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Abstract: Disruption of the dopaminergic system leads to many diseases, including cancer. Dopamine
and its receptors are involved in the regulation of proliferation, cell death, invasion, and migration.
Better understanding of the mechanisms involved in these processes could reveal new molecular
markers and therapeutic targets. The aim of this study was to determine the expression profile
of dopamine-related genes and proteins in endometrial cancer and to assess whether miRNAs are
involved in its regulation. Sixty women were recruited for the study: 30 with endometrial cancer and
30 without cancer. The expression profiles of dopamine-related genes were determined in endometrial
tissue samples using microarrays and qRT-PCR. Then, protein concentration was determined with
the ELISA test. In the last step, miRNA detection was performed using microarrays. The matching of
miRNAs to the studied genes was carried out using the TargetScan tool. The analysis showed DRD2
and DRD3 overexpression, with a reduction in DRD5 expression, which could be due to miR-15a-5p,
miR-141-3p, miR-4640-5p, and miR-221-5p activity. High levels of OPRK1 and CXCL12, related to
the activity of miR-124-3p.1 and miR-135b-5p, have also been reported. Low COMT expression was
probably not associated with miRNA regulation in endometrial cancer.
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1. Introduction

Dopamine belongs to the catecholamine family and is a precursor of norepinephrine
and epinephrine. It acts as a neurotransmitter in the central nervous system (CNS) and
participates in the regulation of mood, behavior, cognition, addiction, and the reward
system [1]. Dopamine is also produced peripherally, where it functions as a circulating
hormone, modulating the immune response, blood pressure, and kidney function [2].
Dopamine activity depends on binding to its five receptors (D1–D5). Dopamine receptors
(DR) can be divided into two groups according to their effect on adenylyl cyclase: activating
(DRD1 and DRD5) and inhibiting (DRD2, DRD3, and DRD4) [3]. Moreover, the receptors
also differ in their binding affinity within these groups. DRD5 has a 10-fold higher affinity
than DRD1, while DRD3 and DRD4 bind dopamine similarly, but more strongly than
DRD2 [4].

Disruption of the dopaminergic system leads to many diseases, including schizophre-
nia [5], Alzheimer’s disease [6], Parkinson’s disease [7], and cancer [8]. Studies on cancer
biology show that dopamine receptors may be potential therapeutic targets due to their
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involvement in the regulation of proliferation, cell death, invasion, and migration [9]. How-
ever, the expression pattern of DR varies with the tumor type, indicating the need for further
understanding of the importance of the dopaminergic system in tumor physiology [10].

Endometrial cancer is one of the most common gynecological cancers in the world [11].
It is diagnosed mainly in peri- and post-menopausal women; however, about 20–25% of
cases arise earlier [12]. Endometrial cancer can be classified into two main types [13], as
well as due to cancer staging [14] and grading [15], but such divisions are insufficient. For
this reason, classification systems that also take into account molecular characteristics of the
tumor are being established. The Cancer Genome Atlas (TCGA) Research Network’s goal
was to eliminate over- or under-treatment by increasing diagnostic precision. Depending
on the genetic characteristics, four subgroups have been distinguished: polymerase epsilon
(POLE)-ultramutated, microsatellite instability-hypermutated, copy-number low, and copy-
number high [16]. While promising, this classification is associated with high costs and
technical difficulties, which makes it hard to incorporate into routine diagnostics. The
Proactive Molecular Risk Classifier for Endometrial Cancer (ProMisE) has emerged as an
alternative option to overcome these limitations. Immunohistochemical markers have been
proposed as a substitute for sequencing. However, an alternative marker has not yet been
found for all TCGA molecular groups, indicating the need for further research on this
topic. [17].

Studies identifying novel molecular markers and potential therapeutic targets in
cancer are also very promising [18]. They include microRNAs (miRNAs), belonging
to the group of non-coding RNAs that regulate the expression of many genes. As a
result, miRNAs participate in the modulation of important cellular processes, including
metabolism, proliferation, apoptosis, migration, and differentiation. Depending on the
context, activated signaling pathways may favor tumor progression, survival, metastasis,
and epithelial-mesenchymal transition [19].

The aim of this study was to determine the expression profile of dopamine-related
genes and proteins in endometrial cancer and to assess whether miRNAs are involved in
its regulation.

2. Materials and Methods

The Bioethical Committee operating at the Regional Medical Chamber in Kraków ap-
proved the following study (185/KBL/OIL/202 and 186/KBL/OIL/2020). All procedures
were performed in accordance with the guidelines of the 2013 Declaration of Helsinki.
Written informed consent was obtained from all study participants.

2.1. Patients

A total of 60 women were recruited for the study, including 30 with endometrioid
endometrial cancer confirmed by histopathological examination (study group) and 30 with-
out neoplastic changes (control group). All patients were qualified for hysterectomy and
treated at the Department of Gynecology and Obstetrics with Gynecologic Oncology at the
Ludwik Rydygier Memorial Specialized Hospital. Endometrial tissue and blood samples
were collected from the patients. According to the degree of histological differentiation, the
following subgroups can be distinguished in the collected EC samples: G1, 15 cases; G2,
8 cases; and G3, 7 cases.

Exclusion criteria from the study group involved the diagnosis of non-endometrioid
endometrial cancer, coexisting cervical cancer, and history of other types of cancer. Patients
with endometriosis or adenomyosis, extreme obesity (Body Mass Index; BMI > 40), and
using hormone therapy within the 24 months prior surgery were also excluded. In addition,
patients included in the study were over 45 years old and after childbearing period.

Whole blood was collected using PAXgene Blood RNA Tubes. Endometrial tissue
samples were placed in Eppendorf tubes with Allprotect Tissue reagent (Qiagen, Hilden,
Germany, Cat No./ID: 76405). All samples were stored according to the manufacturer’s
recommendations.
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2.2. RNA Extraction

Total RNA extraction from whole blood was carried out using the PAXgene Blood RNA
Kit (Invitrogen Life Technologies, Carlsbad, CA, USA, Cat No: 762174). RNA extraction
from endometrial tissue samples was performed with TRIzol reagent (Invitrogen Life Tech-
nologies, Carlsbad, CA, USA, Cat No. 15596026). Agarose electrophoresis and spectropho-
tometry were used for qualitative and quantitative evaluation of the obtained extracts.

2.3. Microarray Analysis

The expression profile of dopamine-related genes was assessed using HG-U133A
2.0 microarrays (Affymetrix, Santa Clara, CA, USA), the GeneChip™ 3′IVT PLUS, and
Ge-neChip™ HT 3′IVT PLUS Reagent kits (ThermoFisher Scientific, Waltham, MA USA,
Cat No. 902416, 902417). Fluorescence intensity was measured with the Gene Array scanner
(Agilent Technologies, Santa Clara, CA, USA). The phrase “dopamine” was entered in the
Affymetrix NetAffx™ Analysis Center database (http://www.affymetrix.com/analysis/
index.affx; accessed on 1 August 2021) to obtain probe names and identification numbers.

The expression profile of miRNAs in endometrial tissue samples was determined
using GeneChip miRNA 2.0 microarrays (Affymetrix, Santa Clara, CA, USA), according
to the manufacturer’s protocol. The GeneChip Scanner 3000 7G (Agilent Technologies,
Santa Clara, CA, USA) was used to scan the microarrays. A TargetScan prediction tool
(http://www.targetscan.org, accessed on 1 August 2021) was then used to determine
which miRNAs differentiating endometrial cancer from the control could potentially affect
the expression of dopamine-related mRNAs.

2.4. Real-Time Quantitative Reverse Transcription PCR

The expression profile of CXCL12, GNAL, OPRK1, DRD5, DRD3, DRD2, and COMT
was determined by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) using
SensiFast SYBR No-ROX One-Step Kit (Bioline, London, UK). β-actin (ACTB) was selected
as endogenous control.

The thermal profile included reverse transcription (45 ◦C, 10 min), polymerase activa-
tion (95 ◦C, 2 min), and 40 cycles involving denaturation (95 ◦C, 5 s), annealing (60 ◦C, 10 s),
and elongation (72 ◦C, 5 s).

2.5. Enzyme-Linked Immunosorbent Assay (ELISA)

The protein level of CXCL12, OPRK1, DRD5, DRD2, DRD3, and COMT was assessed
with following ELISA kits: Human CXCL12/SDF-1 alpha Kit (R&D Systems, Minneapolis,
MN 55413, USA, Cat No. DSA00), Human Kappa Opioid Receptor Kit (MyBioSource,
Inc., San Diego, CA, USA, Cat No. MBS3803118), Human Dopamine Receptor D5 Kit
(MyBioSource, Inc., San Diego, CA, USA, Cat No. MBS724527), Human Dopamine Receptor
D2 Kit (MyBiosource, Inc., San Diego, CA, USA, Cat No. MBS723432), Human Dopamine
Receptor D3 Kit (MyBioSource, Inc., San Diego, CA, USA, Cat No. MBS722010), and
Human Catechol-O-Methyltransferase (COMT) Kit (MyBioSource, Inc., San Diego, CA,
USA, Cat No. MBS2019990).

2.6. Statistical Analysis

Transcriptome Analysis Console software (Thermo Fisher Scientific, Waltham, MA,
USA) and Statistica 13.0 PL (Statsoft, Kraków, Poland) were used to perform statistical
analysis. ANOVA and Tukey’s post hoc test were carried out (p < 0.05). Gene expression
changes are presented as fold change (FC).

3. Results
3.1. Dopamine-Related Gene Expression Profile in Endometrial Tissues Determined by Microarrays
and qRT-PCR

A one-way ANOVA with Benjamini–Hochberg correction showed that among
175 dopamine-related mRNAs, the expression of 38 mRNAs representing 24 genes was

http://www.affymetrix.com/analysis/index.affx
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significantly changed in endometrial cancer compared to control. Tukey’s post hoc test and
a Venn diagram revealed genes characteristic of a given cancer grade or common to several
groups (Figure 1).
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Figure 1. Venn diagram showing dopamine-related genes differentiating endometrial cancer from
control. C, control, and G, endometrial cancer grade. p < 0.05 vs. C group.

Microarray analysis showed that DRD2 was overexpressed regardless of endometrial
cancer grade, while COMT and DRD5 showed a significant decrease in expression. Changes
in DRD3 levels along with GDNF, GNAL, HRH2, CAV2, and DLG4 were characteristic of
G1 cancer. The results also revealed a decrease in KCNA2, SNCG, and TGFB2 levels with
a simultaneous increase in GNB1, CXCL12, SNCA, and OPRK1 expression in G2 cancer
compared to control. In the case of G3 cancer, significant reduction in ARRB2 and DLG4
levels and overexpression of TERF2IP and SLC22A2 were observed. AGTR2 and HTR2A
were common to G1 and G2 cancer. In turn, FLNA and GNAS were common genes to G2
and G3 samples.

Then, in order to validate the microarray results, the expression profile of CXCL12,
GNAL, OPRK1, DRD5, COMT, DRD2, and DRD3 was determined in endometrial tissues
samples by qRT-PCR. Table 1 summarizes the results of both analyzes (p < 0.05).

Table 1. Dopamine-related gene expression profile in endometrial cancer determined by microarrays
and qRT-PCR (p < 0.05).

ID Gene
mRNA Microarrays qRT-PCR

G1 vs. C G2 vs. C G3 vs. C G1 vs. C G2 vs. C G3 vs. C

203666_at CXCL12 8.59 * 10.02 * 11.45 * 9.54 * 10.36 * 12.54 *

206355_at GNAL 5.08 * 7.77 * 8.98 *
5.14 * 6.98 * 9.14 *206356_s_at GNAL 4.98 * 7.54 * 9.01 *

207553_at OPRK1 2.14 * 9.52 * 15.08 * 1.52 * 8.41 * 16.36 *

208486_at DRD5 −4.25 * −3.69 * −4.87 * −4.65 * −4.01 * −4.30 *

208817_at COMT −8.54 * −9.11 * −9.66 * −8.54 * −9.74 * −10.25 *208818_s_at COMT −8.41 * −9.36 * −9.95 *

211624_s_at DRD2 8.41 * 12.36 * 14.99 *
8.41 * 12.65 * 15.47 *216924_s_at DRD2 8.47 * 12.25 * 15.03 *

216938_x_at DRD2 8.42 * 12.54 * 14.74 *

211625_s_at DRD3 10.25 * 11.98 * 19.58 *
10.66 * 12.54 * 21.99 *214559_at DRD3 10.33 * 12.06 * 21.01 *

ID, number of the probe; C, control, and G, endometrial cancer grade. * p < 0.05 vs. C group.
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The expression profile of the selected dopamine-related genes determined by the
microarray technique was successfully validated by qRT-PCR. It has been observed that as
endometrial cancer progresses, expression of CXCL12, GNAL, OPRK1, DRD2, and DRD3
increases while DRD5 and COMT levels are gradually reduced.

3.2. Dopamine-Related Proteins in the Serum of Patients Determined by ELISA

Expression of CXCL12, OPRK1, DRD5, COMT, DRD2, and DRD3 proteins was as-
sessed in the serum of endometrial cancer patients and control group using ELISA (Table 2).

Table 2. Serum dopamine-related protein expression profile in the study and control groups (p < 0.05).

Proteins
(pg/mL)

Group

C G1 G2 G3

CXCL12 654.21 ± 2.36 1452.36 ± 3.65 * 2987.25 ± 1.69 * 4874.6 ± 2.65 *
OPRK1 3.68 ± 0.65 4.96 ± 0.98 * 5.77 ± 1.14 * 8.01 ± 0.54 *
DRD5 4.58 ± 0.85 2.01 ± 0.74 * 0.89 ± 0.11 * 0.66 ± 0.36 *
COMT 3.11 ± 0.22 1.54 ± 021 * 0.88 ± 0.098 * 0.74 ± 0.14 *
DRD2 4.54 ± 0.55 8.14 ± 0.74 * 12.55 ± 1.33 * 14.09 ± 1.69 *
DRD3 4.66 ± 0.47 7.96 ± 0.98 * 11.54 ± 1.06 * 13.96 ± 1.11 *

C, control, and G, endometrial cancer grade. * p < 0.05 vs. C group.

The analysis showed that as the grade of endometrial cancer increased, DRD5 and
COMT levels decreased significantly. In turn, expression of CXCL12, OPRK1, DRD2, and
DRD3 proteins increased with disease progression. The determined protein expression
profile is consistent with the changes observed at the gene level.

3.3. Prediction of Dopamine-Related Gene Expression Regulation by miRNAs

Analysis with miRNA microarrays revealed miRNAs whose levels significantly
changed in endometrial tissue samples compared to the control. Then, the use of TargetScan
prediction tool allowed to match miRNAs to dopamine-associated mRNAs, expression
of which was significantly altered in mRNA microarray experiment and confirmed by
qRT-PCR and ELISA (Table 3).

Table 3. List of dopamine-related genes, whole activity may be regulated by miRNAs in endometrial
cancer, determined with microarrays and TargetScan (p < 0.05).

mRNA miRNA
miRNA Microarrays

G1 vs. C G2 vs. C G3 vs. C

CXCL12 hsa-miR−135b-5p 1.77 * 1.89 * 1.55 *
OPRK1 hsa-miR-124-3p.1 −2.01 * −2.14 * 1.66 *
DRD5 hsa-miR-15a-5p −1.01 * 4.74 * 2.01 *
DRD2 hsa-miR-141-3p −2.69 * −2.54 * −3.01 *

DRD3 hsa-miR-4640-5p
hsa-miR-221-5p

−3.01 *
2.51 *

1.02 *
2.77 *

1.44 *
1.25 *

COMT - - - -
C, control, and G, endometrial cancer grade. * p < 0.05 vs. C group.

It has been observed that miRNAs differentiating endometrial cancer from control
are probably not involved in the reduction in COMT expression. In the case of DRD5, its
low expression in endometrial cancer may be related to miR-15a-5p activity. High DRD2
levels may be due to silencing of miR-141-3p expression. In contrast, miR-4640-5p and
miR-221-5p may participate in the regulation of DRD3 activity. In addition, overexpression
of miR-135b-5p can be associated with a CXCL12 level increase.

4. Discussion

Cardiovascular disease and cancer are the leading causes of death worldwide. How-
ever, it is estimated that over the course of this century, cancer may become the leading
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cause of premature death in most countries [20]. For this reason, new diagnostic methods
are being sought, including molecular markers enabling early cancer detection [21].

In this study, the expression profile of dopamine-related genes and proteins was
determined. The dopaminergic system plays an important role in the survival of cancer
cells, their invasion, and migration, which is possible due to the dopamine binding to its
receptors [10]. Our results showed that changes in DRD1 and DRD4 levels were statisti-
cally insignificant. In contrast, DRD5 expression was decreased, while DRD2 and DRD3
levels were significantly increased in endometrial cancer. Signal pathways triggered by
dopamine binding to D5 receptors cause activation of adenylyl cyclase, resulting in higher
intracellular levels of cyclic adenosine monophosphate (cAMP). Leng et al. observed that
activation of DRD5 in colon cancer, gastric cancer, and glioblastomas induced autophagic
cell death [22]. Interestingly, DRD5 overexpression was observed in hepatocellular carci-
noma [23]. In the case of endometrial cancer, Zhang et al. noticed a reduction in DRD2
and DRD5 expression in serous endometrial cancer after use of ONC206, which led to an
inhibition of proliferation [24]. Reported in this study, reduction in DRD5 expression in
endometrioid endometrial cancer samples could be the result of miR-15a-5p activity. Its
level was elevated in the initial stage of the disease, and then it decreased significantly
in G2 and G3 cancer. Kong et al. noticed that high expression of miR-15a-5p led to the
promotion of cell proliferation and invasion in glioblastoma [25], which was also confirmed
in ovarian cancer [26]. Interestingly, the studies conducted so far indicate that the level
of miR-15a-5p was reduced both in the serum of patients [27] and in endometrial can-
cer cells and tissues [28]. Our results, therefore, may suggest that the interaction of this
miRNA with DRD5 may play a role in the progression of endometrial cancer by regulating
its proliferation.

DRD2 is an agonist of DRD5, and its high expression has been reported in many
cancers, including breast cancer [29], ovarian cancer [30], and lung cancer [31]. In the case
of DRD3, little is known about its involvement in tumor biology. Williford et al. observed
that the level of D3 receptor is increased in glioblastoma and therapy with its antagonists
may be promising [32]. Overexpression of DRD2 and DRD3 observed in our work was
recorded at the gene and protein levels. Moreover, increased DRD2 levels may be the result
of decreased miR-141-3p expression. Elevated levels of this miRNA leads to inhibition
of proliferation in osteosarcoma cells [33], as well as migration and invasion of colorectal
cancer [34]. Yang et al. also noted that high levels of miR-141-3p may be a risk factor in
endometrial cancer [35]. This may suggest that DRD2 overexpression is due to the lack of
regulatory effects of miR-141-3p. In addition, high DRD3 levels in endometrial cancer are
associated with increased activity of miR-4640-5p and miR-221-5p, which are involved in
tumor progression by regulating proliferation and metastasis [36,37].

Our analysis also showed an increase in the expression of kappa opioid receptor
1 (OPRK1), catechol-O-methyltransferase (COMT), and a decrease in the level of chemokine
(C-X-C motif) ligand 12 (CXCL12). OPRK1 has the ability to inhibit the activity of adenylyl
cyclase as well as the release of neurotransmitters [38]. In the case of cancer, its overexpres-
sion has been reported in neuroendocrine tumors [39]. Interestingly, the low level of OPRK1
was associated with a poor prognosis in hepatocellular carcinoma, while in lung cancer
and melanoma it led to the growth of cancer cells [40]. Our results indicate that OPRK1 is
overexpressed in endometrial cancer, which may be due to decreased miR-124-3p.1 levels.
Inhibiting the activity of this miRNA promotes proliferation in bladder cancer [41], while
in gastric cancer it also increases migration and metastasis [42].

COMT is involved in the degradation of catecholamines, including dopamine, and
participates in estrogen metabolism [43]. This is especially important in the case of en-
dometrial cancer, as it is largely estrogen dependent [44]. Estrogen is oxidized to catechol
estrogens, which can damage DNA and have cancer potential. COMT catalyzes their
methylation, leading to the formation of 2-methoxyestradiol, which has antiproliferative,
apoptotic and cytotoxic properties [45]. Salama et al. observed that COMT knockdown
in immortalized human endometrial glandular cells led to increased proliferation as well
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as induction of neoplastic transformation [46]. Similarly, Salih et al. reported that high
progesterone levels increased COMT levels and, consequently, 2-methoxyestradiol, which
resulted in proliferation inhibition in Ishikawa cells [47]. In this study, COMT expression
was significantly decreased in endometrial cancer, both at the gene and protein levels.
In addition, the COMT gene differentiated endometrial cancer samples from the control
regardless of its grade, which indicates its potential utility as a complementary marker in
endometrial cancer diagnostics. The observed reduction in COMT levels was most likely
not a result of miRNA regulation.

CXCL12 binds to the chemokine (C-X-C motif) receptor 4 (CXCR4) and is involved
in immune reactions as well as CNS development and neurotransmission. In the con-
text of dopaminergic system, CXCL12 regulates migration and orientation of A9–A10
neurons [48]. In addition, CXCL12/CXCR4 signaling influences the orientation speed of
dopaminergic neurons [49]. CXCL12 also plays an important role in cancer progression and
metastasis, influencing overall survival in breast, lung, pancreatic, and esophagogastric can-
cer [50]. CXCL12-activated signaling cascades promote proliferation, survival, modulate
cell adhesion, and migration, and regulate metastasis through the epithelial–mesenchymal
transition. The pathway effectors include mitogen-activated protein kinases (MAPKs),
phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and nuclear factor-κB (NF-
κB) [51]. Gelmini et al. reported that the CXCL12/CXCR4 axis in HEC1A endometrial
cancer line may promote its progression [52]. Similar conclusions were drawn by Liu et al.
who observed continued secretion of CXCL12 in Ishikawa cells [53]. Cancer-associated
fibroblasts derived from endometrial cancer also secrete CXCL12 and its high levels were
associated with poor prognosis [54]. Interestingly, CXCL12 expression in estrogen receptor-
negative endometrial cancer was associated with longer overall survival and recurrence-
free survival, in contrast to estrogen receptor-positive cancer [55]. Overexpression of
CXCL12 in endometrial cancer compared to the control observed in our study is consistent
with previous reports. Moreover, levels of this chemokine increased with cancer grade and
may be associated with high miR-135b-5β activity. The overexpression of miR-135b-5p
promoted tumor cell survival and metastasis in gastric cancer [56], pancreatic cancer [57],
and non-small-cell lung cancer [58], while in breast cancer the effect was the opposite [59].
High levels of miR-135b-5p have also been reported in endometrial cancer [60,61], however
there has been no information about its association with CXCL12 so far.

The present study revealed the expression profile of dopamine-related genes and
proteins in endometrial cancer, showing significant changes that may be associated with its
progression. It is worth mentioning, however, that the limitation of this study was a small
group of patients. Moreover, we focused on endometrioid endometrial cancer, which affects
the vast majority of patients. Future studies on a larger group of patients and including
other types of EC may be promising, as they may further expand the understanding of
this cancer.

5. Conclusions

The overexpression of D2 and D3 receptors, with a simultaneous reduction in D5
receptor and COMT expression, indicates a disturbance in the functioning of the dopamin-
ergic system. Moreover, it may be the result of miR-15a-5p, miR-141-3p, miR-4640-5p, and
miR-221-5p activity, regulating proliferation or metastasis. In addition, decreased levels
of miR-124-3p.1 may result in increased OPRK1 expression, contributing to endometrial
cancer progression. Our results also confirmed the overexpression of CXCL12 observed
in previous studies. Interestingly, it may be associated with high activity of miR-135b-5p,
which promotes tumor cell survival and metastasis.
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Gyncentrum Fertility Clinic.

References
1. Olguín, H.J.; Guzmán, D.C.; García, E.H.; Mejía, G.B. The Role of Dopamine and Its Dysfunction as a Consequence of Oxidative

Stress. Oxidative Med. Cell. Longev. 2016, 2016, 9730467. [CrossRef]
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