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Abstract: Lysozyme acts as a kind of cationic antimicrobial protein and effectively hydrolyzes bacterial
peptidoglycan to have a bactericidal effect, which also plays an important role in protecting eggs
from microbial contamination. Dermacoccus abyssi HZAU 226, a Gram-positive bacterium isolated
from spoiled eggs, has egg white and lysozyme tolerance, but its survival mechanism is unknown,
especially from a transcriptomics point of view. In this study, the high lysozyme tolerance of D. abyssi
HZAU 226 was characterized by three independent experiments, and then the Illumina RNA-seq
was used to compare the transcriptional profiles of this strain in Luria–Bertani (LB) medium with
and without 5 mg/mL lysozyme to identify differentially expressed genes (DEGs); 1024 DEGs were
identified by expression analysis, including 544 up-regulated genes and 480 down-regulated genes
in response to lysozyme treatment. The functional annotation analysis results of DEGs showed
that these genes were mainly involved in glutathione biosynthesis and metabolism, ion transport,
energy metabolism pathways, and peptidoglycan biosynthesis. This study is the first report of
bacterial-related lysozyme RNA-seq, and our results help in understanding the lysozyme-tolerance
mechanism of bacteria from a new perspective and provide transcriptome resources for subsequent
research in related fields.
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1. Introduction

The taxonomy of Dermacoccus abyssi in the LPSN (List of Prokaryotic names with Standing in
Nomenclature) database was as follows: Bacteria, Actinobacteria, Micrococcales, Dermacoccaceae,
Dermacoccus, and the type strain was MT1.1 (= DSM 17573, = NCIMB 14084) [1]. Wasu et al. [2] first
isolated D. abyssi from Mariana Trench deep water sediments at a depth of 10,898 m, which was a
novel species in the genus Dermacoccus. Subsequent studies on the secondary metabolites and the
biodecolorization of a food azo dye about this strain were reported [3,4]. Recently, two strains of
D. abyssi were successfully isolated from silver carp fillets in the early storage period [5]. D. abyssi
HZAU 226, which was used in this study, was isolated from spoiled eggs by traditional microbial
culture method in our laboratory, and it had a strong tolerance to lysozyme [6].

Lysozyme is widely found in organisms and plays an important role in the natural immune system.
The bactericidal activity can be attributed to its ability to effectively hydrolyze the peptidoglycan (PG)
of bacterial cell walls, and its hydrolysis site is a β-1,4 glycosidic bond between N-acetylmuramic acid
(NAM) and N-acetylglucosamine (NAG) [7]. In addition, lysozyme, as a kind of cationic antibacterial
protein, can perforate the negatively charged bacterial cell membrane to form regular ion channels
and destroy the bacterial cell membrane structure, causing the cell contents to flow out and the death
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of bacteria [8–10]. At present, in the food industry, lysozyme is mainly used for the preservation of
various foods, and its effectiveness had been widely proved [11].

Given the widespread distribution and effective antibacterial activity of lysozyme, it was not
surprising that some microorganisms, mainly pathogenic bacteria, had evolved a wide range of
mechanisms to escape sterilization. There had been some reports on the research and review
of lysozyme-resistance mechanisms, mainly including peptidoglycan modification and lysozyme
inhibitor [12,13]. Peptidoglycan (PG), the major component of the cell wall, is essential for bacterial
survival. Its proper modification can improve lysozyme tolerance [14]. N-deacetylation refers to the
deacetylation of the C-2 residue of N-acetylmuramic acid (NAM) or N-acetylglucosamine (NAG) under
the action of enzymes, a variety of N-deacetylases including PgdA, PdaV and PdaC had been identified
in diverse bacteria [15,16]. Similarly, O-acetylation of PG refers to the addition of acetyl group to the C-6
hydroxyl group of NAM in most bacteria, which prevents the binding of lysozyme and peptidoglycan
through steric hindrance [16,17]. In addition, teichoic acid modification and glutamic amidation in the
peptide chain can also enhance lysozyme resistance [18,19]. Lysozyme inhibitor is another strategy
that blocks the active site by binding to the lysozyme [20–22]. Transcriptional regulators in bacteria
regulate the expression level of resistance factor genes to better survive in adverse environments such
as lysozyme [23–25]. The study of the lysozyme-resistance mechanism has a positive effect on the
development of more effective and comprehensive food preservatives, the development of antibacterial
drugs and clinical treatment [26,27].

Currently, gene knockout and liquid chromatography–mass spectrometry (LC–MS) are the primary
means of research in this field, but only one or a few genes can be studied in lysozyme tolerance at a
time, and there is no systematic and comprehensive study to reveal the possible response mechanism
of microorganisms to lysozyme stress. In the past decade, RNA-seq had become an important
tool for analyzing differentially expressed genes (DEGs) in the whole transcriptome, which could
comprehensively and quickly obtain almost all transcriptional sequence information of a species in a
certain state [28]. Based on these, RNA-seq has been widely used in the study of tolerance mechanisms
of microorganisms [29,30]. The whole genome sequence of D. abyssi HZAU 226 has been obtained by
Nanopore sequencing technology and uploaded to National Center for Biotechnology Information
(NCBI) under the accession numbers CP043031 and CP043032. In this study, we applied the Illumina
RNA-seq technology to reveal the gene expression changes in Luria–Bertani (LB) medium (with added
lysozyme), and performed functional analysis of DEGs, revealing the main response mechanism based
on enrichment results. This study innovatively elaborated the lysozyme response mechanism from the
genomic level, and also provided a basis for subsequent research in related fields.

2. Materials and Methods

2.1. Characterization of Lysozyme Resistance

In this study, three independent experiments characterized the high lysozyme tolerance of D. abyssi
HZAU 226. Staphylococcus aureus ATCC 27217 was used as the control strain. Both strains were kept in
a laboratory freezer at −80 ◦C. The experiments were performed in two parallel and three replications.

Survival testing. D. abyssi and S. aureus were inoculated in LB medium (Hope Bio-Technology,
Qingdao, China) at 37 ◦C for 14 h, which were used to inoculate 20 mL LB medium with and
without 5 mg/mL lysozyme (1% v/v), controlling the concentration of bacterial solution to 2–4 × 105

colony-forming units (CFU)/mL. Then strains were grown at 37 ◦C with 50 RPM, 100 µL were plated
on plate count agar (PCA) plates (Hope Bio-Technology) at 3 h, 6 h, and 9 h, incubated at 37 °C for
24 h before plate counting. Lysozyme was purchased from Sinopharm Chemical Reagent Co., Ltd
(Shanghai, China).

Inhibition zone testing. We poured 5 mL Muellle-Hinton (MH) Agar medium (Hope
Bio-Technology) into the plates, after solidification, put Oxford cups at an equal distance, and
then poured 20 mL MH Agar medium inoculated overnight cultures (1% v/v) into the plates. After
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solidification, we removed the Oxford cups, added 100µL lysozyme solutions at different concentrations
to each hole, and added sterile saline to the control hole. The plates were allowed to stand for 30 min
and incubated at 37 ◦C for 18–24 h.

Scanning Electron Microscope (SEM) analysis. D. abyssi and S. aureus were inoculated in LB
medium at 37 ◦C, which were harvested at the logarithmic phase by centrifugation at 4 ◦C at 4000 RPM
for 10 min and washed twice with phosphate buffer saline (PBS, pH 7.4). The experimental group was
added with 0.2 mg/mL lysozyme solution and shaken for 3 h at 37 ◦C; the control group was added
with an equal volume of saline. The concentration of the bacterial solution was controlled at 107–108

CFU/mL. After the treatment, centrifuged at 4000 RPM for 15 min, the supernatant was removed, and
the bacteria enriched into 1.5 mL centrifuge tubes, which were quickly placed in 2.5% glutaraldehyde
solution and fixed at 4 ◦C overnight, After centrifugation at 4000 RPM for 10 min, the supernatant was
removed, and the cells were washed three times with PBS, which were then sequentially dehydrated
in 30%, 50%, 70%, and 100% ethanol. Finally, the cells were dissolved in 200 µL tert-Butanol and
freeze-dried, and the dried powder samples were observed for morphology by scanning electron
microscope (JSM-6390LV, JEOL, Tokyo, Japan).

2.2. Lysozyme Treatment, RNA Extraction, Illumina Library Construction and Sequencing

D. abyss HZAU 266 was inoculated in LB medium at 37 ◦C for 14 h, which were used to inoculate
20 mL LB medium with (experimental group) and without (control group) 5 mg/mL lysozyme (1% v/v).
Bacteria were harvested at the logarithmic phase by centrifugation at 4 ◦C at 4000 RPM for 10 min
and washed twice with PBS. Both the experimental group and the control group performed three
biological replicates.

Total RNA of each sample was extracted using TRIzol Reagent (Invitrogen, Carlsbad, CA,
USA)/RNeasy MiniKit (Qiagen, Hilden, Germany). Total RNA was quantified and qualified by Agilent
2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA), NanoDrop (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) and 1% agarose gel. 1µg total RNA with RNA integrity number (RIN) value above
6.5 was used for following library preparation. Next generation sequencing library preparations were
constructed according to the manufacturer’s protocol. The rRNA was depleted from total RNA using
Ribo-Zero rRNA removal kit (Bacteria, Illumina, San Diego, CA, USA). The ribosomal depleted RNA
was then fragmented and reverse-transcribed. First strand cDNA was synthesized using ProtoScript
II Reverse Transcriptase with random primers and actinomycin D. The second-strand cDNA was
synthesized using Second Strand Synthesis Enzyme Mix (include dACG-TP/dUTP). The purified
double-stranded cDNA by beads was then treated with end prep enzyme mix to repair both ends
and add a dA-tailing in one reaction, followed by a T-A ligation to add adaptors to both ends. Size
selection of adaptor-ligated DNA was then performed using beads, and fragments of ~420 bp (with
the approximate insert size of 300 bp) were recovered. The dUTP-marked second strand was digested
with Uracil-Specific Excision Reagent enzyme. Each sample was then amplified by polymerase chain
reaction (PCR) for 13 cycles using P5 and P7 primers, with both primers carrying sequences which
can anneal with flow cell to perform bridge PCR and P7 primer carrying a six-base index allowing for
multiplexing. The PCR products were cleaned up using beads, validated using an Qsep100 (Bioptic,
New Taipei City, Taiwan), and quantified by Qubit3.0 Fluorometer (Invitrogen, Carlsbad, CA, USA).

Libraries with different indices were then multiplexed and loaded on an Illumina HiSeq instrument
according to the manufacturer’s instructions (Illumina, San Diego, CA, USA). Sequencing was carried
out using a 2 × 150 paired-end (PE) configuration; image analysis and base calling were conducted by
the HiSeq Control Software (HCS) + OLB + GAPipeline-1.6 (Illumina) on the HiSeq instrument. The
sequences were processed and analyzed by GENEWIZ. All transcriptome raw data has been deposited
at the NCBI Sequence Read Archive (SRA) database under the accession PRJNA600111.
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2.3. Sequence Analysis and Functional Annotation

Quality control of raw data was processed by Cutadapt (version 1.9.1). Firstly, reference genome
sequences and gene model annotation files of relative species were downloaded from NCBI. Secondly,
Bowtie2 (v2.2.6) was used to index the reference genome sequence. Finally, clean data were aligned to
reference genome via software Bowtie2. In the beginning, transcripts in fasta format were converted
from known gff annotation file and indexed properly. Then, with the file as a reference gene file,
HTSeq (v0.6.1p1) estimated gene expression levels from the pair-end clean data. Differential expression
analysis used the DESeq2Bioconductor package, a model based on the negative binomial distribution.
After being adjusted by Benjamini and Hochberg’s approach for controlling the false discovery rate, the
adjusted p-value (padj) of genes was set at <0.05 to detect differentially expressed ones. Rockhopper
uses a Bayesian approach to create a transcriptome map including transcription start/stop sites for
protein coding genes and novel transcripts identified by Rockhopper. Blast intergenic novel transcripts
to the Non-Redundant Protein Sequence (NR) database, non-annotated transcripts are considered as
potential trans-encoded sRNAs. A novel antisense transcript was treated as cis-encoded sRNA.

GOSeq (v1.34.1) was used to identify Gene Ontology (GO) terms that annotate a list of enriched
genes with a significant p-value less than 0.05. We used topGO to plot DAG. Blastp (Version 2.7.1+)
and rpsblast (Version 2.7.1+) were used to compare the coding protein to the Cluster of Orthologous
Groups of proteins (COG) database (cut off e-value ≤ 1 × 10−5). This study used scripts in house to
enrich significant DEGs in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.

3. Results

3.1. High Lysozyme Resistance of D. abyssi HZAU 226

The growth of S. aureus was significantly inhibited compared with the LB medium without
lysozyme at 3 h, viable counts reduced to 4.6 log CFU/mL, and then gradually increased. Conversely,
D. abyssi, even in the LB medium with lysozyme, had been growing positively, and viable counts were
5.87 log CFU/mL at 3 h, greater than the initial inoculum (5.5 log CFU/mL). However, compared with
the 7.22 log CFU/mL of standard LB medium, the growth of D. abyssi was inhibited to a certain extent
(Figure 1A).

The results of the inhibition zone testing showed that D. abyssi did not produce transparent
circles on the plates with different concentrations of lysozyme, while the control strain S. aureus
produced transparent circles of various sizes, and transparent circle diameter was proportional to the
concentration (Figure 1B).

D. abyssi and S. aureus were treated with 0.2 mg/mL lysozyme for 3 h, the change of bacterial
surface morphology was observed by scanning electron microscopy (SEM). The surface of two strains
without lysozyme treatment were all smooth, full-bodied, and clear spheres or ellipsoids. After
lysozyme treatment, the morphology of S. aureus cells changed greatly, the cell membrane/wall was
twisted and sunken, the boundary between the cells was blurred, and the whole-cell morphology
collapsed completely. However, for D. abyssi, only a few bacterial cells wall showed wrinkles, but still
maintained complete cell morphology, and the structure was not significantly changed compared to
the control group (Figure 1C). It was concluded that D. abyssi HZAU 226 had high lysozyme resistance
from three independent lysozyme tolerance experiments.
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experiments using triplicate samples per each experiment via plate counts at different time points; (B) 
a and b were the lysozyme inhibition zone test of D. abyssi HZAU 226 and S. aureus ATCC 27217. The 
concentration of lysozyme in pores 1–5 were 1.5 mg/mL, 3.5 mg/mL, 5.5 mg/mL, 7.5 mg/mL and 10 
mg/mL respectively, and central pore was saline control; (C) Scanning electron microscope (SEM) 
images of lysozyme treatment. Note: control group: a (S. aureus) and c (D. abyssi); experimental group: 
b (S. aureus) and d (D. abyssi). 
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Figure 1. (A) The survival curve of D. abyssi HZAU 226 and S. aureus ATCC 27,217 in Luria–Bertani (LB)
medium with and without 5 mg/mL lysozyme. Data were obtained from two independent experiments
using triplicate samples per each experiment via plate counts at different time points; (B) a and b were
the lysozyme inhibition zone test of D. abyssi HZAU 226 and S. aureus ATCC 27217. The concentration of
lysozyme in pores 1–5 were 1.5 mg/mL, 3.5 mg/mL, 5.5 mg/mL, 7.5 mg/mL and 10 mg/mL respectively,
and central pore was saline control; (C) Scanning electron microscope (SEM) images of lysozyme
treatment. Note: control group: a (S. aureus) and c (D. abyssi); experimental group: b (S. aureus) and d
(D. abyssi).

3.2. Quality Control of Sequencing Data

After constructing 6 cDNA libraries and performing RNA-seq with the Illumina HiSeq platform,
which yielded 296.10 million reads in total with a 2 × 150 PE configuration. After removing technical
sequences, including adapters, PCR primers, or fragments thereof, and a quality of bases lower than 20,
a total of 242.67 million clean reads were obtained, and Q30 of the base ratio were higher than 90.80%,
indicating that the amount and quality of RNA-seq data were high, which provided for subsequent
reference genome comparison analysis reliable data source. The ratio of reads mapping to the reference
genome was high, with a mapping rate that fell into a range between 86.33% and 94.70% (Table 1).
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Table 1. Data quality statistics and reference sequence matching after filtering.

Sample Sample Description Total
Reads Bases Q20 1

(%)
Q30 2

(%)
GC 3

(%)
Total Mapped

CK1 Control replication 1 33,366,114 4,934,245,447 96.80 91.36 67.43 31,528,403 (94.4923%)
CK2 Control replication 2 33,483,220 4,948,473,732 96.61 90.91 67.29 31,529,020 (94.1636%)
CK3 Control replication 3 34,522,436 5,128,803,026 97.78 93.92 67.40 32,692,711 (94.6999%)

UV1 Lysozyme treatment
replication 1 56,645,366 8,421,131,651 98.17 94.79 66.31 51,680,501 (91.2352%)

UV2 Lysozyme treatment
replication 2 45,945,296 6,769,856,909 96.53 90.80 64.46 39,814,219 (86.6557%)

UV3 Lysozyme treatment
replication 3 38,707,694 5,712,404,289 96.60 90.93 64.77 33,415,978 (86.3290%)

1 Percentage of bases with a Phred value of at least 20. 2 Percentage of bases with a Phred value of at least 30. 3 Total
number of bases G and C as a percentage of total number of bases.

3.3. Identified New Genes and sRNA by Transcriptome Analysis

RNA-seq technology is an effective way to identify new genes in the genome, annotations of
transcripts in existing databases may not be comprehensive, new transcripts can usually be detected by
RNA-seq technology [31]. In this study, 284 new transcripts were identified in the D. abyssi HZAU 226
genome, of which 271 were annotated as antisense transcripts. These new transcripts were distributed
on chromosome and plasmid (Table S1).

The bacterial small regulatory RNA (sRNA) prediction was also performed on the sequencing
data. sRNAs are a class of 40–400 nt non-coding RNAs. They do not encode proteins, which are
important regulators of bacterial life activities and interact with mRNA or proteins to affect gene
expression, including cis-encoded sRNA and trans-encoded sRNA [32]. In this study, a total of 252
potential sRNAs were identified, most of which were cis-encoded sRNAs, which were distributed in
chromosome and plasmid (Table S2).

3.4. Differentially Expressed Genes’ (DEGs) Response to Lysozyme Treatment

To evaluate the relative level of gene expression in D. abyssi under control or lysozyme treatment,
fragments per kilobase per million (FPKM) values were calculated based on the uniquely mapped
reads. The FPKM values distributions of genes in six samples are shown in Figure S1, with the mean
value of 399.05. Then, based on the negative binomial distribution by DESeq2 software [33], a part of
the genes was identified as differentially expressed in lysozyme treatment samples: 544 genes were
calculated as up-regulated and 480 filtered as down-regulated genes with the cutoff of padj < 0.05
and |log2(fold change)| > 1 (Table S3). Furthermore, a general overview of the expression pattern was
visualized in a heat map (Figure 2), which provided an overall understanding of the changes in gene
expression. The expression patterns in the control group and the experimental group were similar, both
of which could be clustered together, indicating that their respective samples repeatability was good.
In addition, the expression patterns of most DEGs in the CK and UV groups were completely opposite.

Table S4 listed top30 DEGs with the lowest adjusted p-value (padj), including 9 up-regulated
genes and 21 down-regulated genes. The up-regulated genes mainly include transporters, putative
proteins (NPGAP_02910, NPGAP_14815) and aspartate aminotransferase (NPGAP_00785). Three of
them were iron ion transporters. The iron ion binding protein Efeo (NPGAP_04750) can transfer Fe3+

to the iron permease FTR1 (EfeU) (NPGAP_04745), which transports Fe3+ into the cell for absorption
and utilization [34]. FepB (NPGAP_13120) can secrete complex Fe3+ iron carriers to the extracellular
environment [35]. Iron ions are indispensable for the growth of organisms and cofactors for many
proteins to perform their functions, which also participate in the redox system [36]. The other two were
sugar and thiamine transporters. Down-regulated genes include a variety of enzymes, transcription
regulators, and transporters that drive different functions.
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3.5. Functional Analysis of DEGs

Gene Ontology (GO) is an internationally standardized gene function classification system.
Significant enrichment analysis of GO functions by DEGs can better explore the physiological, metabolic
functions and biological processes involved in DEGs. We annotated 548 out of 1024 DEGs to GO terms
in the GO database, 309 up-DEGs and 239 down-DEGs. 14 GO terms significantly enriched 123 DEGs in
response to lysozyme stress. Molecular function (MF) (GO: 0003674) enriched 38 DEGs, of which “flavin
adenine dinucleotide binding”, “heme binding” and “catalase activity” terms indicate that lysozyme
treatment was closely related to oxidative stress, and also included some transferases. Cellular
component (CC) (GO: 0005575) enriched 62 DEGs, which were closely related to the transmembrane
transport system including the ABC transporter. Biological process (BP) (GO: 0008150) enriched
23 DEGs, which were mainly used for ion transport and protein synthesis (Figure 3). The directed
acyclic graph (DAG) of GO enrichment analysis of DEGs showed that BP was significantly enriched in
“nucleoside phosphate biosynthetic process” (GO: 1901293) and “transition metal ion transport” (GO:
0000041) (Figure S2); Cellular component (CC) was significantly enriched to “ATP-binding cassette
transporter complex” (GO: 0043190) (Figure S3); MF was eventually significantly enriched to “flavin
adenine dinucleotide binding” (GO: 0050660), “ATPase activity, coupled to transmembrane movement
of substances” (GO: 0042626) and “transition metal ion transmembrane transporter activity” (GO:
0046915) (Figure S4).

The COG database is a genome-scale protein function and evolutionary analysis tool capable
of homologous classification of gene products. COG annotation results (Figure 4) showed that 556
DEGs were assigned to 20 COG terms. The “Amino acid transport and metabolism” (11%) term was
enriched with the most genes, and this indicated that under the conditions of lysozyme treatment,
the rate of the strain to utilize and metabolise amino acids has changed, amino acids are generally
used to synthesize proteins and generate energy during metabolism, and the DEGs of the “Energy
production and conversion” term had also verified the result. In addition, multiple functional terms
were enriched with more than 40 DEGs. The DEGs of “P” term indicated that lysozyme treatment
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had an effect on the cell’s ion metabolism and transport, which could be explained by lysozyme
as a kind of cationic antibacterial protein capable of forming regular ion channels with negatively
charged bacterial cell membranes, resulting in more frequent ion exchange [9,10], consistent with GO
enrichment analysis results.
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Different genes in the organism coordinate their biological functions, and in order to better
explore the biochemical metabolic pathways and signal transduction pathways involved in DEGs,
KEGG pathway enrichment analysis was conducted; 257 DEGs were enriched into 109 different
pathways, and 30 pathways with the most significant enrichment (the lowest Qvalue) were selected
for display (Figure 5). “Carbon metabolism” enriched 39 DEGs, indicating that the carbon source
utilization efficiency of the strain had changed, affecting the growth of the strain. “Ribosome” (6.37%)
and “Aminoacyl-tRNA biosynthesis” (4.12%) enriched multiple up-regulated genes, indicating that
lysozyme treatment stimulated the ribosome synthesis pathway and accelerated protein synthesis.
Many DEGs were enriched by various amino acid metabolic pathways, which was consistent with
the results of COG annotation. Five pathways of “Replication and repair” enriched multiple
down-regulated genes, including the homologous recombination repair proteins RecF and RecO.
In addition, the “ABC transporters” and “Quorum sensing” enriched with a variety of transporters,
including the peptide transporter, the five-subunit CbiMNQO complex of nickel-cobalt transport
across the membrane (GO: 0006824), and the sugar and branched chain amino acid transport systems
GanOPQ and LivKHMGF complex, but no report has been published yet, and further analysis is
needed to reveal their relationship with lysozyme stress.Microorganisms 2020, 8, x FOR PEER REVIEW 10 of 16 
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4. Discussion

In this study, the high tolerance of D. abyssi HZAU 226 to lysozyme was successfully characterized
by survival testing, inhibition zone testing and scanning electron microscope. In order to explore
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the genes involved in the lysozyme tolerance mechanism, we analyzed the Illumina mRNA-seq data
from this strain grown in LB medium with the addition of 5 mg/mL lysozyme. Starting from 6
sequenced RNA libraries, we identified a potential 284 new transcripts, 252 sRNAs, and 1024 DEGs.
The functional analysis of GO, COG and KEGG enrichment could better understand the function and
response mechanism of DEGs. These genes were mainly involved in the biosynthesis and metabolism
of glutathione, ion transport, energy metabolism pathways and peptidoglycan biosynthesis, which
had a strong response to lysozyme treatment.

The first subgroup of lysozyme-responsive genes was glutathione biosynthesis and metabolism.
Glutathione is a tripeptide consisting of glutamic acid, cysteine, and glycine. The thiol group on
cysteine is a glutathione active group, which has the function of anti-free radical and anti-oxidative
stress, and plays a key role in the regulation of redox signal transduction. Glutathione comes in two
forms: reduced (GSH) and oxidized (GSSG), with a GSH/GSSG ratio of about 100/1 [37,38]. After
lysozyme treatment, genes, related to glutathione biosynthesis and metabolism, were significantly
up-regulated. The first was that the synthesis rate of L-cysteine, one of the raw materials, was
accelerated, and the four reductase-encoding genes (NPGAP_08785, NPGAP_08790, NPGAP_08795,
NPGAP_08800, NPGAP_08805) in the assimilation sulfate reduction pathway were all overexpressed,
cysteine synthetase (cysK, NPGAP_01635: log2FoldChange (L2fc) = 2.19) was also significantly
up-regulated, catalyzing H2S to produce L-cysteine. The rate of H2S-generated L-homocysteine slowed
down. The serine O-acetyltransferase (cysE, NPGAP_01640: L2fc = 2.12) catalyzed the production of
cysteine by serine (Figure 6).Microorganisms 2020, 8, x FOR PEER REVIEW 11 of 16 
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In the glutathione metabolism pathway, the expression of the isocitrate dehydrogenase gene
(NPGAP_10145: L2fc = 2.13) was up-regulated more than four times, which catalyzed the reduction
of NADP+ to NADPH, speeding up the hydrogen supply to GSSG and increasing the rate of
GSH synthesis [39]. D. abyssi had the complete Pentose phosphate pathway, but the expression
of the 6-phosphogluconate dehydrogenase gene (NPGAP_14270: L2fc = 0.31) in this pathway
changed little, which was a catalytic enzyme producing a NADPH reaction. The glutamate-cysteine
ligase gene (NPGAP_02120: L2fc = 0.78), which catalyzes the production of GSH precursor
L-γ-glutamycysteine, was up-regulated almost twice. The aminopeptidase genes (NPGAP_11025,
NPGAP_04835, NPGAP_05495) were also significantly up-regulated, which cleaved the protease after
S-H of GSH was activated, indicating increased metabolism of GSH (Figure 6). The DEGs’ enrichment
results of the ABC transporters pathway were consistent with the above conclusions. The expression of
the gluABCD operator (NPGAP_08370, NPGAP_08375, NPGAP_08380, NPGAP_08385) responsible for
glutamate transport was significantly up-regulated, indicating that the transport of glutamate, one of
the raw materials of GSH, was accelerated. Thiamine transporter genes (NPGAP_02130, NPGAP_02135)
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were overexpressed, and thiamine pyrophosphate was an important cofactor for NADP+, NADPH,
and GSH [40]. Another type of antioxidant enzyme catalase (GO: 0004096) was also significantly
up-regulated (Figure 3). Therefore, a clear conclusion could be drawn: lysozyme treatment activated
the organism’s oxidative stress, which accelerated the biosynthesis and metabolism of glutathione.

The second major class of lysozyme-responsive genes was ion transport. COG annotation results
showed that ion transport and metabolism (“P” category) enriched 46 DEGs. The enrichment results
of a two-component system (ko02020) pathway showed that the coding genes of the K+ transport Kdp
system were down-regulated to varying degrees, among which the KdpA gene (NPGAP_12520: L2fc =

−1.16) responsible for K+ transport and the ATPase KdpB gene (NPGAP_12515: L2fc =−1.00) providing
energy for the transport process were significantly down-regulated, the response factor KdpE gene
(NPGAP_12495: L2fc = −0.44) and the stabilizing protein KdpC gene (NPGAP_12510: L2fc = −0.84)
were down-regulated less than two times, which we suspected was due to the cationic properties of
lysozyme caused osmotic stress. The significant up-regulation of the OpuA gene (NPGAP_13435) and
OpuBD genes (NPGAP_13430, NPGAP_13440) in the osmoprotectant transport system also validated
this conclusion. In the hypertonic environment, bacteria balance osmotic pressure by self-synthesis
or environmental absorption of compatible solute [41,42]. The phosphate specific transport (Pst)
system (GO: 0006817) consists of PatS, PatC, PatA, PatB and PhoU, belonging to the ABC transporter
family. Except for the ATP-binding protein PatB, the coding genes of the other four proteins were
significantly up-regulated, and inorganic phosphate plays an important role in energy metabolism
and intracellular signaling [43]. In addition, the iron transporter genes were significantly changed,
and 7 of the 8 DEGs related to iron transport were significantly up-regulated (Table S5), including
the trivalent iron transporter FepBDGC. Iron ions are widely involved in redox reactions in vivo as
cofactors in protein-driving functions, most of which exist in the host hemepexin in the form of heme
(GO: 0020037) [36]. H2O2 treatment of Enterococcus faecalis, Streptococcus thermophilus under heat shock,
and lysozyme treatment of Streptococcus gallolyticus subsp. gallolyticus also induced the overexpression
of such genes [44–46], which indicated that lysozyme treatment was related to the production of
reactive oxygen species (ROS).

The third subgroup of lysozyme-responsive genes was the energy metabolism pathway. According
to the KEGG enrichment pathway of DEGs, the citrate (TCA) cycle (ko00020) was significantly
enhanced, and enriched with 6 up-regulated DEGs, including two key enzymes in TCA cycle: isocitrate
dehydrogenase (NPGAP_10145: L2fc = 2.13) and 2-oxoglutarate dehydrogenase (NPGAP_04220: L2fc
= 1.28), and the expression of another key enzyme, citate synthase (NPGAP_03845: L2fc = 0.43), was
also up-regulated, but less than two times. Multiple genes involved in the biosynthesis of acetyl-CoA in
fatty acid degradation (ko00071), tryptophan metabolism (ko00380) and valine, leucine and isoleucine
degradation (ko00280) pathways were significantly up-regulated (Figure 7). Oxidative phosphorylation
(ko00190), the main energy producing pathway of the organism, was also significantly enhanced
(Figure S5). Multiple cytochrome enzyme and ATP synthetase genes were significantly up-regulated,
but the NADH dehydrogenase gene was down-regulated by more than two times, possibly the H+

content increased due to the strengthening of TCA cycle. The isocitrate lyase gene (NPGAP_09025:
L2fc = 2.72), a key rate-limiting enzyme in the glyoxylate cycle, was up-regulated more than six times.
Studies had shown that under the pressure of survival of microorganisms, the glyoxylate cycle could
start to utilize the carbon source in the environment to obtain energy and synthesize sugars, amino
acids, nucleic acids and other biological macromolecules for survival [47,48]. The enhancement of the
energy metabolism pathway indicated that lysozyme treatment increased the energy demand of the
strain, and the synthesis of important products such as ATP, NADH and FADH2 was accelerated to
provide more energy and coenzymes for biochemical reactions such as oxidative stress, which was
consistent with the results of several RNA-seq studies related to tolerance [29,49,50].
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The action site of lysozyme is the β-1,4-glycosidic bond on bacterial peptidoglycan. Therefore,
peptidoglycan synthesis was defined as the fourth major class of response genes. Peptidoglycan
biosynthesis (ko00550) enriched five DEGs, including murB (NPGAP_03210: L2fc = −1.60), bcrC
(NPGAP_04140), murE (NPGAP_07060: L2fc = −1.16, NPGAP_00880: L2fc = 1.84) and dacB
(NPGAP_12250). When studying the effect of gpsB on lysozyme resistance, Rismondo et al. [51]
found that the rate of incorporation of cell wall precursors into the peptidoglycan network would
affect the lysozyme resistance, and any mutation that reduced the production of peptidoglycan would
increase N-deacetylation rate, thereby improving resistance to lysozyme. Therefore, the expression
levels of Mur ligase in the peptidoglycan biosynthesis pathway were analyzed, the expressions of
murA (L2fc = −0.94), murB and murC (L2fc = −0.79) were all down-regulated, while the expressions of
murD and murG were basically unchanged, and the expression of murF (L2fc = 0.70) was up-regulated,
suggesting that lysozyme limited the biosynthesis of bacterial peptidoglycan to some extent, which was
consistent with the results of survival testing. Unfortunately, the peptidoglycan N-acetylglucosamine
deacetylase gene (NPGAP_11765: L2fc = 0.23) in the genome had not changed significantly, the survival
strategy of this strain needed further study. In addition, MurT and GatD are two enzymes responsible
for amidation of peptidoglycan. The catalytic mechanism, crystal structure, and the effect of murTgatD
operon expression on growth rate, β-lactam and lysozyme resistance have been reported [19,52,53]. In
this study, the expressions of murT (L2fc = −0.95) and gatD (log2fc = −0.67) were both down-regulated,
which reduced the degree of cross-linking of peptidoglycan. It is worth mentioning that although
D. abyssi is Gram-positive bacteria, it has a complete DAP-peptidoglycan biosynthesis pathway, which
does not require pentapeptide bridge connection. D-Ala-D-Ala carboxypeptidase gene (NPGAP_12250:
L2fc = 1.61) in DAP-type peptidoglycan synthesis pathway was significantly up-regulated, resulting
in a low cross-linking degree of peptidoglycan and loose reticular structure compared with other
Gram-positive bacteria, which could reduce the sensitivity of lysozyme to a certain extent [54,55].

5. Conclusions

In summary, the high lysozyme tolerance of D. abyssi HZAU 226 was successfully characterized
by lysozyme sensitivity experiments. To explore the specific adaptation mechanism to lysozyme, we
used high-throughput sequencing technology to perform transcriptome analysis of D. abyssi HZAU
226 under lysozyme treatment, which is also the first report of microbial-related lysozyme RNA-seq
technology; 1024 DEGs were screened and enriched with the GO, COG and KEGG databases. The
results provided the basis for the subsequent verification of specific protein functions, and provided
valuable information for the survival of this strain in eggs and subsequent lysozyme tolerance analysis
of other microorganisms.
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