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ABSTRACT: The acceleration in design of new metal organic
frameworks (MOFs) has led scientists to focus on high-throughput
computational screening (HTCS) methods to quickly assess the
promises of these fascinating materials in various applications.
HTCS studies provide a massive amount of structural property and
performance data for MOFs, which need to be further analyzed.
Recent implementation of machine learning (ML), which is another
growing field in research, to HTCS of MOFs has been very fruitful
not only for revealing the hidden structure−performance relation-
ships of materials but also for understanding their performance
trends in different applications, specifically for gas storage and separation. In this review, we highlight the current state of the art in
ML-assisted computational screening of MOFs for gas storage and separation and address both the opportunities and challenges that
are emerging in this new field by emphasizing how merging of ML and MOF simulations can be useful.

KEYWORDS: Metal−organic frameworks, Machine learning, High-throughput computational screening, Gas storage, Gas separation,
Structure−performance relationships, Modeling, Material design

■ INTRODUCTION

Metal organic frameworks (MOFs) have been named as one of
“the top ten emerging technologies in chemistry” by the
International Union of Pure and Applied Chemistry
(IUPAC).1 The large number of possible metal nodes and
organic ligand variations for synthesis of MOFs leads to
attractive physical and chemical features such as high thermal
stabilities (as high as 500 °C), various porosities (0.3−0.9),
large surface areas (>8000 m2 g−1), low densities (0.2 g cm−3),
and wide range of pore sizes (3−100 Å).2,3 The ability to tune
physical and chemical properties of MOFs during or after
synthesis by metal cation exchange,4 attachment or insertion of
functional groups,5,6 allowed the researchers to generate
various types of MOFs with desired properties for a specific
application. MOFs have been studied for many different areas
such as gas storage and separation,7−10 bioimaging,11

catalysis,12,13 batteries,14 supercapacitors,15 and drug deliv-
ery.16 Currently, there are 103 951 experimentally synthesized
MOFs deposited into the Cambridge Structural Database
(CSD),17 and this number is continuously increasing due to
the existence of theoretically infinite number of possible MOF
structures. This very large number of MOFs is a great
advantage for the potential applications of materials but, on the
other hand, it is not practical to experimentally test the
performances of all these MOFs even for a single application at
the lab scale. A high-throughput computational screening
(HTCS) approach enabled researchers to evaluate the

performance of thousands of MOFs for a desired application
in a time- and cost-efficient manner using molecular
simulations.18,19 Simulation results of large numbers of
MOFs help to identify the most promising material candidates
for desired application purposes. Results of these HTCS
studies reveal an enormous amount of data about both the
physical (e.g., pore size, surface area) and performance
properties (e.g., selectivity, working capacity) of MOFs. The
challenge here is that it is nearly impossible to see all the trends
and relations in this large MOF data without additional
computational resources.
Machine learning (ML) aims to develop computer programs

capable of learning from large data sets using statistics and
some algorithms; it may help to identify the hidden patterns
and relations in data or to construct models to correlate some
input variables (descriptors) with the output (performance) of
the system.20 ML has been applied in various fields such as
chemistry,21 chemical engineering,22 catalysis,23 and energy
related materials.24−27 In addition to the availability of new and
more effective ML algorithms, developments in computational
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technologies including better data storage, management, and
retrieval capabilities have contributed to the rise of ML. New
experimental (like high-throughput experimentation tools and
high-resolution spectroscopy)28,29 and computational tools
(classical and quantum mechanical methods)30 provide a large
amount of accurate data, which is essential for ML
applications, and in the meantime, advances in supercomput-
ing capabilities, high-throughput computational workflow
managers,31,32 and open source accessible software packages
dedicated to ML33−38 make the field much more accessible to
newcomers. ML has been applied in materials science39−41 for
different purposes including the prediction of polymer
properties,42 classification of zeolite structures,43 discovery of
drugs,44,45 identification of peptides as antibacterial agents,46

design of homogeneous catalysts from different ligands,47 or
detection of biological effects of nanoparticles.48 MOFs are a
relatively new class of materials compared to polymers or
zeolites, and ML has been recently applied to the field of
MOFs to determine the best materials among the existing ones
for a specific use, to discover new and better materials from
practically endless possible structures, and to unravel the
correlations in the data obtained from molecular simulations of
MOFs. These data were used to build quantitative structure−
property relations (QSPRs),49 to predict the mechanical
stability of structures,50 to estimate gas storage capacity of
MOFs,51,52 and to design novel MOFs by ML.53 Analysis of
MOFs with ML has accelerated in recent years25,54−73 for a
variety of fields such as identifying electronic structure
properties of MOFs,63,64 predicting colors of MOFs,61 defining
the oxidation states of metals in MOFs,62 assigning partial
charges to MOF atoms,59,73 optimizing the swing adsorption
process conditions with MOFs,58,60 and for predicting the

performances of MOFs as sensors,55,56 heat pumps,57 and gas
storage and separation materials.66,74−79

In this review, we first provide a brief introduction and
background to the MOFs and ML methods and then address
the current state of the art in ML applications of MOFs for gas
storage and separation, which are the most studied application
areas of MOFs to date, while the focus of most of the ML
studies on MOFs is also on these two areas. We then address
both the opportunities and the challenges in the intersection of
two fast-growing fields and present a detailed perspective for
the future of ML-assisted computational MOF studies.

■ BACKGROUND
As the future is shaped by the past, focusing on the past trends in
the fields of ML and MOFs may guide us to make projections
for the possible future developments on the subject. The
timeline for studies on ML, MOFs, and ML applications on
MOFs is given in Figure 1. It is hard to describe the detailed
timeline for ML studies because most of the popular and
relatively old ML techniques such as linear regression (LR),
artificial neural networks (ANN), decision tree (DT), and
support vector machine (SVM) have been used in the
literature without directly referring to the ML concept in
early applications. Although the first appearance of the ML
concept in the Web of Science database80 goes back to the
1950s, the frequency of appearance is limited to the order of
tens per decade until the 1990s; the acceleration started in the
1990s. The revolutionary development in computational
technologies coincided with the spread of the Internet which
revolutionized data sharing capabilities has not only increased
the use of ML but also shifted the focus to large data sets in
recent years. If we exclude LR, which has wider (and older)
application areas, ANN seem to be the most commonly

Figure 1. Timeline for developments in the areas of MOFs, ML, and ML-assisted screening of MOFs. The number of publications in MOF and ML
fields per year is given in the inset figures (retrieved from the Web of Science80 in February, 2021).
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implemented technique in chemistry since the 1980s; there are
even review articles on the subject published in the 1990s. A
paper, dated 1991,81 introduced the basic concept and
implementation of ANN and reviewed the chemistry related
applications such as analysis of spectroscopic data, determining
amino acid sequences and protein structures, and classifying
atomic energy levels. Burns and Whitesides82 (in 1993)
reviewed the early application of ANN in chemistry. The first
review covering the chemical engineering applications of ANN
was published in 2000 focusing on the area of fault detection,
prediction of polymer quality, data rectification, modeling and
control.83 Early applications of ML had been mostly based on
small data sets generated in a single laboratory; although such
works are still valuable, the attention started to shift to large
data sets in the late 2000s, and this trend intensified in the
2010s with the increasing availability of large data sets.
The pioneering works on MOFs in the 1990s84−86 attracted

the interest of many scientists from various fields to the
potential of these materials. Due to this interest, the publishing
rate on topics including “metal organic framework” has
increased dramatically, reaching up to 7000 articles per year
in 2019, and the number of experimentally synthesized MOFs

exceeded 100 000.17 Many of the early publications focused on
the synthesis of new MOFs whereas studies after the 2000s
were more directed to the applications.87−89 With the
increasing demand to evaluate the performances of MOFs in
a time-efficient and accurate manner to guide the experimental
efforts, the first molecular simulations were performed in
2003.90 Grand canonical Monte Carlo (GCMC) simulations
have been very widely used to compute gas adsorption in
MOFs. Computational screening of MOFs considering ten or
more structures started in 2007 with the aim of evaluating the
accessible surface area of materials.91 Establishment of the first
hypothetical MOF database by Wilmer et al.89 was the real
kick-off for the screening of MOFs. Since then, many HTCS of
MOFs were accomplished using that hypothetical MOF
database92 or in-house databases of experimental MOFs.93

The computation-ready experimental MOF database94 was the
real catalyst for HTCS of thousands of experimental MOFs
using GCMC simulations. Generation of different databases
involving various MOFs allowed the use of ML in conjunction
with HTCS for structure prediction and estimating properties
of MOFs as well as their potentials for gas storage and gas

Figure 2. Generalized implementation of ML on MOF studies. The data source is selected, preprocessed, and the descriptors to correlate the data
are determined. The data is then fed into selected ML algorithm(s) to predict properties of MOFs. The results obtained from ML models are
utilized for various applications, and analysis of the results help to determine new and better descriptors for discovery of more accurate models.
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separation.31,33 We represented the generalized implementa-
tion of ML to MOF studies in Figure 2.

■ ML BASICS

ML is usually implemented through a framework involving
constructing a database, preprocessing of data, selecting descriptors,
deciding on ML techniques, performing analysis, and interpretation
of results steps even though the number and wording of steps
may change from source to source. One can find the details of
such frameworks in various publications.20,95−97 Here, we
briefly discuss three key ingredients (techniques, descriptors, and
data) from the MOF perspective, and we summarize the major
issues to be considered in ML implementation.

■ ML TASKS AND TECHNIQUES

ML techniques are developed to perform some specific tasks
such as regression, clustering, classif ication, or association,96 and
these tasks are also used to categorize the ML techniques even
though some techniques can be used to perform more than
one task with some modifications. Regression involves the
development of models correlating the input and output
variables so that the output of a new input set can be
determined. The predictive models, like linear (or nonlinear)
regression, have been around since long before the ML concept
itself, and many additional techniques such as least absolute
shrinkage and selection operator (LASSO) regression, ridge
regression, ANN, random forest (RF), and support vector
regression have been developed through years.20,96−99 There
are also variations of some techniques such as a recently
popularized set of new ANN algorithms called deep
learning.100,101

Clustering refers to the task of grouping the data based on
the similarities in input variables; it is usually used as a
preanalysis tool before other ML techniques. Various
techniques based on the centroid (like k-mean clustering),
connectivity (like hierarchical clustering), distribution, and
density are used for clustering the data.102 Classif ication, on the
other hand, categorize the data set into subsets based on the
output variable; this way one can identify the values (or
ranges) of input variables leading to those subsets, and
determine the possible category of a new input set. The

common classification techniques are decision trees, k-nearest
neighbor algorithms, logistic regression, Bayesian classification,
ANN, and SVM.96 Finally, association aims to extract hidden
relations among the variables (including output variables) in
large data sets; it is used to identify the features (variables) that
appear together in the same subsets.103

The most important issue in selecting the ML technique is
the task to be achieved. The characteristics of the data set (like
size, homogeneity, type of variables, and so on) should be also
considered.

■ DESCRIPTORS FOR MOFS
The descriptors, which are also called input variables, factors,
features, or f ingerprints, should be able to describe the systems
in a way that the differences in output variables due to the
change in descriptors could be explained in desired accuracy.
In other words, the selected descriptors should be strongly
correlated to the output variable. In material research,
including MOFs, the selection of the descriptor set can be
quite complicated due to the presence of a large number and
diversity of potential candidates. Ward et al.104 identified 145
potential materials descriptors and classified them into four
groups, stoichiometric attributes, elemental property statistics,
electronic structure attributes, and ionic compound attributes,
while researchers also categorize the descriptors as atomic/
molecular and structural properties.105,106 While the atomic/
molecular descriptors are used for the intrinsic properties such
as molecular weight, elemental composition, atomic/molecular
radius, charge, and so on, the structural descriptors refer to
bulk properties such as crystal structure, pore size, and surface
properties.
The final descriptor set will vary from model to model even

for the same data set depending on the knowledge to be
extracted. However, the smaller ML models (i.e., less
descriptors) are more robust and informative;20 hence, the
number of descriptors is usually reduced with an action called
dimensionality reduction. This may be done by either
eliminating some less significant descriptors ( feature selection)
or creating a smaller number of new descriptors from the
original list ( feature extraction)20 using a method like principal
component analysis. Some new approaches are also provided
such as the ML neural-network representation of density

Figure 3. Classification of descriptors used in MOF related ML studies. Examples of descriptors are given for each class. The topological
representations are taken from the Reticular Chemistry Structure Resource (RCSR).114
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functional theory (DFT) potential-energy surfaces to describe
the energy and forces as a function of atomic positions,107

smooth overlap of atomic positions.108 The atomistic structure-
learning algorithm109 and many-body tensor representation110

were also suggested to create the descriptors representing the
atomic/molecular systems better.
Various descriptors from the synthesis conditions (synthesis

techniques and parameters, solvent types, microwave power,
organic linkers, and metal precursors) to properties obtained
from ab initio calculations (cohesive energies and force
components) for the accurate molecular simulations111 have
been also used for MOF research. The classification of
descriptors such as elemental versus structural59 or chemical
versus structural50,112 was also used while Chong et al.26

grouped them as geometrical, chemical, topological, and energy-
based as illustrated in Figure 3. We classified the descriptors as
user def ined (such as synthesis method, linker, metal, and so
on) versus structural (like void fraction, pore diameters, and so
on) in one of our works to draw attention to the idea that the
structural properties are the results of user def ined descriptors;
hence, strong correlations, which should be avoided in some
ML techniques, may exist between two groups.113 There are
also newly created descriptors like atomic property weighted
radial distribution functions (AP-RDF)51 to predict the gas
uptake more accurately.

■ SOURCES OF DATA

The most common approach in ML analysis of MOFs is to
acquire the MOF related information from the experimental
sources such as the computation-ready experimental (CoRE)
MOF database94,115,116 or computationally produced data such
as hypothetical MOFs,89,117−119 while the applications (such as
gas uptake) are usually computed in house (such as with
GCMC simulations).
The most critical issue related to the MOF data is that

HTCS120−122 and ML51,123 on MOFs generally focus on
computation-ready databases; however, these databases consist
of different MOFs with different properties, and the range of
properties in one database may have huge impacts on the
transferability of results or models to other MOF databases.
Moosavi et al.124 used ML to quantify the structural and
chemical similarities of MOFs in different databases, to clarify
if synthesizing a new MOF will be able to increase the variety
of MOFs. They used CoRE MOF116 and hypothetical MOF
databases of different groups89,117,125,126 for this purpose. The
Henry’s constants for CO2 and CH4 and gas uptakes at various
pressures were computed using GCMC simulations and results
revealed that each MOF database has distinctly different
distributions of properties. Furthermore, the importance
analysis resulted in different ranking of the descriptors for
gas adsorption if the ML models were constructed using
different MOF databases. These results indicate the possibility
of biases in ML analysis and question the transferability of
models and results among the databases while it may also
indicate the necessity of agreed upon standard protocols in
generating, reporting, and storing the MOF data.

■ CRITICAL ISSUES IN ML IMPLEMENTATION

The most critical step in implementation of ML is descriptor
selection, which may involve feature selection or feature
extraction for choosing proper descriptors. If the selected
descriptors are not predictive of the target variable and do not

capture the right information, the accuracy of results will be
poor regardless of the model. Model selection is another crucial
step in implementation of ML, which involves the construction
of various candidates, with various values of model hyper-
parameters (like number of hidden layers, number of nodes,
and learning rate in ANN) and selecting the one that
represents the data best. This is usually performed by
constructing (training) candidate models using some portion
of data with a screening strategy (like grid search) for the
values of model hyperparameters within plausible ranges, and
testing the models with the remaining (unused during model
building) data; the performance of the candidate models is
evaluated using some measures for fitness (like root-mean-
square error) and the one that represents the data best is
selected as the final model. The model selection step should be
executed without data leakage, which refers to the transferring
information from testing (i.e., using the same information in
training and testing). The simplest procedure, which is called
holdout testing, divides the data into two subsets (for example
80% and 20%) randomly; the large subset is used to construct
(train) the model while the small subset is used for testing.
Two important mistakes are often made during this procedure.
First, the training and testing sets may contain the same
information; this usually happens when pairs of data points
with very similar information are divided into training and
testing resulting in overtraining and, therefore, poor general-
ization ability of the model. The second problem is that the
researcher may not like the testing performance of the model
and repeat the procedure by changing model parameters until
the desired testing results are obtained; this also represents
leakage because the training and testing are not independent
anymore. K-Fold cross validation may allow building of a
feedback loop during model construction without leakage. This
procedure also requires the separation of testing set (let say
20%) before model construction. The remaining data is further
divided into k subsets; k − 1 subsets are used for training while
the remaining one is used for validation, in rotation, to tune the
model hyperparameters. The model (i.e., the set of model
hyperparameters) that resulted in the best average perform-
ance is selected as the final and tested using the testing data
separated in the first step. Unfortunately, the validation is
sometimes treated as the testing and used for both model
selection (determining the model hyperparameters) and
testing the model fitness, again, causing data leakage. Another
possible cause of information leakage is the normalization/
standardization of data before splitting into training and testing
(carrying information related to the testing data to the model
construction); to prevent this, the normalization/standardiza-
tion should be applied to the training data set, and then the
testing set should be normalized using the mean and variance
of training.
Preprocessing of data before the ML modeling can be also

crucial for the success of analysis. To begin with, the missing
values, duplications, or inconsistencies in the data, which are
especially common in the data sets constructed from multiple
sources, should be eliminated (inconsistencies among the
MOF data, as reported by Moosavi et al.,124 were briefly
discussed in the previous section). Various transformations on
the descriptors (like normalization, standardization, or
encoding) may also be needed while the dimensionality of
the data can be reduced for smaller and more robust models as
discussed above. Additionally, some techniques may require
more specific actions; for example, the unbalanced data is a
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serious problem in DT classification; briefly, the number of
data points in classes should be approximately the same.
Otherwise, the incorrectly classified instances from large
classes are placed into the neighboring small classes, and this
decreases their prediction accuracy because, even if the fraction
of misplaced data is small in its source (large class), it may
constitute a significant portion of data in the target (small
class). If the use of equal size classes is not practical, the
problem can be fixed by random sampling (duplicating some
data points) to increase the size of the small classes
approximately to the size of the largest.127 Unbalanced data
(i.e., a heavily tailed data set) may be challenging for the
predictive models as well.
The error should be also analyzed and reported properly to

assess the true potential of ML models. Various measures such
as root-mean-square error (RMSE), percent accuracy,
correlation coefficient (R), coefficient of determination (R2),
recall, and precision are used depending on the ML technique
employed; the most common mistake on this issue is to report
the validation error as testing error as the result of the
confusion discussed above. Additionally, the distinction
between two types of uncertainty should be also made. One
type (also called as aleatoric uncertainty) is associated with the
data set; all experimental measurements (and most of the
computational tools) have certain levels of uncertainty. This
type of uncertainty cannot be reduced during ML application.
The second type of uncertainty (also called as epistemic
uncertainty) arises from the lack of knowledge in practice even

though the knowledge exists in theory; for example, the failure
to identify an important descriptor or lack of sufficient
representation of certain effects in the data set may be
considered in this category. This type of uncertainty may be
reduced by designing better descriptors which can be strongly
related to target variables, and it should be done as much as
possible.128,129

■ IMPLEMENTATION OF ML ALGORITHMS FOR
MOFS

ML has generally been used to predict the stability of MOFs,
to unlock the gas storage and gas separation potentials of
MOFs, and to design novel MOFs. Among various
applications, the most mature application field of MOFs is
gas storage and separation. ML studies on gas storage and
separation performances of MOFs generally focus on
structure−performance relationships to select the best
descriptors and/or introduce new ones that can accurately
predict the gas uptakes and selectivities of MOFs in a time-
efficient manner. We presented some recent, representative
studies with a concise and forward-looking overview.

■ DESIGN AND DISCOVERY OF NEW MOFS

ML has been used as a tool for predicting the structural
properties of MOFs and generating well performing MOFs.
For example, the SVM algorithm was used with molecular
descriptors to define the most important properties that can

Figure 4. Design and discovery of new MOFs for gas storage. (a) Flowchart of tailor-made design of MOFs with machine learning for methane
storage and carbon capture (Reproduced with permission from the work of Zhang et al.53 Copyright 2020 American Chemical Society). (b−d)
Workflow of the ML algorithm of Bucior et al.52 using H2-MOF energy histograms as descriptors (Adapted with permission from ref 52. Copyright
2019 Royal Society of Chemistry).
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lead to porous structures, and 481 porous, mechanically stable
structures were identified among 156 333 CSD-derived
experimental crystal structures.130 The surface area descriptor
provided an important insight for determining porous and
stable structures prior to experimental studies. Also, 3385
hypothetical, computer-generated MOFs (containing 14 types
of organic ligands, 28 different types of organic or metal-based
nodes, and 41 topologies) were used to predict bulk and shear
moduli from chemical−structural properties via combining
HTCS with the ANN algorithm.50 Topology and coordination
number were identified as the most important factors for the
mechanical stability of MOFs as they determined the energy
cost for the changes in bond lengths and bond angles.
Following the comprehensive investigation of bulk and shear
moduli with respect to structural properties, a web-based tool
was provided for researchers to examine structure−mechanical
stability relations of MOFs.131

The failed experiments, which are basically the synthesis
conditions that did not lead to porous, crystalline MOFs, have
been also considered as the source of data as the parameters
and conditions leading to failure should be also known.132 In
such a work, robotic MOF synthesis was combined with
genetic algorithm (GA) and chemical intuition obtained from
failed experiments was quantified for the first time, to extend
the knowledge on how the building blocks self-assemble into
one of the most widely studied MOFs, HKUST-1, at different
synthesis conditions.133 The most optimal conditions, such as
the type of solvent used, reactants ratio, microwave power, and
reaction time as well as their relative importance for the
synthesis of HKUST-1 with the largest surface area were
determined using the RF algorithm. The model predicted the
synthesis outcome depending on the synthesis conditions with
a testing error of 14%. This approach highlighted the
importance of reporting the information obtained from failed
experiments, and it may lead the way to the development of
transferable synthesis methodologies that can be used to
synthesize different MOFs with desired porosity and surface
area without tedious repetition of experiments at many
different conditions.
Industrial application of MOFs mandates stability under

humid and/or aqueous conditions, which is not straightfor-
ward to determine with experimental and computational
methods. SVM, RF, and GB algorithms were utilized to screen
MOFs for their water stability using three categories of
descriptors: metal node, organic linker, and molar ratio of the
number of organic linkers, oxygen, hydroxyl, and water groups
to the number of metals in MOFs.134 RF and SVM models
were trained with the experimentally determined water stability
data of 207 MOFs,135 and accurately predicted the water
stability of 10 MOFs when atomic radius and ionization
potential of the metal ion and number of cyclic divalent nodes
and six-membered rings were used as the descriptors. That
work is a good example of the utilization of ML models to
prioritize the experimental synthesis of stable MOFs.
Recently popularized deep learning algorithms have been

also utilized in MOF research. Combining Monte Carlo tree
search with the recurrent neural network (RNN) algorithm, as
shown in Figure 4a, is a useful approach to design new well-
performing MOFs with high density of adsorption sites for
CH4 and CO2 gases.53 Performances of the designed MOFs
were tested for CO2 and CH4 storage after they were
hypothetically produced. Due to the design of pore space
and organic linkers, hypothetic MOFs were found to have

higher deliverable CH4 capacity, the amount of gas that can be
stored between adsorption and desorption pressures, and
higher CO2 uptake than the existing MOFs having the same
metal node and topology.

■ GAS STORAGE PERFORMANCES OF MOFS
CH4, H2, and CO2 storage capacities of MOFs are in scope
since the development of an appropriate adsorbent with
optimum storage and delivery capacities for these gases
requires knowledge of the factors defining the materials’
performance. Consequently, the works published mainly aimed
to identify the significant chemical or structural properties or
select the most suitable MOF structure. While the perform-
ances of various ML techniques are compared in some works,
there are also reports that the ML techniques were used
together in a complementary manner to enhance the
knowledge extracted.
Most ML studies have focused on the CH4 storage capacity

of MOFs. For instance, CH4 adsorption data of 137 953
hypothetically designed MOFs were computed using GCMC
simulations.89 These MOFs were later used to develop QSPR
models to reveal relations between CH4 storage capacities of
MOFs and simple geometric descriptors such as pore size,
surface area, and void fraction.49 Using the SVM models, new
hypotheses about combinations of material properties that
might lead to very high CH4 storage capacities were proposed.
Simple multivariable linear models were also successfully used
to investigate the structural factors that determine CH4 uptake
capacity of a small number of experimentally reported MOFs
at various pressures.112 According to these models, high
gravimetric surface area, ∼6000 m2 g−1, and high porosity,
∼0.9, were required to reach the Department of Energy
(DOE) target for CH4 uptake capacity (0.5 g g−1) at 35 bar.
This analysis was extended to CH4 uptake data of 2224
experimentally synthesized MOFs using DT and ANN
algorithms to determine the effect of user-defined descriptors
(such as metal type, crystal structure, metallic percentage) and
structural descriptors (such as pore volume, maximum pore
diameter) on deliverable CH4 capacity.

113 An ML algorithm on
accurately predicting CH4 uptake capacities of 4763 CoRE
MOFs and 69 840 hypothetical covalent organic frameworks
(COFs) at 5.8 bar and 298 K was proposed.136 In the
proposed approach only 100 materials are used in the training
set to predict the top materials with the highest CH4 uptake
capacities. The predicted top materials are then added to the
training set, and a new prediction is made. This procedure was
repeated until the training set included the last predicted 100
top materials. The model was able to identify most of the top
100 materials in both CoRE MOF and hypothetical COF
databases using only a small fraction of materials in the subsets.
Selection of the most suitable ML tools may depend on the

size and structure of data; hence a significant number of
researchers have compared the performances of various
techniques and selected the one that has the highest fitness.
In such a work, a topological barcode system,137 including
information about the pore geometry of materials, was
combined with different ML algorithms, including RF, DT,
kernel ridge regression (KRR), and SVM, to predict structural
properties and deliverable CH4 capacities of zeolites and
MOFs, which were previously computed with GCMC
simulations.138,139 Structural descriptors included void fraction,
surface area, density, pore diameter, and information about
interpenetration while chemical descriptors included atom
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type, degree of unsaturation, metallic percentage, oxygen to
metal ratio, nitrogen to oxygen ratio, and electronegativity. The
RF model using both chemical and structural descriptors led to
the most accurate CH4 uptake predictions. The use of the RF
algorithm was extended to 69 839 hypothetical COFs to
predict their deliverable CH4 capacities utilizing structural and
chemical descriptors.75 The use of chemical and structural
descriptors increased the accuracy of ML predictions for
COFs, especially at low pressure. Those works emphasized the
need for the consideration of chemical descriptors for accurate
prediction of gas uptakes of nanoporous materials at low
pressures.
Similar works have been performed for other gases as well.

For instance, the RF algorithm was utilized to predict the CO2,
H2, and H2S adsorption capacities of 2932 CoRE MOFs using
structural properties of MOFs along with a new descriptor, the
probability of a set of different probe atoms to be adsorbed by
the material.140 Three different probe atoms were modeled for
adsorption probability calculations: Vprobes (neutral, nonpolar
probes), Dprobes (neutral, small dipole moment), and
Qprobes (small charge in the center). The number of MOFs
used in the training set was varied from 50 to 1000 while the
rest of the MOFs were used for the validation set. The model
was built considering structural properties, and the adsorption
probability of Vprobes and Dprobes had the best R2 value for
the adsorption capacity of each gas (0.92 for CO2, 0.94 for
H2S, and 0.97 for H2). This work showed that the adsorption
capacities of MOFs for different gases can be predicted by
using adsorption probability of pseudo atoms without the need
for expensive simulations. Similarly, a large variety of ML
techniques such as multilinear regression (MLR), DT, kNN,
SVMs, ANNs, and RF was used to develop QSPR models
based on binary classifiers that are built from void fraction,
surface area, and pore size of MOFs to predict CO2 uptake
capacities of hypothetical MOFs.141 The model built with the
RF algorithm had the highest accuracy (over 94%) for uptakes
of both gases. Moreover, the model identified over 60% of
high-performing materials for CO2 and N2 adsorption in a
large and diverse set of ∼65 000 MOFs, setting a great example
that ML techniques can lead to a significant time efficiency in
screening large databases. In another work, H2 adsorption
isotherms obtained from GCMC simulations were coupled
with the NN algorithm to analyze the limits of H2 storage in
>850 000 nanoporous materials including MOFs, COFs, ZIFs,
PPNs, and zeolites.142 Results revealed that H2 storage
capacities of hypothetical materials could not exceed the
performances of the experimentally synthesized materials
reported to date. This was a motivating result for the research
community working on adsorbent materials to change the
common approach for designing better materials.
With the aim of finding materials with optimum binding

energy to reach high deliverable H2 capacities, the LASSO
algorithm was used to develop a model which uses the guest−
host energy histograms as descriptors instead of structural
properties to predict deliverable H2 capacities between 100 and
2 bar, at 77 K.52 The overall procedure of the analysis is given
in Figure 4b while the H2 adsorption capacities obtained from
GCMC versus ML for testing is given in Figure 4c indicating
that the model is quite successful. GCMC simulations were
performed for H2 uptake of 137 953 hypothetical MOFs. The
adsorbate−MOF potential energy landscape was sampled, and
the interaction energy between the framework and an H2
probe was computed to construct the energy histogram

creating the feature matrix for the hypothetical MOFs. The
LASSO model was used to predict the adsorption energy from
these features. The model was then used to predict the H2
uptake of 54 776 experimentally synthesized MOF structures
in the CSD. Finally, the model was verified experimentally
using the H2 capacity of MFU-4l, one of the top identified
MOFs with the ML model for H2 storage capacity, and a good
agreement was obtained as shown in Figure 4d.
To define the extent of volumetric H2 storage capacity

depending on adsorbent and operating conditions, Anderson
et al.143 used an ANN algorithm to predict H2 loadings of 105
hypothetical MOFs with 17 different topologies at multiple
temperature and pressure conditions. Under nonisothermal
conditions, changing the storage pressure from 100 to 35 bar
did not significantly affect the deliverable H2 capacity of a top
MOF while changing pressure under isothermal conditions led
to a more significant drop in deliverable H2 capacity. That
work demonstrated that it is possible to arrange the set of
conditions for a material to acquire the target performance,
and ML can provide a very fast means of arranging conditions.
With the experience gained on application of ML algorithms

for gas storage in MOFs, ML applications have been extended
to the different classes of nanoporous materials, different gases,
and more effective descriptors and procedures. For instance,
the ANN algorithm was used to develop a model to predict
adsorption isotherms of 2400 topologically and chemically
diverse MOFs for small, near-spherical, nonpolar, and mono-
and diatomic adsorbates (alchemical species) at different
pressures.79 The model efficiently predicted Ar, CH4, Kr, Xe,
N2, and C2H6 adsorption in MOFs. So that, for the first time
via combining the descriptors of both adsorbate and
adsorbents in the same ML model, aiming to make predictions
for any new guest/host system without any prior knowledge of
the components, the ML predictions for various gases were
made without the need of providing any specific descriptors
during the training of the model. The use of new molecular
descriptors, atomic property weighted radial distribution
functions (AP-RDFs), captures geometric features of materials
while they utilize tabulated atomic properties such as
electronegativity. To build QSPR models for CO2, CH4, and
N2 uptake of MOFs, the MLR and SVM algorithms were used
with descriptors based on AP-RDF.51 Approximately 58 000
unique hypothetical MOFs89 out of ∼83 000 were used to
train and calibrate SVM and MLR algorithms while the
remaining MOFs were used for training. QSPR models
developed with the SVM algorithm generally predicted
simulated gas uptake with a higher accuracy than MLR. A
comprehensive QSPR model that can predict high-performing
(CO2 uptake > 1 mmol/g at 0.15 bar and > 4 mmol/g at 1 bar)
and low-performing MOFs, depending on the CO2 uptake at
conditions relevant to postcombustion (0.15 bar) and landfill
gas purification (1 bar), was developed for 324 500 hypo-
thetical MOFs.144 CO2 uptake data calculated with GCMC
simulations were used to train and validate the ML models.
10% of the database was used to train the SVM algorithm again
with AP-RDF descriptors while the results of the developed
QSPR model was validated using the rest of the database. The
QSPR model successfully predicted 945 high-performing
MOFs (CO2 uptake capacity > 1 mol/kg) out of 1000 top
MOFs identified with GCMC at 0.15 bar. The work by Guda
et al.,145 which involves the use of ML to investigate the
structural parameters of CO2 adsorption on a CPO-27-Ni
MOF using its X-ray absorption near-edge structure (XANES)
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spectra, indicates that the applications may extend to more
diverse areas of MOF research in the future.

■ GAS SEPARATION PERFORMANCES OF MOFS

MOFs have been widely investigated for gas separation
because of their high porosities, chemical tunability, and
diversity. However, screening large databases of MOFs to find
well-performing materials is very time-consuming; hence ML
techniques were used in recent years to predict the gas
separation performances of large numbers of MOFs and to
identify the structural parameters for designing high-perform-
ing MOFs.
One of the common ML applications in this area is the

analysis of CO2 capture capabilities of MOFs. For example, the

effect of pore chemistry and topology on CO2 capture
performances of 400 hypothetical MOFs was studied by
combining molecular simulations with ML models.126 The
computational data for building the ML models was generated
by GCMC simulations for pure CO2 adsorption, CO2/H2, and
CO2/N2 mixture adsorption by mimicking industrial con-
ditions. To be able to focus on a particular region of the MOF
structure-space, a set of MOFs encompassing all possible
combinations of 16 topologies and 13 functionalized molecular
building blocks was considered as shown in Figure 5a. Various
ML algorithms such as MLR, SVM, DT, RF, and NN were
used to build predictive models for CO2 capture metrics of 31
parent MOFs and their derivatives while the DT algorithm was
used to predict the improvement or deterioration of CO2
capture performances of MOFs after functionalization.

Figure 5. Effect of pore chemistry and topology on CO2 capture performances of MOFs. (a) Topological nets and molecular building blocks used
to construct MOFs. (b) Comparison of different model predictions with GCMC results for CO2/N2:15/85 mixture selectivity of MOFs.126 (c)
Relative importance of descriptors obtained from GBM training for CO2/H2 and CO2/N2 separation performances of MOFs (Reproduced with
permission from the work of Anderson et al.126 Copyright 2018 American Chemical Society).
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GCMC-computed versus ML-predicted CO2/N2 selectivity for
testing is given in Figure 5b. The relative importance of
descriptors changes significantly with the change of gas mixture
composition as shown in Figure 5c. Results also revealed that
functionalization of MOFs with thiol, cyano, amino, and nitro
groups often improved CO2 capture performances of MOFs
depending on their topology. That work elucidated the
importance of pore chemistry for determining the gas
separation potential of MOFs with simulations and ML
models. In another work, the gradient boosted trees regression
(GBTR) method was used to predict CO2 working capacity
and CO2/H2 mixture selectivity of a topologically diverse set of
hypothetical MOFs.146 The data required to build the models
was generated by GCMC simulations on the hypothetical
MOFs for separation of CO2/H2 mixtures. Six different
geometric descriptors and three chemical descriptors, which
were constructed using AP-RDF, were used. The chemical
descriptors were found to be more important for accurately
predicting adsorption performance of MOFs for precombus-
tion CO2 capture.
Separation performances of MOFs can be improved wisely

using different ML algorithms even before experimental
synthesis. A deep generative model, supramolecular variational
autoencoder (SmVAE), was used to automate the design of
MOFs in a way that increases their performances for CO2/
CH4 and CO2/N2 separation.147 First, MOFs were decon-
structed into their building blocks to obtain the collections of
edges, vertices, and topologies following the methodology
provided by Bucior et al.,148 and then these were analyzed
using descriptive statistical tools. Using the edges, vertices, and
topologies, two million MOFs were generated, and the top
MOF candidates, which were identified by GCMC simulations,
had higher/similar working capacity and selectivity than the
best-performing MOFs reported in the literature.
Capture of dilute CO2 from air could be a useful process to

prevent climate change. For that purpose, the CO2 capture
potential of 6013 CoRE MOFs from air was predicted using
four different ML algorithms (back-propagation neural net-
work (BPNN), DT, RF, and SVM) with structural descriptors
such as pore sizes, volumetric surface area, and heat of
adsorption (Qst).

72 To train the models, a maximum of 1000
MOFs were used while the remaining MOFs were used for the
validation of the ML models. The ML model built with RF
algorithm was reported to have the best prediction perform-
ance of CO2 adsorption selectivity (R2 = 0.98) for the
validation set and the relative importance analysis revealed that
Qst is the most important parameter to predict adsorption
selectivity for CO2. The excellent agreement of ML results with
simulation results in that work highlights the potential of using
ML models to achieve rapid and accurate screening of MOFs
for CO2 capture even from dilute streams like air.
ML techniques have been also applied to predict the gas

separation performances of MOFs for other relevant gas
mixtures for industry such as Xe/Kr separation.149 The RF
algorithm was used to build the models considering six
common structural descriptors as well as a newly developed
descriptor, Voronoi energy of Xe, which is the average energy
of an Xe atom at the Voronoi nodes of the accessible pore
space. The data for training the models were generated by
GCMC simulations for 15 000 randomly selected structures
among 670 000 porous materials (MOFs, PPNs, ZIFs, COFs,
and zeolites) acquired from various sources, and Xe/Kr
selectivities of the remaining structures were predicted by the

models. Molecular simulations were then performed for 20 000
structures which the ML model deemed to be high performing,
Xe/Kr selectivity >11, to obtain more accurate results from
GCMC simulations. Many materials were predicted to have
better separation performance for Xe/Kr mixture than a
leading material, CC3. However, there was not a simple recipe
for the geometric descriptors to guarantee that a material
would be good for Xe/Kr separation.
Defects in MOFs can provide different adsorption sites for

gas molecules, or facilitate gas diffusion via increasing the pore
size, and can change the separation performances of MOFs.
The significance of defects for ethane/ethylene separation
performances of 425 hypothetically created MOF (UiO-66)
structures with missing linker defects were also studied by
GCMC simulations and ML algorithms.150 Among six different
ML models trained with structural and chemical descriptors,
LR model accurately predicted the working capacity,
selectivity, and shear modulus (R2 > 0.98) while RF model
successfully predicted the bulk modulus (R2 = 0.92).
Gravimetric surface area and pore volume were found as the
two most important descriptors to predict the defect
concentration of UiO-66 MOFs. LR model generally led to
good predictions while kNN and SVM models provided overall
good fittings.

■ OUTLOOK
In the light of astonishing developments in experimental
synthesis techniques, computational power, computation-ready
material databases, and data sharing capabilities observed in
the last two decades, we can expect that the use of ML
techniques in MOF research, as any field of science, will likely
increase simply because we will have much more effective
algorithms and computational tools in the future. The
availability and quality of data will grow as a result of
continuously improved experimental and computational
research tools. The recent trends such as open-access
publications as well as increasing data sharing options such
as data repositories and new databases will also contribute to
data availability while the existing databases can be expected to
transform into more ML friendly formats (i.e., more suitable
for automated data extraction). Additionally, more established
databases, similar to those in material research such as Material
Project,41 OQMD (Open Quantum Materials Database),151

AFLOWLIB (Automatic Flow),152 Computational Material
Repository,153 and AiiDA (Automated Interactive Infra-
structure and Database for Computational Science)154 are
likely to be developed in MOF specific research as some
examples are emerging: the MOFDB (MOF database of Snurr
Research group),155 Quantum MOF database,58 and Nano-
porous Materials Adsorption Energy Database.156

The ML techniques usually require a large data set to reduce
the uncertainty in models developed or knowledge extracted,
and creating such large data sets are difficult and costly; hence,
the new ML algorithms and approaches that can be used with
small data sets are also searched,76,157,158 and this trend may be
expected to grow in the future. Another approach that may be
expected to spread more in the future is automated machine
learning (AutoML), which aims to combine and automate the
machine learning steps discussed above.159,160 It was addressed
by one of the earliest studies on large scale screening of MOFs
by ML methods that automated predictive analytics pipelines
can learn predictive models that generalize to new, unseen
MOFs.100 As more people, including nonexperts, are
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anticipated to involve in ML with the increasing popularity of
subject and availability of suitable data, automated ML tools
are also likely to be more preferred.
It is of the utmost importance to use the most updated,

accurate, consistent, and comprehensive data set in ML
studies. We expect future experimental and computational
studies on MOFs to share their methodology and results in
complete detail in a ML-friendly format (available to use with
different scripts or software) in addition to graphs, figures, and
tables for reproducibility and comparability of data utilized in
ML studies. It is also important to report the results of the
failed experiments and performances of bad-performing
materials to achieve a comprehensive range of structure−
property relationships using ML. Increasing the number of
MOFs will bring a diversity in MOF properties such as
chemical composition, topology, and pore sizes, and this will
pave the way for new computation-ready experimental MOF
databases. These MOF databases will enlarge the scope of
HTCS studies to a wider range of MOF properties. However,
MOFs reported in different computation-ready databases may
not have the same range of structural properties,124 and
particularly, computational databases derived from experimen-
tal crystal structures do not contain all perfectly clean
structures.161−163 Therefore, it is important to consider the
chemical diversity and consistency of MOFs in different
libraries when assessing the results of ML studies. It can be
useful if future ML studies combine and examine MOFs from
different databases which would help to build generalized ML
models for MOFs.
The choice of informative, representative, and uncorrelated

descriptors is important for ML studies on MOFs. We expect
that future ML studies will consider and utilize various
chemical descriptors widely. In terms of physical properties,
topological descriptors provide valuable insights and can
effectively be used for gas storage and separation studies. It
is highly expected that ML studies for MOFs will continue to
mostly use the results of HTCS studies in the future.
Therefore, the assumptions and approaches used in the
HTCS studies, such as selection of the charge assignment
method and force field parameters, significantly affect the
results. It would be very useful to utilize and compare different
assumptions/approaches of HTCS to analyze their effects on
the overall results of ML-assisted computational MOF studies.
Defining force field parameters using ML, even for flexible
MOFs, can also be a new research direction. ML-based
methods can be used to predict molecular energies for small
molecules with lower costs.164 In the future, this might be
possible for MOFs and increase the accuracy of their screening
without requiring significant computational time. Even work-
flows can be designed to process large data sets of MOFs and
identify the most promising MOFs for which further
computational and experimental analysis can be made.
Combination of MOFs with other materials such as

polymers or ionic liquids also brings an additional area of
research which requires investigation with computational
modeling and ML to gain valuable insight about distinct
properties of these new MOF-based composite systems.
Results of ML studies depend on the accuracy of various
factors. It is only possible with experimental testing to
determine the validity of ML results in identifying the top
performing MOFs. Thus, stronger communication between
experimental studies and theoretical studies is needed. Future
studies examining the synthesizability of hypothetical MOFs

can significantly contribute into the experimental efforts and
potentially accelerate the commercialization of MOFs if more
studies focus on predicting mechanical properties of MOFs
with descriptors such as organic linker and metal type,
temperature, and pH of solvent pool before experimental
synthesis. Boyd et al.165 recently identified two MOFs among
325 000 hypothetical MOFs by utilizing the concept
“adsorbaphore”, which describes the pore shape and the
chemistry of the optimal binding site in a MOF and proved
their high CO2 selectivities from dry and wet flue gas with
experimental methods. These topics can be further investigated
by a collaboration of chemists, computer engineers, chemical
engineers, and material scientists in many interdisciplinary
studies while ML studies on extracting scientific knowledge
from published articles also provide new insights for the
synthesis and characterization of nanomaterials.166,167

To conclude, ML-assisted HTCS of MOFs has great
prospects for the future. MOFs have proven their potential
for various applications including gas storage and separation,
sensing, drug delivery, and catalysis, while the incorporation of
ML to the research about MOFs is still a fresh topic with many
unexplored areas. In this review, we considered ML studies
which focus on the design and discovery of MOFs with high
gas storage and separation performances. However, incorpo-
ration of ML into MOF research is not limited to only gas
storage and separation applications. Nowadays, ML is utilized
with acceleration to provide insights also for the use of MOFs
in other applications. The most promising working fluid−MOF
combinations are investigated with ML and structure−
performance relationships revealed the best combination of
properties required for the design of an efficient adsorption
driven heat pump.57 ML algorithms trained with MOF
electronic noses to detect volatile organic oils can pave the
way for the use of MOFs as sensors.56 With the control of
morphology and crystal growth of MOFs, ML can assist the
synthesis of nanoscale MOFs in the desired morphology and
properties.168,169 Specification of the electrochemical proper-
ties of MOFs according to the synthesis conditions can be
determined using ML which facilitates the design of MOFs for
Li-ion batteries.170 In addition to these, drug delivery
performance, conductivity, catalytic performance, toxicity,
and biocompatibility of MOFs are yet to be thoroughly
researched, and utilization of ML can provide useful insights
for these topics. Thus, we are excited for the future
advancements in this field which will guide many material
scientists to discover new and fascinating aspects of MOFs.
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