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Abstract

The GLIS family transcription factors, GLIS1 and GLIS3, potentiate generation of induced pluripotent stem cells (iPSCs).
In contrast, another GLIS family member, GLIS2, suppresses cell reprograming. To understand how these disparate roles
arose, we examined evolutionary origins and genomic organization of GLIS genes. Comprehensive phylogenetic analysis
shows that GLIS1 and GLIS3 originated during vertebrate whole genome duplication, whereas GLIS2 is a sister group to
the GLIS1/3 and GLI families. This result is consistent with their opposing functions in cell reprograming. Glis1 evolved
faster than Glis3, losing many protein-interacting motifs. This suggests that Glis1 acquired new functions under weak-
ened evolutionary constraints. In fact, GLIS1 induces induced pluripotent stem cells more strongly. Transcriptomic data
from various animal embryos demonstrate that glis1 is maternally expressed in some tetrapods, whereas vertebrate glis3
and invertebrate glis1/3 genes are rarely expressed in oocytes, suggesting that vertebrate (or tetrapod) Glis1 acquired a
new expression domain and function as a maternal factor. Furthermore, comparative genomic analysis reveals that glis1/
3 is part of a bilaterian-specific gene cluster, together with rfx3, ndc1, hspb11, and lrrc42. Because known functions of
these genes are related to cilia formation and function, the last common ancestor of bilaterians may have acquired this
cluster by shuffling gene order to establish more sophisticated epithelial tissues involving cilia. This evolutionary study
highlights the significance of GLIS1/3 for cell reprograming, development, and diseases in ciliated organs such as lung,
kidney, and pancreas.

Key words: ortholog group, gene duplication, neofunctionalization, comparative transcriptomics, microsynteny,
ciliogenic gene cluster.

Introduction

Among Krüppel-like zinc-finger transcription factors, GLI-
similar transcription factors (GLIS) constitute a large family,
together with GLI and ZIC (Hatayama and Aruga 2010; Kang
et al. 2010; Scoville et al. 2017; Aruga and Hatayama 2018). GLI,
GLIS, and ZIC share a DNA-binding domain consisting of five
C2H2 zinc-finger domains, two of which, near the N-terminus,
are characterized as a tandem pair of CWCH2 motifs
(Hatayama and Aruga 2010; Aruga and Hatayama 2018). It
has been proposed that GLI, GLIS, and ZIC originated from a
common ancestral gene and that ZIC is an early branching
gene group, relative to GLI and GLIS (Layden et al. 2010;
Aruga and Hatayama 2018). However, phylogenetic relation-
ships between GLI and GLIS have never been determined, pos-
sibly because zinc-finger domains from only a small number of
taxa have been used for phylogenetic analysis (Kim et al. 2003;
Kang et al. 2010; Layden et al. 2010; Aruga and Hatayama 2018).

In mammals, three GLIS genes (GLIS1-3) have been iden-
tified and their embryonic expression patterns in mice and

adult organ expression levels in mice and/or humans have
been determined (reviewed in Kang et al. [2010]). All three
genes are most abundantly expressed in kidney, with moder-
ate expression in various other organs: GLIS1 is expressed in
brain, thymus, adipose tissue, colon, testis, and placenta (Kim
et al. 2002; Nakashima et al. 2002); GLIS2 is in brain, lung,
heart, esophagus, intestine, colon, thyroid, liver, and prostate
(Zhang and Jetten 2001; Zhang et al. 2002); and GLIS3 is in
brain, lung, thymus, thyroid, liver, pancreas, spleen, testis,
ovary, and uterus (Kim et al. 2003; Senee et al. 2006; Beak
et al. 2008). GLIS3 is also expressed in a number of human
cancers, suggesting that elevated GLIS3 expression leads to
cancer progression (Kang et al. 2010). Remarkably, only Glis1
is significantly expressed in early mouse embryos (oocyte to
two-cell stage), possibly related to its proreprograming func-
tions, discussed below (Maekawa et al. 2011).

Knock-out mouse studies have revealed that Glis2 is es-
sential for normal renal functions (Attanasio et al. 2007; Kim
et al. 2008), and that Glis3 is required for kidney development,
pancreatic b-cell development, and spermatogenesis
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(Kang, Beak, et al. 2009; Kang, Kim, et al. 2009; Kang et al.
2016). In studies of kidney disease, Glis2 and Glis3 were local-
ized to primary cilia (Attanasio et al. 2007; Kang, Beak, et al.
2009). GLIS2 dysfunction was responsible for nephronophthi-
sis (NPHP), and loss of GLIS3-function leads to neonatal dia-
betes and hypothyroidism (NDH), polycystic kidneys, and
other abnormalities (Jetten 2018). Notably, in generation of
induced pluripotent stem cells (iPSCs) from human and
mouse fibroblasts by so-called Yamanaka factors (Oct4,
Sox2, Klf4, and c-Myc), replacement of c-Myc with GLIS1
decreases tumorigenicity (Maekawa et al. 2011).

In other vertebrates, Glis2 was first identified as a neuronal
Krüppel-like protein (Nkl) in Xenopus, and misexpression of
Glis2 induced extra primary neurons (Zhang and Jetten 2001).
In zebrafish, Glis2 was described as NPHP7 and loss of func-
tion analysis showed that Glis2 is required for cilium motility
(Kim et al. 2013). Loss of function experiments involving Glis3
led to a significant decrease in b-cell mass in zebrafish (O’Hare
et al. 2016). Glis3 deficiency also resulted in a medaka mutant
with shortened renal cilia and caused polycystic kidney dis-
ease (Hashimoto et al. 2009). These studies imply conserved
roles of Glis2 and Glis3 for primary cilium function and kidney
development, and Glis3 for pancreatic development in verte-
brates. However, little is known about Glis1 functions in other
vertebrates.

Results and Discussion

Phylogenetic Relationships of GLIS Genes Are
Consistent with Differences in Gene Functions
To infer GLIS gene ancestry, we first performed comprehen-
sive phylogenetic analysis using a species tree-based ortholog
group identification tool, ORTHOSCOPE (Inoue and Satoh
2018). The result demonstrates that GLIS1 and GLIS3 are
“ohnologs” derived from a single ancestral gene (GLIS1/3)
via two-rounds of whole genome duplication (WGD) in ver-
tebrates (supplementary figs. S1 and S2, Supplementary
Material online). In addition, the orthologous gene group
GLIS1/3 is a sister group to the GLI subfamily. On the other
hand, GLIS2 and its invertebrate orthologs form an outgroup
relative to GLI and GLIS1/3 (fig. 1A). These results were further
validated by maximum likelihood (ML) trees constructed us-
ing the same sequence set as used with ORTHOSCOPE

(supplementary figs. S3 and S4, Supplementary Material on-
line). Therefore, these data clarify relationships between GLI,
GLIS1, GLIS2, and GLIS3 with higher reliability than previous
studies (Materna et al. 2006; Shimeld 2008; Hatayama and
Aruga 2010; Layden et al. 2010).

The deep evolutionary origins of Glis1/3 and Glis2 are
reconciled with their structural and functional differences.
First, a nuclear localization signal is located at the fourth
zinc-finger domain (ZF4) of Glis3, but at ZF3 of Glis2 (Beak
et al. 2008; Vasanth et al. 2011; Hatayama and Aruga 2012).
Second, Glis3 contains a ciliary localization signal in the N-
terminal region that is conserved among Gli transcription
factors and presumably binds to Transportin1 (TNPO1)
(Han et al. 2017; Jetten 2018). However, the ciliary localization
signal motif is not present in Glis2, although Glis2 is report-
edly localized in the primary cilium (Attanasio et al. 2007;
Jetten 2018). Third, Glis1 and Glis3 contain transactivation
domains in the C-terminal region, and self-repressive domains
in the N-terminal region (Kim et al. 2002, 2003). In contrast,
Glis2 contains transactivation domains in the N-terminal re-
gion, and self-repressive domains in the C-terminal region
(Zhang et al. 2002). Fourth, both GLIS1 and GLIS3 have com-
parable activity in reprograming of human adipose-derived
stromal cells, together with Yamanaka factors, whereas GLIS2
suppresses reprograming (Lee et al. 2017).

The phylogenetic tree of Glis1/3 in chordates further dem-
onstrates that Glis1 evolved faster than Glis3 after WGD in
vertebrates (supplementary fig. S5, Supplementary Material
online). This implies that Glis1 experienced additional evo-
lutionary events such as acquisition of new functions, loss of
ancestral functions, and adaptive evolution, whereas Glis3
retained ancestral form and functions. Actually, GLIS1 can
replace Klf4 as a transcription factor for iPSC generation, but
other GLI/GLIS/ZIC factors, GLI4, GLIS2, GLIS3, and ZIC4,
cannot (Maekawa et al. 2011). Hereafter, we focus on simi-
larities and differences between the ohnologs, Glis1 and Glis3.

Glis1 Lacks Several Conserved Motifs
The Cullin3 complex binds Glis3 for degradation via poly-
ubiquitination, whereas Supressor of Fused (Sufu) inhibits
its degradation by binding to Glis3 via a YGH motif
(ZeRuth et al. 2011). Similarly, an E3 ubiquitin ligase, Itch,
reportedly binds to Glis3 via a PPPY motif for degradation

FIG. 1. GLIS1 and GLIS3 evolved as ohnologs in vertebrates. (A) A schematic phylogenetic tree of GLI/GLIS/ZIC genes supported by ORTHOSCOPE
analysis and ML trees (see supplementary figs. S1–S4, Supplementary Material online, for more details). (B) Presumed evolution of protein–protein
interaction motifs of GLIS1/3 after WGD in vertebrates. GLIS3 retains all conservative motifs in chordates, whereas GLIS1 lost many of them.
Ubiquitination/SUMOylation motifs and an ITCH-binding motif are strongly conserved among GLIS1/3 in vertebrates. See supplementary figures
S5 and S6, Supplementary Material online, for phylogenetic analysis and sequence alignment, respectively.
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(ZeRuth et al. 2015). For transactivation activity, a Hippo
signal pathway regulator Wwtr1/TAZ binds to a P/LPXY mo-
tif in the C-terminal region of Glis3 but does not bind to Glis1
or Glis2 (Kang, Beak, et al. 2009). Glis3 also interacts with CBP/
p300 through its C-terminal transactivation domain (ZeRuth
et al. 2013). Interacting partner proteins of Glis1 and Glis2
have been little studied compared with those of Glis3.

Because of the deep origins of Glis1/3 and Glis2, sequence
homology between Glis1 and Glis3 helps us to understand
evolution of vertebrate ohnologs. As a result of its faster evo-
lutionary rate (supplementary fig. S5, Supplementary Material
online), Glis1 lost several protein motifs that are conserved in
Glis3 and invertebrate Glis1/3 (supplementary fig. S6,
Supplementary Material online). For example, Glis1 lacks a
binding motif for Sufu, which is conserved in Glis3 and Gli
(ZeRuth et al. 2011). Glis1 also lacks all putative phosphory-
lation sites identified in Glis3 (ZeRuth et al. 2015). On the
other hand, a binding motif for Itch is widely conserved
among chordate Glis1/3 genes. In addition, ubiquitination/
sumoylation motifs are also conserved, suggesting that Itch is
heavily involved in degradation of Glis1 and Glis3. Because
invertebrate Glis1/3 does not have a Wwtr1-interacting motif,
Glis3 may have acquired that motif for transactivation. Thus,
Glis1 lost many ancestral features and may have changed its
functions, whereas Glis3 is highly conserved and probably
retains ancestral functions (fig. 1B). It is worth investigating
whether Glis1 acquired new binding partners for cell
reprograming.

Faster Evolving glis1/3 Genes Are Prone to Elimination
from Genomes after Extra WGD
We next performed syntenic analysis to examine genomic
organization of glis1 and glis3 (fig. 2A and B). When the hu-
man genome is compared with sarcopterygian and shark
genomes, both loci are well conserved, whereas in actino-
pterygians, both loci are highly rearranged, with a few excep-
tions such as ndc1, lrrc42, and rfx3. Those will be further
discussed below.

Among teleosts, medaka and zebrafish retain two glis1
genes (glis1a and glis1b) that originated from teleost-
specific WGD, whereas fugu lost glis1a (fig. 2A). Because
Glis1a sequences are more derived than Glis1b (supple-
mentary fig. S5, Supplementary Material online), Glis1a
must be less constrained and has been more easily elim-
inated during teleost evolution. By contrast, extant tele-
osts only retain a single copy of glis3 (fig. 2B), possibly due
to rapid gene loss in an early stage of teleost evolution
(Inoue et al. 2015). Because teleost glis3 genes have longer
branch lengths in phylogenetic trees than other verte-
brate glis3 genes (supplementary fig. S5, Supplementary
Material online), teleost Glis3 possibly evolved under
weakened functional constraints.

Another case of additional WGD in vertebrates is the
African clawed frog, Xenopus laevis, which has an allotetra-
ploid genome composed of two subgenomes, denoted L and
S (Session et al. 2016). Surveying glis1/3 genes in X. laevis, we
found that glis1 and surrounding genes have been eliminated
from the S subgenome (fig. 2C), whereas the glis3 locus is

conserved, except for copy number variations of crystallin
gamma (cryg) genes (fig. 2D). As with Glis1a and Glis3 in
teleosts, Xenopus Glis1 is more divergent among vertebrate
Glis1 (supplementary fig. S5, Supplementary Material online).
Taken together, loss of faster evolving genes in vertebrate
genomes may reflect differences of evolutionary constraints
on Glis1/3 functions.

Expression Profiles Suggest Neofunctionalization of
Glis1 in Vertebrate Oocytes
In mice, Glis1 is enriched in unfertilized eggs and one-cell
stage embryos (Maekawa et al. 2011). Transcriptomic data
of mouse early embryos (Tang et al. 2011; Xue et al. 2013)
further demonstrate that Glis1, but not Glis3, is maternally
expressed (fig. 3A and supplementary fig. S7B, Supplementary
Material online). However, in humans, GLIS1 and GLIS3 are
not expressed in oocytes (supplementary fig. S7A,
Supplementary Material online), suggesting gain or loss of
maternal expression of Glis1 in mice or humans, respectively.
To examine these possibilities, we next examined transcrip-
tomic data from bovine preimplantation embryos (Jiang et al.
2014). The data showed that Glis1, but not Glis3, is expressed
in bovine oocytes (supplementary fig. S7C, Supplementary
Material online), supporting the possibility that the mamma-
lian ancestor possessed Glis1 expression in oocytes, but that
humans lost it.

To infer the origin of maternal expression of glis1, we fur-
ther surveyed transcriptomic data of other vertebrates.
Interestingly, transcriptomic data of chicken early embryos
(Hwang et al. 2018) demonstrated that both glis1 and glis3
are expressed in oocytes (fig. 3B). High temporal-resolution
transcriptomic data from Xenopus tropicalis embryos (Owens
et al. 2016) showed that glis1, but not glis3, is expressed as a
maternal factor (fig. 3C). In teleosts, both medaka and zebra-
fish transcriptomic data during developmental stages
(Ichikawa et al. 2017; White et al. 2017) indicate that glis1/3
genes are not expressed in oocytes, except for medaka glis3,
which exhibits fairly low-level expression (fig. 3D and supple-
mentary fig. S7D, Supplementary Material online). These
results indicate that glis1 may have been expressed mater-
nally, at least in the tetrapod ancestor, and that lineage-
specific gain and loss of maternal expression occurred for
glis1/3 genes in several lineages. To determine the origin of
maternal expression of glis1 in vertebrates, we need to exam-
ine more expression profiles, especially from basal vertebrates
such as chondrichthyans and cyclostomes. Because the ele-
phant shark genome retains more conserved synteny around
glis1 and glis3 with tetrapods than those of actinopterygians
(fig. 2A and B), it is possible that chondrichthyans retain
maternal expression of glis1 as an ancestral feature of
gnathostomes.

Given the likely tetrapod origin of glis1 maternal expres-
sion, it is interesting that dmrtb1 (also called dmrt6) adjoins
glis1 in tetrapod genomes (fig. 3A). DMRTB1 was also
screened as a candidate proreprograming transcription factor,
although DMRTB1 could not be replaced with c-MYC as
GLIS1 could (Maekawa et al. 2011). In addition, transcrip-
tomic data showed that dmrtb1 is also maternally expressed
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in human, mouse, and frog oocytes, but not in bovine or
chicken oocytes (supplementary fig. S8, Supplementary
Material online). Thus, it is worth examining the possibility
that GLIS1 and DMRTB1 work collaboratively as maternal
factors. It should be noted that dmrtb1 was eliminated
from both subgenomes of X. laevis (fig. 2C), as previously
described (Watanabe et al. 2017), although it is maternally
expressed in X. tropicalis (supplementary fig. S8,
Supplementary Material online). This fact implies that mater-
nal gene regulatory networks vary considerably between X.
laevis and X. tropicalis.

To reveal the ancestral expression pattern of glis1/3 before
WGD, we further examined transcriptomic data of bilaterian
embryos. Recently published transcriptomic data of the ceph-
alochordate, Branchiostoma lanceolatum (Marletaz et al. 2018),
showed that glis1/3 is not expressed in eggs and early stage
embryos (fig. 3E) just as glis3 is not in many vertebrates (fig. 3A,
C, and D and supplementary fig. S7A–D, Supplementary
Material online). Among nonchordate deuterostomes, glis1/3
is maternally expressed in the sea urchin Strongylocentrotus
purpuratus, as shown by QPCR (quantitative polymerase chain
reaction) (Materna et al. 2006) and RNA-seq (Tu et al. 2012)

(fig. 3F). However, transcriptomic data of another sea urchin,
Paracentrotus lividus (Gildor et al. 2016), showed that glis1/3 is
not expressed in eggs (supplementary fig. S7E, Supplementary
Material online), indicating that glis1/3 is not necessarily a
maternal factor in deuterostomes. In protostomes, glis1/3 is
rarely expressed in eggs and early embryos, as shown in tran-
scriptomic data from brachiopods (Luo et al. 2015) and scal-
lops (Wang et al. 2017) (fig. 3G and supplementary fig. S7F,
Supplementary Material online). These data suggest that, after
WGD, glis3 retained ancestral expression patterns, whereas
glis1 may have acquired new expression domains and func-
tions in vertebrate (or tetrapod) oocytes.

glis1/3 Retains Evolutionarily Conserved Microsynteny
in Bilaterians
To further examine conserved microsynteny around the
glis1/3 locus in animals, we surveyed invertebrate genomic
data. We found that glis1/3, rfx3, ndc1, hspb11, and lrrc42 are
clustered in 100–600-kb regions of most bilaterian genomes
(fig. 4A and supplementary table S1, Supplementary Material
online). Drosophila lost two genes and the remaining three

A B

FIG. 2. Synteny around glis1 and glis3 is highly conserved in vertebrates. (A) Conserved synteny around glis1. Green, yellow, and blue boxes indicate
conserved syntenic protein-coding genes among vertebrates, actinopterygians, and teleosts, respectively. (B) Conserved synteny around glis3.
Purple, orange, and gray boxes indicate conserved syntenic protein-coding genes among vertebrates, actinopterygians, and teleosts, respectively.
Human CRAM1L1 became a pseudogene, as indicated by the dashed line. (C) Genomic organization around glis1 in Xenopus. glis1 and surrounding
genes (yipf1, dio1, hspb11, lrrc42, and idlrad1) have been eliminated from the S subgenome in X. laevis, and dmrtb1 was eliminated from both
subgenomes. (D) Synteny around glis3 is widely conserved in X. laevis subgenomes, but the number of tandemly duplicated cryg genes varies
between X. tropicalis (3), the X. laevis L subgenome (2), and the X. laevis S subgenome (8).
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FIG. 3. glis1 is maternally expressed in tetrapods, but vertebrate glis3 and invertebrate glis1/3 are rarely expressed as maternal factors. Expression
levels of glis1/3 genes in various animal embryos are shown in graphs. Individual data from biological replicates are indicated in orange circles for
glis1 (or glis1a in teleosts), blue squares for glis3 (or glis1/3 in invertebrates), and green triangles for glis1b in teleosts. Lines represent the average of
biological replicates. ZGA represents the period of zygotic gene activation, proposed for each species or closely related species (Tadros and Lipshitz
2009; Yang et al. 2016; Jukam et al. 2017). (A) Early mouse embryos (Xue et al. 2013). Glis1 but not Glis3 is expressed before ZGA and immediately
degraded after ZGA in mouse. RPKM, reads per kilobase of exon per million mapped reads. See supplementary figure S7A–C, Supplementary
Material online, for more data sets from mammals (human, mouse, and bovine). (B) Early chicken embryos (Hwang et al. 2018). Both glis1 and glis3
are expressed in chicken oocytes but greatly reduced in zygotes afterward. (C) Frog (X. tropicalis) embryos (Owens et al. 2016). glis1 is expressed
maternally at levels of�10,000 transcripts per egg (0hpf) or embryo (others), whereas glis3 is only expressed zygotically in Xenopus. (D) Medaka
embryos (Ichikawa et al. 2017). glis3 is weakly expressed before ZGA but glis1a and glis1b are not in medaka. TPM, transcripts per million. See
supplementary figure S7D, Supplementary Material online, for zebrafish data. (E) Amphioxus embryos (Marletaz et al. 2018). glis1/3 is hardly
expressed before 18 hpf (neurula) in amphioxus. cRPKM, corrected (per mappability) reads per kb of mappable positions and million reads. (F) Sea
urchin (S. purpuratus) embryos (Tu et al. 2012). glis1/3 is maternally expressed but is greatly reduced at ZGA in S. purpuratus. See supplementary
figure S7E, Supplementary Material online, for data from another sea urchin (P. lividus). (G) Brachiopod embryos (Luo et al. 2015). glis1/3 is rarely
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genes are distantly located on the same chromosome,
whereas interestingly, octopus retains the intact gene cluster.
We also examined synteny conservation of genes neighboring
the cluster in humans, amphioxus, octopuses, and brachio-
pods, genomes of which contain clusters that are almost in-
tact (supplementary fig. S9, Supplementary Material online).
Results showed that synteny of genes other than these five
genes is not conserved among the four genomes, emphasizing
remarkable conservation of these five genes as a cluster.

Among nonbilaterians, only the sea anemone
(Nematostella vectensis) possesses glis1/3 and lrrc42 in the
same vicinity, but others do not have a putative gene cluster.
In the choanoflagellate, Monosiga brevicollis, a unicellular or-
ganism closely related to animals, genes other than rfx3 are
missing in its genome. These facts suggest that the common
ancestor of bilaterians acquired this cluster by shuffling gene
order. A characteristic feature of this highly conserved gene
cluster is that all five genes belong to different gene families, in

contrast to clusters of duplicated copies of the same gene
family, such as Hox, ParaHox, and Wnt gene clusters
(Takeuchi et al. 2016).

What then is the role of this cluster? Strikingly, the known
functions of these genes are related to cilia (fig. 4B). Glis3 is
localized in primary cilium and is associated with cystic renal
diseases (Kang, Beak, et al. 2009). In amphioxus, glis1/3 is
highly expressed in gill bars, which are densely populated
with ciliated cells, compared with other tissues (supplemen-
tary fig. S10A, Supplementary Material online). In brachio-
pods, glis1/3 is enriched in lophophores, which contain
ciliated tentacles (supplementary fig. S10B, Supplementary
Material online). Among scallop adult organs, glis1/3 is
strongly expressed in the ciliated gill (supplementary fig.
S10C, Supplementary Material online). Even in ctenophores,
a basal metazoan lineage, glis1/3 is expressed in ciliated cells
(Layden et al. 2010), implying that Glis1/3 had an ancient role
in ciliogenesis. Remarkably, glis1/3 is also expressed at

FIG. 3. Continued
expressed during early embryogenesis in brachiopods. The period of ZGA has not been analyzed deeply in brachiopods, but we suppose that ZGA
occurs around early blastula because expression of some developmental regulatory genes such as bmp2/4, chordin, and brachyury initiates at the
early blastula stage. FPKM, fragments per kilobase of exon per million mapped fragments. See supplementary figure S7F, Supplementary Material
online, for scallop embryos.

A B

FIG. 4. Bilaterian-specific gene cluster for ciliogenesis. (A) Conserved synteny of ciliogenic genes (glis1/3, rfx3, ndc1, hspb11, and lrrc42) in bilaterians.
Octopus glis1/3 is separated into two gene models (see supplementary table S1, Supplementary Material online), but a single gene is shown in this
figure. In the brachiopod genome (Lingula anatina), ndc1 is separated into two gene models (see supplementary table S1, Supplementary Material
online) and a gene model is identified in the opposite strand of ndc1. For simplification, only a single ndc1 gene is indicated in this figure. In
nonchromosomal level genome assemblies (nonhuman and nonfly), sizes of remaining regions in the scaffold are indicated. Black circles mean that
no gene models are identified in the remaining region, or in other words, that the gene model is located close to the end of the scaffold. These data
demonstrate that the ciliogenic gene cluster is highly conserved in humans, amphioxus, octopuses, and brachiopods. See supplementary figure S9,
Supplementary Material online, for more detailed comparison of gene orders around the cluster. (B) Presumed functions of ciliogenic cluster genes.
Glis1/3 is localized in both cilia and nuclei and may be trafficked via Ndc1 and Hspb11. Rfx3 regulates ciliogenic gene expression. Lrrc42 may
function as a transcriptional regulator, together with Glis1/3 and Rfx3. See supplementary figure S10, Supplementary Material online, for glis1/3
expression profiles in ciliated adult tissues of invertebrates.
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moderate levels in guts of amphioxus and brachiopods, and in
digestive glands of brachiopods and scallops. These expres-
sion data imply that functions of Glis3 in pancreatic b-cell
differentiation (Kang, Beak, et al. 2009; Kang, Kim, et al. 2009;
O’Hare et al. 2016) originated the digestive system of the
bilaterian ancestor.

Rfx3 positively regulates ciliary genes in most animals, and
perhaps in choanoflagellates (Piasecki et al. 2010).
Importantly, Rfx3 also regulates pancreatic b-cell differentia-
tion (Ait-Lounis et al. 2010), suggesting cooperative functions
with Glis3 in islets. Ndc1 is a component of the nuclear pore
complex and also of the ciliary pore complex, which mediate
protein transport to nuclei and cilia, respectively (Mansfeld
et al. 2006; Ounjai et al. 2013). Hspb11 is an ortholog of
intraflagellar transport 25 (Ift25) that participates in transport
of Hedgehog signaling molecules, including Gli in primary
cilium (Keady et al. 2012). Lrrc42 has been reported as a
nuclear protein expressed in lung cancer (Fujitomo et al.
2014), suggesting that Lrrc42 interacts with transcription fac-
tors that may include Glis1/3 and Rfx3, to regulate ciliogen-
esis. Taken together, this “ciliogenic gene cluster” may serve to
establish ciliated tissues in organs such as gill, gastrointestinal
epithelium, lung, kidney, and pancreas, since the origin of
bilaterians. In other words, formation of this cluster with
other ciliogenic genes further suggests that ciliogenesis was
the original function of Glis1/3, and that Glis1 has been
coopted for cell reprograming in vertebrates.

Conclusions and Perspectives
In this study, we first clarified relationships between GLI and
GLIS genes by comprehensive phylogenetic analysis. The sim-
ilar gene names are confusing, but the first emergence of
GLIS2 by duplication of the ancestral GLI/GLIS/ZIC gene in
metazoans greatly predates the appearance of GLIS1 and
GLIS3 by WGD in vertebrates. Amino acid sequences of
Glis1 and Glis3 were compared to identify conserved and
diversified protein–protein interaction motifs. Surveys of
transcriptomic data emphasized that maternal expression
of glis1 is characteristic of tetrapods. Glis1 appears to have
been released from evolutionary constraints for conventional
roles and has acquired new functions in oocytes. Together
with proreprograming activity of GLIS1, we hypothesize that
Glis1 was neofunctionalized for cell reprograming in verte-
brates (or tetrapods). The cell reprograming activity of Glis1/3
from various animals should be examined using iPS or other
reprograming assays. Then, Glis1-specific transcriptional ma-
chinery for cell reprograming should be determined.

Comparative genomic analysis revealed a highly conserved
gene cluster containing glis1/3 and other ciliogenic genes.
Transcriptomic data also support ancestral roles of Glis1/3
in ciliated tissues. The next question is how these clustered
genes are regulated for ciliogenesis. To answer this question,
we surveyed previously identified, conserved noncoding
sequences for the human genome using UCNEbase
(Dimitrieva and Bucher 2013). We found two candidate cis-
regulatory modules around the cluster (UCNE34150 and
UCNE3883), but these are not conserved among bilaterians.

To identify “the cluster controlling region,” more comprehen-
sive analysis for noncoding sequences should be performed.

This study highlights the importance of carefully consider-
ing orthologous relationships between homologs without
preconceptions stemming from classical gene names, in order
to better understand and predict gene functions. Expression
profiles and comparative genomics provide us with many
clues to unravel how genes evolved. The evolutionary history
of GLIS genes illuminates potential functions of GLIS1/3 genes
for cell reprograming and ciliogenesis. Taken together with
previous studies on GLIS1 for iPSC technologies and those on
GLIS3 for development and disease in kidney and pancreas,
our study will facilitate applications of GLIS1/3 to stem cell
biology and medical sciences.

Materials and Methods

Phylogenetic Analysis
To identify ortholog groups of GLIS genes, protein-coding DNA
sequences of human GLIS1, GLIS2, GLIS3, GLI2, and ZIC1 were
submitted as queries to ORTHOSCOPE, a species tree-based
ortholog identification tool (Inoue and Satoh 2018), with the
following settings: analysis group, vertebrata; E-value threshold
for reported sequences, 1e�5; number of hits to report per
genome, 3; aligned site rate threshold within unambiguously
aligned sites, 0; data set, DNA (Exclude 3rd); rearrangement BS
(bootstrap) value threshold, 60%. To produce NJ and ML trees
of Glis1/3, amino acid sequences of Glis1/3 were aligned with
MAFFT (v7.221) (Katoh et al. 2002) using the –auto strategy.
Unaligned regions were trimmed with TrimAl (v1.2rev59)
(Capella-Gutierrez et al. 2009) using the –gappyout option.
To generate nucleotide alignments, corresponding cDNA
sequences were forced onto the amino acid alignment using
PAL2NAL (Suyama et al. 2006). The maximum likelihood
method with PROTGAMMAAUTO (amino acid sequences)
or GTRGAMMA (nucleotide sequences) was used to construct
phylogenetic trees with RAxML (v8.2.0) (Stamatakis 2014). For
the nucleotide tree, we used codon partitions.

Synteny Analysis
Genomic synteny of GLIS genes in vertebrates was analyzed
using genome assemblies of Homo sapiens, GRCh38.p12 (hu-
man), Gallus gallus, GRCg6a (chicken), X. laevis, xenLae2
(African clawed frog), X. tropicalis, xenTro9 (tropical clawed
frog), Latimeria chalumnae, LatCha1 (coelacanth), Lepisosteus
oculatus, LepOcu1 (spotted gar), Danio rerio, GRCz10 (zebra-
fish), Oryzias latipes, ASM223467v1 (Japanese medaka),
Takifugu rubripes, FUGU5 (pufferfish), and Callorhinchus milii,
ESHARK1 (elephant shark). For the synteny search for inver-
tebrates, genome versions are listed in supplementary table
S1, Supplementary Material online. The ciliogenic gene cluster
(fig. 4A) fulfills a pipeline used to identify conserved micro-
synteny blocks in previous studies (Simakov et al. 2013, 2015;
Albertin et al. 2015); Nmax 10 (maximum of 10 intervening
genes) and Nmin 3 (minimum of 3 genes in a syntenic block).
Unfortunately, this cluster was not detected in those studies,
possibly because they used a limited number of gene families
to simplify gene family assignments. The false-positive rate for
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this cluster falls to <0.1%, because random genome reshuf-
fling produces�10% false positives in pairwise genome com-
parisons (Simakov et al. 2015), but the cluster was observed in
more than three species across bilaterian phyla.

Transcriptomic Data from Embryos and Adult Tissues
of Various Animals
Publicly available transcriptomic data of human early embryos
(Xue et al. 2013), mouse early embryos (Tang et al. 2011; Xue
et al. 2013), bovine early embryos (Jiang et al. 2014), chicken
early embryos (Hwang et al. 2018), X. tropicalis embryos
(Owens et al. 2016), medaka embryos (Ichikawa et al. 2017),
zebrafish embryos (White et al. 2017), amphioxus embryos,
and adult tissues (Marletaz et al. 2018), sea urchin embryos (S.
purpuratus [Tu et al. 2012] and P. lividus [Gildor et al. 2016]),
brachiopod embryos and adult tissues (Luo et al. 2015), and
scallop embryos and adult tissues (Wang et al. 2017) were
used to examine expression levels of glis genes and dmrtb1.
Data for X. tropicalis, zebrafish, amphioxus, and sea urchins (S.
purpuratus) were collected from Xenbase (http://www.xen-
base.org/entry/; last accessed September 11, 2019), Expression
Atlas (https://www.ebi.ac.uk/gxa/experiments/E-ERAD-475/
Results; last accessed September 11, 2019), Amphiencode
(http://amphiencode.github.io/; last accessed September 11,
2019), and EchinoBase (http://www.echinobase.org/
Echinobase/; last accessed September 11, 2019), respectively.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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