), and a novel transcription factor (CG12744) are

also required for proper crystal cell development.

Discussion

The immune system employs multiple layers of defense against

pathogens and it is difficult for most invading bacteria to overcome

these redundant host defense barriers. However, fungi are largely

opportunists, causing infection when any of host defenses are

breached. Beauveria bassiana is an entomopathogenic fungus that

causes a disease in insects known as white muscadine disease. Unlike

bacterial pathogens, once inside the insect it produces a toxin that

weakens the host immune system. To search for important factors

within the entire Drosophila immune system that are required for

antifungal defense, we screened for genes specifically required for

survival following B. bassiana infection and identified several genes

involved in diverse aspects of cellular and humoral immune

responses (summarized in Table 1). Although some of the mutants

showed general immune defects and were susceptible to both fungal

and bacterial infection, most of the other mutants exhibited distinct

immune defects and were susceptible only to fungal or to highly

pathogenic bacterial infection. This increased susceptibility specifi-

cally to fungal infection might result from defects in defenses against

fungal-specific pathogenic molecules, but it is also possible that anti-

fungal responses require more diverse immune defense mechanisms

Figure 6. Analysis of Drosophila larval hematopoiesis. (A)
Analysis of circulating plasmatocytes. Plasmatocytes were counted
from at least six third instar larvae of each genotype; error bars
represent the SD of the mean from 3–6 independent experiments. (B, C)
Analysis of crystal cell development. (B) Third instar larvae were heated
to 60uC for 10 min in a water bath to visualize crystal cells through the
cuticle. Crystal cell counts from the sessile population of the last two
posterior dorsal segments of third instar larvae of the indicated
genotype are shown. (C) Third instar larvae pricked with a clean
standard needle led to a hemocoelic melanization reaction. Melaniza-
tion index was derived by the area with the mean intensity of
melanization signal measured. 12–20 larvae were analyzed for each
genotype, error bars represent standard deviation. In each panel, p-
values were calculated by Student’s t-test. **p,0.01.
doi:10.1371/journal.ppat.1000168.g006
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than bacterial infection, such that mutants with specific defects could

overcome bacterial infection using other functional immune

responses.

Inappropriate development of plasmocytes and crystal cells

appears to be one of the main causes of the immune defects in the

mutants identified in this screen. Spen and Pcl play essential roles

in the chromatin modification needed for hemocyte development

[33–35]. Mutations in these genes must prevent progenitor

hemocytes from differentiating into functional plasmocytes or

crystal cells, and cause pleiotrophic defects in diverse aspects of

immune function. Pcl appears to be less important for bacterial

infection than does Spen, but the difference may be due to

different degrees of gene inactivation in the Pcl heterozygotes vs.

spen homozygotes, rather than from differences in regulatory

function. A similar explanation could be applied to fungal specific

defects of the other heterozygote mutants.

In addition to chromatin regulators, it is intriguing that

CG12744 and Jumeaux are required specifically for the develop-

ment of crystal cells and plasmocytes, respectively. CG12744 is a

novel transcription factor; in contrast, Jumeaux is a transcription

factor expressed in embryonic CNS and is required in neuronal

development [36]. How these transcription factors regulate the

development of specific hemocytes is not known, but their

expression pattern and requirement in a specific blood cell type

suggest a role in the maturation of distinct types of hemocytes.

Crystal cell differentiation also requires Trx-2 (thoredoxin-2) and

DDB1 (Damaged DNA Binding protein 1). Trx-2 regulates redox

signaling, which is essential for the activation of immune effector

functions [30,31,37] and the melanization reaction. The misregula-

tion of redox signals by the loss of Trx-2 may affect early steps in the

signal transduction pathway induced by pathogen recognition,

causing diverse defects in immune function. DDB1 is involved in the

recognition of damaged DNA in dying cells or in invading pathogens

and is required for plasmocyte development [38]. However, how

DDB1 affects crystal cell function is not known.

In addition to transcription factors, cytoskeletal regulators are

another major group of genes required to defend against infection.

Coro has F-actin binding activity and is required for membrane

trafficking [39]. Shg is a Drosophila Cadherin and is required for

cell motility and adhesion [40,41]. Loco and Rab6 are involved in

asymmetric cell division and vesicle transport, respectively [42,43].

Therefore, these proteins must be required for cytoskeletal

rearrangement during phagocytosis. It is interesting that these

mutants also showed defects in AMP synthesis. Efficient

recognition of pathogens or subsequent signaling may require

cytoskeletal rearrangement.

We also identified several novel genes, whose function in innate

immunity has not been previously suggested. CG12004 is a novel

protein without known protein motifs, but it appears to play an

important role in plasmocyte development. JhI-21 is a cationic

amino acid transporter induced by juvenile hormone [44]. It is

required for plasmocyte development and affects their phagocy-

tosis and AMP synthesis. CG6181 is a novel protein and CG7263

are known to be involved in apoptosis [45]. Recently, endocytic

degradation by apoptosis was suggested to play essential roles in

defense against pathogenic microbes that can escape from

endosomes to cytoplasm [46].

Several novel genes identified from this screen appear to have

essential roles in defense against both fungi and bacteria,

indicating their roles in the regulation of primary immune

responses. The putative functions of these newly identified genes

(Spen, CG12744, Jumeaux, Lmpt, Trx-2, Shg, and CG12004) as

transcription factors, redox regulator, or cell adhesion molecule

hints at their role in regulating immune responses. Therefore,

further study of these genes will provide important insight into

regulatory mechanism of the Drosophila immune system.

Our results showed that complex immune reactions are

required to defend against fungal infection in Drosophila, and

identified key regulatory components involved in these immune

reactions. These findings increase our understanding of the

Table 1. Summary of the cellular and humoral immune responses of the sixteen mutants.

spen Pcl CG12744 jumeaux inv Lmpt Trx-2 DDB1 coro shg loco Rab6 CG12004 JhI-21 CG6181 CG7263

Survival

Fungi --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Ecc-15 --- + + + + + + + + + + + + + + +

M. luteus --- + --- + + + + + + + + + --- + + +

S.aureus --- + --- --- + --- --- + + --- + + --- + + +

Phagocytosis

Fungi --- --- --- + + --- + + --- --- --- --- --- --- + ---

E.coli --- --- + + + + + + --- --- --- --- + --- --- ---

S.aureus --- + --- --- + --- --- + --- --- --- --- --- --- --- ---

Proliferation

Plasmatocytes --- --- + --- + + + + + + + + --- --- + ---

Crystal cells --- --- --- + + + --- --- + + + + + + + +

AMP genes

AttA + + + + + + - + - + + + + + - +

CecA2 - - - - - - - + - - - - - --- --- -

Dpt - + + + + + + + - + + + + + + +

Drom + + + + + + + + - + + + + + + +

Def - - + + - - --- - - - - - --- --- - +

---, severe defects; -, defect; +, no defect.
doi:10.1371/journal.ppat.1000168.t001
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mechanisms underlying cellular and humoral aspects of Drosophila

antifungal immunity, and have significant implications in the

treatment of human diseases caused by fungi.

Materials and Methods

Drosophila stocks
Drosophila melanogaster strains were cultured on a standard

cornmeal-yeast medium at 25uC and 60% humidity. Mutant flies

containing a P-element at the translated/untranslated region of

the candidate genes (Table S1) were purchased from GenExel

(Daejeon Korea). Because the GenExel EP lines contain Gal4

binding sites, overexpression of Gal4 can induce strong expression

of adjacent endogenous genes in which an EP element is inserted

at the 59 UTR in a forward orientation [47]. To activate

transcription of P-element inserted genes from the EP promoter,

we crossed mutant flies containing a P-element at the 59 UTR in a

forward orientation with hs-Gal4 driver (Bloomington Stock

Center). For homozygous viable lines, we generated flies carrying

a homozygous P-element inserted chromosome in addition to a hs-

Gal4 driver. Overexpression of target genes was achieved by heat

shocking the adult flies for 1 h at 37uC, and these flies were used

for infection one day after a heat shock. W1118 was used as a wild

type stock and P[ry+D2–3]sb/TM6B, TB was used as a genomic

transposase source. The Imd and spzrm7 were a gift from Dr. Won-

Jae Lee, and Dif 2 was a gift from Dr. Kwang-Min Choe.

Infection and survival experiments
Beauveria bassiana from three day cultures (per 1.0 L distilled

water: Dextrose 10 g, Peptone 2.5 g, Yeast extract 5 g, 25uC).

Staphylococcus aureus (per 1.0 L distilled water: Trypticase soy broth

30 g, 37uC), Micrococcus luteus and Erwinia carotovora carotovar-15 (per

1.0 L distilled water: Beef extract 3.0 g, Peptone 5.0 g pH 6.8,

30uC) from overnight cultures were recovered by centrifuging at

6,000 rpm for 10 min at 25uC. The supernatants were discarded

and the pellets were resuspended in corresponding fresh culture

media. Septic injury was performed by pricking the leg disc of

adult flies with a tungsten needle previously dipped into a

concentrated B. bassiana or by injecting diluted bacteria (OD = 0.1,

55 nl) into the ventral lateral side with a thin needle using a

Picospritzer III injector (Parker Hannifin, USA). Natural infections

with B. bassiana were performed by shaking anesthetized flies for

60 sec in a Petri dish containing a sporulating fungal culture [7].

Survival rates of flies after pathogen infection were measured

under identical conditions for each genotype tested. Groups of 30

adults, aged 2–4 days, were septically injured, maintained at 25uC,

and transferred to a fresh vial every three days. Fewer than five

percent of the total flies tested died within three hours after

infection and these flies were not considered in the analyses.

P-element excision
Revertants for each P-element insertion mutant were generated

through precise excision of the P-element by crossing with flies

containing the D2–3 transposase, as described by Robertson et al.

[48]. Excision allele identity was confirmed by PCR and direct

sequencing of the excision sites.

Preparation of genomic DNA and PCR
Approximately 10–15 adult flies were placed in a 1.5 ml

centrifuge tube and frozen in liquid nitrogen for 5 min. The frozen

flies were homogenized with a small pestle and genomic DNA was

isolated with a G-spinTM Genomic DNA Extraction kit (Intron,

Gyeonggi-do, Korea). The oligonucleotide primers used in PCR

amplifications, with each sequence shown in 59 to 39 orientation,

are described in Table S3. The standard thermal profile for PCR

amplifications was 30 cycles of denaturation at 95uC for 1 min,

annealing at 50uC for 1 min, and extension at 72uC for 1 min.

Quantitative real time PCR
Adult males were challenged with live B. bassiana spores and

incubated at 25uC for 6 h. Total RNA was isolated from 8–10

adult flies with TRIzol (Invitrogen, Carlsbad, CA) and used for

cDNA synthesis with Superscript II reverse transcriptase (Invitro-

gen, Carlsbad, CA). Target cDNAs were measured by real time

PCR using a LightCycler 480 (Roche, Basel, Switzerland). PCR

reactions contained 16SYBR Green mix (Applied Biosystems,

Foster City, CA) and were analyzed with LightCycler 480 software

4 (Roche). All results were normalized to the level of RpL32

mRNA in each sample. Primers used are shown in Table S3.

In vivo phagocytosis
In vivo phagocytosis assays of adult flies were performed

following the procedure of Elrod-Erickson et al. and Brandt et

al. [28,49]. Groups of 3–5 day-old adult males were injected with

Alexa Fluor 488-labeled heat killed spores of B. bassiana,

fluorescein conjugated E. coli (K-12) BioParticles, and fluorescein

conjugated S. aureus BioParticles (1 mg/ml, 50–60 nl) (Molecular

Probes, Invitrogen) on the ventral lateral side with a thin needle

using a Picospritzer III injector. Flies were incubated for 1 h at

25uC to permit phagocytosis of the spores or bacteria, followed by

injection of excess Trypan blue (0.4%, 220 nl) to quench

extracellular fluorescence. Phagocyte ablation experiments were

performed as described by Kocks et al. [50]. CML latex beads

(1.0 mm diameter, Molecular Probes) were washed in PBS and

concentrated in PBS to 8% solids. Beads (100 nl) were injected

24 hours before the phagocytosis test.

Phagocytosis of India ink was observed as described in

Rutschmann et al. [10]. India ink carbon particles (Pebeo,

Gemenos, France) (diluted 1/50 in PBS, 90 nl) were injected on

the ventral lateral side with a thin needle using a Picospritzer III

injector (Parker Hannifin). The phagocytosis of India ink by the

sessile blood cells was observed 2 h later. Phagocytosed signals

were observed under a Zeiss Axioplan 2 microscope (Zeiss).

Fluorescence particles and Indian ink around the dorsal vessel was

quantified from raw unaltered pictures using Image J software

(NIH, Bethesda, MD). Before the software was used to count the

area of particles, each image was converted to a 32-bit grey scale

image and was thresholded to highlight the particles. The

phagocytic index was expressed as area of the signal corresponding

to the sum of the encircled areas.

Analysis of larval hematopoiesis
Larvae were staged according to procedures described in

Zettervall et al. [32]. Emptying of the gut marks the difference

between early- and late-wandering third instar larvae, therefore a

red household food dye was added to the food to allow

visualization of the gut contents. The six homo-lethal alleles were

maintained as heterozygotes balanced with either the second

chromosome balancer CyO or with the third chromosome balancer

Ubx. Precisely staged late-wandering third instar larvae were rinsed

well in PBS (137 mM NaCl, 2.7 mM KCl, 6.7 mM Na2HPO4,

and 1.5 mM KH2PO4) and blotted on Kimwipes to remove excess

PBS before bleeding. The larval cuticle was ripped gently near the

posterior end while submerging the larva in 20 ml PBS. The

hemocytes were transferred to a Neubauer improved hemocy-

tometer (Marienfeld) to determine plasmocyte number. To

quantify crystal cells, late-wandering third instar larvae were

heated at 60uC for 10 min in a water bath to induce blackening of
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mature crystal cells and blackened crystal cells in the last two

posterior dorsal segments of third instar larvae were counted under

a dissecting microscope. For melanization reactions, third instar

larvae were pricked with a clean standard needle and the reaction

was observed 2 h after injury. Melanization signals were quantified

from raw unaltered pictures using Image Pro Plus 4.5 software

(Media Cybernetics, Silver Spring, USA). The melanization index

was expressed as [area]6[mean intensity] of encircled areas.

Supporting Information

Table S1 P-element insertion lines used and their survival after

septic infection of B. bassiana.

Found at: doi:10.1371/journal.ppat.1000168.s001 (0.26 MB

DOC)

Table S2 GenExel EP lines isolated from the antifungal screen.

Found at: doi:10.1371/journal.ppat.1000168.s002 (0.05 MB

DOC)

Table S3 Primer sequences used for PCR analyses.

Found at: doi:10.1371/journal.ppat.1000168.s003 (0.06 MB

DOC)

Figure S1 Germinating hyphes of B. bassiana on dead Drosophila.

Found at: doi:10.1371/journal.ppat.1000168.s004 (0.45 MB TIF)

Figure S2 Overexpression of the disrupted genes using the Gal4-

dependent promoter of the P-element that was inserted at the 59

UTR of the gene in a forward orientation.

Found at: doi:10.1371/journal.ppat.1000168.s005 (0.63 MB TIF)

Figure S3 Melanization induced by a clean injury in the 16

mutant larvae.

Found at: doi:10.1371/journal.ppat.1000168.s006 (1.26 MB TIF)
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