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Staphylococcus aureus is an opportunistic bacterium
capable of causing a wide range of severe diseases
when it gains access to underlying tissues. Paradoxi-
cally, S. aureus is a common inhabitant of the skin mi-
croflora and colonizes the nares and other human
mucosa. The purpose of this study was to determine
the genetic basis for the differences in the pathogenic
versus colonizing potential of S. aureus isolated from
diabetic foot ulcers (DFUs). By performing optical map
comparisons of a collection of S. aureus strains isolated
from DFUs, we brought to light a prophage present in
noninfecting bacteria. The phage, namely ROSA-like,
was localized in a hotspot region FNM2 near the locus
isd, the iron surface determinant system. The integrated
phage significantly reduces the virulence of the strain
and increases the biofilm formation. DFUs seem to be
a specific niche of this colonizing strain. The ROSA-like
phage represents the first description of a mobile ele-
ment present mainly in S. aureus isolated from DFUs,
which modulates the relationship of the bacteria with
its human host. This phage appears to attenuate bacte-
rial virulence and promote colonization.

Staphylococcus aureus is by far the most common and vir-
ulent pathogen in diabetic foot infection (1,2). However,
this causative pathogen is a common inhabitant of the
skin microflora and colonizes the nares and other human

mucosa. It may be considered as an opportunistic colo-
nizing organism. Recently, we demonstrated the coexis-
tence of two populations of S. aureus strains isolated
from diabetic foot ulcer (DFU): strains isolated from un-
infected ulcers with a low virulence potential as opposed
to strains isolated from infected ulcers with a high vir-
ulence potential (3,4). Moreover the strains belonged to
two clonal complexes (CC8/CC5) that appeared to be
linked to uninfected ulcers, enabling us to distinguish
uninfected from infected wounds (5). In this study, we
describe for the first time an insertion of a phage in the
CC8 lineage of methicillin-sensitive S. aureus (MSSA),
which is associated with the colonizing S. aureus strains,
and we report the impact of this phage on biofilm for-
mation and bacterial virulence.

RESEARCH DESIGN AND METHODS

Bacterial Strains and Plasmids
All bacterial strains used in this study are listed in Table 1.
Bacteria were grown at 37°C in Luria Bertani broth or
brain-heart infusion broth.

Caenorhabditis elegans and Zebrafish Killing Models
Fer-15 worms were maintained and infected as previously
described (6). All experiments were conducted in triplicate
and repeated at least five times for each strain. S. aureus
virulence was assessed using the nematode survival curve
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and calculating the LT50 and LT100 (median lethal time
50% and 100%, respectively).

The presence of S. aureus in the Caenorhabditis elegans
digestive tract was determined at 72 h as described by
Garsin et al. (7). Three replicates were performed for each
strain. Infection of zebrafish embryos was carried out as
previously described (8). More information regarding the
two models can be found in the Supplementary Data.

Optical Maps
Twenty-two strains from our panel of colonizing and
infecting S. aureus strains isolated from DFUs (5) were
chosen for optical mapping. Optical maps were provided
by OpGen (Gaithersburg, MD), prepared on the Argus Op-
tical Mapping System as described previously (9), and an-
alyzed with the support of Phylogene (Bernis, France). The
optical maps of the studied strains were then compared
with the in silico restriction maps of 19 sequenced S. aureus
isolates whose sequence genomes were available in GenBank
and transformed by using the MapSolver v.2.1.1 software
(OpGen SA).

Sequencing of the NSA1385 Strain and the 44-kb
Insertion
Genomic DNA of S. aureus NSA1385 was sequenced using
a 454 Life Sciences-Roche platform by Lifesequencing S.L.
(Valencia, Spain). The combination of scaffolds and con-
tigs resulted in an estimated genome size of 3.2 Mb.

PCR for the Detection of Phage Insertion/Deletion and
Sequencing
The PCR protocol is presented in the Supplementary Data.
After purification, PCR products were sequenced using a Per-
kinElmer ABI 377 sequencer and compared with sequences
in GenBank by BLAST (http://www.ncbi.nlm.nih.gov/blast).

Biofilm Formation
To evaluate the biofilm formation, we used the BioFilm Ring
Test (BioFilm Control, Saint Beauzire, France) according to

the manufacturer’s recommendations (10). Three experi-
ments with three repeats each (three wells per slide) were
performed per strain and incubation time.

Evaluation of Spontaneous Phage Excision
To detect and evaluate spontaneous excision of the ROSA-
like phage from the hotspot region FNM2, we used differ-
ent procedures already described: the TMS medium with
or without FeCl3 (50 mmol/L) to create iron-repleted
and iron-restricted growth conditions, mitomycin C, and
UV treatment (11–13). We evaluated the occurrence fre-
quency of NSA1385 mutants that lost the phage by count-
ing the number of NSA1385 without phage colony-forming
unit (CFU) and compared with the NSA1385 CFU number.
Phage excision was confirmed using a PCR assay and ge-
nome sequencing.

Statistical Analysis
The Mann-Whitney test was used to compare the in vivo
bacterial growth of the different strains. To compare
overall survival curves in nematode and zebrafish killing
assays, a Cox regression was used. For pairwise compar-
ison of two survival curves in nematode and zebrafish
killing assays, we used a log-rank test. Statistical analysis
was performed using the S-PLUS 2000 software package
(Insightful Corporation, Seattle, WA), and results were
considered significant at P , 0.05.

RESULTS

Noninfecting Strains Are Less Virulent Than Infecting
Strains
We used two infection models to confirm our previous
observations that clinical S. aureus strains isolated from
grade 1 DFUs are less virulent than strains isolated from
grade 2–4 DFUs (4). We analyzed the behavior of five
clinical strains: the two uninfecting strains (NSA1322
and NSA1385 from grade 1 DFU), the two infecting
strains (NSA739 and NSA18026 from grade 2–4 DFU),

Table 1—LT50 of C. elegans infected by the different S. aureus strains and evaluation of CFU of each strain in the C. elegans
digestive tract

Strain Characteristics of the S. aureus strain
LT50 in days

(95% CI inf-sup)
P NSA1385

vs. other strains
Median CFU [range] in
nematode after 72 h

NSA1385† Clinical, strain isolated from colonized DFU
(grade 1)

4.3 (4.0–4.6) — 2.2 3 105 [1.0–3.4 3 105]

NSA1322† Clinical, strain isolated from colonized DFU
(grade 1)

4.0 (3.7–4.4) NS 6.1 3 105 [4.9–6.6 3 105]

NSA739† Clinical, strain isolated from infected DFU
(grade 3)

1.7 (1.4–2.0) ,0.001 5.0 3 105 [4.8–5.2 3 105]

NSA18026† Clinical, strain isolated from infected DFU
(grade 4)

1.8 (1.5–2.2) ,0.001 5.5 3 105 [4.8–6.1 3 105]

NSA1385(P2) Strain isolated from colonized DFU (grade 1)
after excision of the phage

1.6 (1.3–1.8) ,0.001 4.2 3 105 [3.8–4.4 3 105]

Newman Reference 4.6 (4.4–4.9) NS 4.9 3 105 [4.2–5.6 3 105]

OP50 Control strain 7.8 (7.5–8.1) ,0.001 —

The results are representative of at least five independent trials for each group of strains. P is a pairwise comparison using a log-rank
test. †Sotto et al. (4). inf-sup, inferior-superior.
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and the reference strain Newman. In the C. elegans model,
the five studied strains killed the nematodes more rapidly
than the avirulent Escherichia coli OP50 strain used as
nutrient for the nematodes (P , 0.001) (Table 1). The
LT50 were similar for the two colonizing strains and the
strain Newman but significantly longer (P , 0.001)
than the LT50 of the infecting strains (4.0–4.6 6 0.3
vs. 1.6–1.7 6 0.2 days, respectively) (Table 1). The dif-
ferences in virulence were not due to differences in the
survival and proliferation of strains within the nematode
intestine, since the intestine colonization by the different
strains was not significantly different (Table 1).

Based on the results obtained with C. elegans, we in-
vestigated whether the two uninfecting strains (NSA1322
and NSA1385) also exhibit lower virulence in zebrafish
embryos. We compared mortality rates over a 92-h period.
The two colonizing strains caused less embryo deaths
than the two infecting strains (P, 0.001) (Fig. 1A and B).

Nonvirulent Colonizing S. aureus Strains Carry
a Genetic Island
To investigate the difference between colonizing and infecting
strains isolated from DFUs (4), we used optical mapping to
analyze their genome organization (Supplementary Fig. 1).
The five colonizing strains were clonal (.99% similarity)
and clustered closely to two reference strains (Newman and
NCTC8325) with;98% similarity. The majority of the infect-
ing strains belonged to different clonal groups with ,90%
similarity to the colonizing strains. Interestingly, five infecting
strains (NSA739, NSA6759, NSA11260, NSA18026, and
NSA56348) exhibited 96.5% similarity with the colonizing
strains. All these strains belonged to the CC8-MSSA clonal
complex.

The major difference between the colonizing and the
infecting CC8-MSSA strains was the presence of a large
insertion located exclusively in all of the colonizing
strains (CC8- and CC5-MSSA). The insertion was located
at the previously described FNM2 integration hotspot
(Supplementary Fig. 2), a known hotspot for genetic
insertions, with phage insertions identified in the published

genomes of the two reference strains (Newman and
NCTC8325) (14).

The 44-kb Genetic Island Corresponds to a ROSA-Like
Phage
To characterize the genetic insertion present in the
colonizing strains, a draft genome sequence of NSA1385
was determined to ;293 coverage. The integration site is
in the intergenic region between rpmF (encoding the 50S
ribosomal protein L32) and isdB (encoding the staphylococ-
cal hemoglobin receptor required for heme-iron uptake).
The insertion has a high G+C content (35.4%, compared
with 32% for the chromosome in total) and appears to be
an integrated bacteriophage. This phage has a genome of
44,031 bp with 73 open reading frames and is allocated
within the unclassified dsDNA phages group. The compar-
ison of the phage sequence with sequences in GenBank
highlighted that the phage integrates at the same sequence
as the phage ROSA, a previously described phage (15) with
no known function. The sequences were comparable but we
noted an inversion of a part of the phage sequence (Sup-
plementary Fig. 2). We named this genetic island ROSA-
like. More information can be found in the Supplementary
Data.

Genetic Island Is Associated With Colonization of
Chronic Wounds in France
To evaluate whether the ROSA-like phage insertion is
a common feature from uninfecting strains, we tested
a collection of S. aureus strains isolated in different clin-
ical situations in France (Table 2). The insertion was iden-
tified in 40 of 392 strains (10.2%) of our collection, with
39 of 75 (52%) from colonizing DFUs and 1 of 131 (0.8%)
from nose. The ROSA-like phage was almost exclusively
found in grade 1 ulcers (39 of 44 uninfected wounds,
88.6%), and all the strains harboring the insertion
belonged to the CC8/CC5-MSSA lineages.

Genetic Island Promotes Biofilm Formation
To determine the impact of the genetic insertion, we
studied biofilm formation using the BioFilm Ring Test. In

Figure 1—Virulence of the different S. aureus strains in zebrafish embryos. A: Survival curves of zebrafish embryos after infection with two
infecting (NSA739 and NSA18026) and two colonizing (NSA1385 and NSA1322) strains. B: Survival curves of zebrafish embryos after
infection with NSA739, NSA1385, and NSA1385(P2) strains. hpi, hours post-infection.
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brain-heart infusion medium, we observed that the colo-
nizing NSA1385 strain formed biofilms more rapidly than
the infecting NSA739 strain (150 vs. 180 min) (Fig. 2).
These results confirmed the colonizing role of the investi-
gated strains.

ROSA-Like Phage Is Very Stable in Lysogens
An important issue in clinical practice is to know if the
ROSA-like phage is stable or not. Using different DNA-
damaging stimuli, we observed that the frequency of excision
was,53 1029, suggesting a strong selective pressure for
its maintenance. One strain with a confirmed loss of the
ROSA-like phage (detected by PCR, optical map, and DNA
sequencing) was selected for further experiments and
named NSA1385(P2).

Excision of the ROSA-Like Phage Restores Biofilm
Formation and Bacterial Virulence
To definitively understand the impact of the phage
insertion in the colonizing strain, we evaluated the
biofilm formation and the virulence of NSA1385(P2).
We observed the restoration of biofilm formation (Fig.
2) and bacterial virulence using the two in vivo models
(Table 1 and Fig. 1B). All these data suggest that the
ROSA-like phage clearly influences the virulence of the
colonizing S. aureus strain. The absence of the phage
restores the bacterial virulence. However, the low level
of excision indicates that the ROSA-like phage is very
stable and suggests that this colonizing strain does not
require antibiotic treatment.

DISCUSSION

S. aureus is one of the most frequent pathogens isolated
from community-acquired and nosocomial infections and
is the most prevalent in DFUs (2). Even though S. aureus
strains can colonize different human mucosa and may be
considered as a commensal organism, these bacteria are
clearly pathogens. However, we recently described the ex-
istence of a colonizing S. aureus strain isolated from DFUs
(4). Here, a comparative genomic strategy using a collection
of clinical strains detected a genetic determinant (a ROSA-

like phage) associated with the attenuation of the clonal
group. To confirm that this element was responsible for
the colonizing behavior, we assessed the distribution of
the ROSA-like phage in disease-causing and asymptom-
atically carried S. aureus in a national, nonbiased popu-
lation taken from national epidemiological studies. The
results demonstrated, for the first time, that the pro-
phage was associated with the ability of the bacteria to
colonize chronic ulcers and was responsible for the non-
invasive character.

The carriage of virulence determinants by phage is not
an uncommon situation in bacterial pathogens (16–20).
In S. aureus, many of the phages encode and disseminate
potent staphylococcal virulence factors (e.g., Panton-
Valentine leukocidin) or resistance determinants (SCCmec
cassette) (21). However, more recently, authors have shown
that some phages could affect bacterial virulence by pre-
venting the production of toxins (22). In our study, we
demonstrated that the phage insertion blocks the virulence
potential. Moreover, in the colonizing S. aureus strain, the
difficulties to induce phage excision (using DNA-damaging
agents), the low phage excision frequency, and the different

Table 2—Distribution of ROSA-like phage in a collection of S. aureus isolated in France

Isolation site No. of strains
No. of CC8/
CC5 strains

No. of strains with
phage ROSA-like

insertion

No. of CC8/CC5
strains with phage
ROSA-like insertion

Infection DFI 120 6 0 (0%) 0 (0%)
Acute cutaneous infection 10 2 0 (0%) 0 (0%)

SSTI† 9 2 0 (0%) 0 (0%)
Bacteremia 8 3 0 (0%) 0 (0%)
Endocarditis 8 2 0 (0%) 0 (0%)
Pneumonia 20 3 0 (0%) 0 (0%)

Cystic fibrosis sputum 11 3 0 (0%) 0 (0%)

Colonization Nose carriage 131 16 1 (0.8%) 1 (6.3%)
DFU 75 39 39 (52%) 39 (100%)

Total 392 76 40 (10.2%) 40 (52.6%)

DFI, diabetic foot infection. †SSTI (skin and soft tissues infections): cellulitis (n = 4), necrotizing fasciitis (n = 3), and abscess (n = 2).

Figure 2—Kinetics of biofilm formation for the different S. aureus
strains. Lines represent the SDs from three independent experi-
ments with triplicate for each one. BFI, BioFilm Formation Index.
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rearrangements noted (compared with the published genome
sequence of phage ROSA) demonstrated a great stability
of this insertion, suggesting a low ability to spread or
transfer to other staphylococci.

The association with a high potential of biofilm forma-
tion and the avirulence of the S. aureus strains containing
the ROSA-like phage may explain the ability of the bacteria
to colonize chronic wound tissues and their ability to exist
in the commensal state. Interestingly, these colonizing
strains were exclusively found in uninfected ulcers that
represent the niche of these strains. The role played by
these bacteria would be directed toward the establishment
of colonizing wounds and/or help other pathogens in the
pathogenic process, the ROSA-like insertion bringing a se-
lective advantage to this role. From a clinical point of view,
the stability of phage and the very low potential of virulence
of the colonizing strain suggest that it is not necessary to
treat ulcers carrying this S. aureus type. Our findings may
contribute to better diagnosis and improved treatment of
diabetic ulcers.
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