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Introduction: Salivary gland (SG) damage is commonly caused by aging, irradiation, and some medica-
tions, and currently, no damage modifying agent is available. However, cell therapy based on mesen-
chymal stem cells (MSCs) has been proposed as a therapeutic modality for irradiated SGs. Therefore, we
administered cell-derived vesicles (CDVs) of adipose-derived mesenchymal stem cells (ADMSCs) to
irradiated SG cells to investigate their radioprotective effects in vitro.
Methods: The artificial CDVs were obtained from ADMSC by tangential flow filtration (TFF) purification
and ultracentrifugation. Cultured human SG epithelial cells were exposed to 2, 5 or 15 Gy of 4 MV X-rays
produced by a linear accelerator. The effects of ADMSC-CDVs on SG epithelial cells damaged by irradi-
ation were tested by proliferation activity, transepithelial electrical resistance (TEER), and amylase
activity.
Results: Exposure to penetrating radiation inhibited the proliferation of SG epithelial cells, but the ra-
diation intensity required to reduce the proliferation of human submandibular gland epithelial cells
(hSMGECs) was greater than required for other SG cells. ADMSC-CDVs restored the proliferative ability of
SG epithelial cells reduced by irradiation, and the proliferation capacities of irradiated human parotid
gland epithelial cells (hPGECs) and human sublingual gland epithelial cells (hSLGECs) were increased by
administering ADMSC-CDVs to non-irradiated SG epithelial cells. Furthermore, amylase activity in irra-
diated hPGECs, hSMGECs, and hSLGECs was lower than in non-irradiated controls. However, amylase
ability was restored in all by ADMSC-CDV treatment. Also, TEER was diminished by irradiation in hPGECs,
hSMGECs, and hSLGECs and restored by ADMSC-CDV administration.
Conclusion: Overall, our findings demonstrate that ADMSC-CDVs have potent radioprotective effects on
irradiated SG cells.
© 2022, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Introduction

Saliva plays an essential role in maintaining oral homeostasis,
and salivary glands (SGs) are essential for the production of saliva.
However, the functions of SGs are reduced by, for example, pene-
trating radiation, drugs, and aging. Various methods based on the
use of growth factors, bioactive factors, scaffolds, stem cells,
secretome, and others, have been studied to repair damaged SGs
[1e7]. Kim et al. reported that adipose tissue-derivedmesenchymal
stem cells (ADMSCs) effectively regenerated damaged salivary
sting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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glands [8], and Choi et al. reported that this effect of ADMSCs was
enhanced when scaffolds were added to ADMSCs [7]. In addition,
Ahn et al. confirmed that the ADMSC secretome induced by hypoxia
also promoted salivary gland regeneration [6].

Cell-derived vesicles (CDVs) are a new form of extracellular
vesicles and like exosomes, can function as intercellular commu-
nicators and drug carriers [9]. Because exosomes are vesicles
naturally secreted by cells, their production is limited. However,
CDVs can be produced in large quantities within a short time by
direct extrusion from various human cell types. CDVs share many
similarities with exosomes, such as size, morphology, and mem-
brane molecular composition [10], and can deliver various effector
molecules and drugs that affect cellular functions. Some recent
studies have demonstrated that CDVs derived from adipose tissue-
derived mesenchymal stem cells (ADMSCs) promote the regener-
ation of damaged tissues, decrease the degradation of aged tissues,
and contribute to the maintenance of tissue homeostasis [11,12].
However, little is known of the ability of CDVs to improve SG
function. Here, we investigated the effect of ADMSC-derived CDVs
on SG cells damaged by irradiation.
2. Methods

2.1. Production of cell-derived vesicles (CDVs)

Adipose-derived mesenchymal stem cells (ADMSCs) were pur-
chased from Lonza (Basel, Switzerland, Material number: PT-5006).
Cells were seeded into two layers of CellSTACKs® (Corning, NY, US)
containing Dulbecco's modified Eagle's medium-low glucose
(Gibco BRL, MA, US) supplemented with 4% human platelet lysate
(hPL) (Helios, AventaCell Biomedica, GA, US) and 1% penicillin/1%
streptomycin (Gibco BRL, MA, US). Cells weremaintained at 37 �C in
a 5% CO2 atmosphere. After two passages, cells were harvested and
resuspended at 5 � 105 cells/mL in PBS.

The cell suspension was then serially extruded through a series
of membrane filters of pore sizes 10, 3, and 1 mm (Whatman Inc., NJ,
USA) using a prototype extruder ES50 (MDimune Inc., Seoul, Ko-
rea). The crude CDVs obtained were first treated with Benzonase®
endonuclease (Millipore, MA, US) at 10 U/mg DNA for 90 min at
37 �C and centrifuged at 3000 g for 10min at 18 �C. The supernatant
was then subjected to tangential flow filtration (TFF) purification
using a MidiKros 750 kDa MWCO hollow fiber (Repligen, CA, US).
Finally, the purified CDVs were passed through a syringe filter of
pore size 0.2 mm (Pall Incorporation, NY, US) and concentrated by
ultracentrifugation (Beckman Coulter, CA, US) at 120,000 g for 2 h.
The size of CDV (153.86 ± 3.68 nm) was checked by Zetasizer Nano
(Malvern Panalytical, UK). CDVs were stored at �80 �C until
required. A list of reagents and consumables is provided in Table 1.
Table 1
Reagents and consumables.

Name Cat

Adipose-derived stem cell PT-
CELLSTACK® 329
Dulbecco's modified Eagle's medium low glucose 11,
Penicillin-streptomycin 15,
PBS 10,
hPL HP
Membrane filter 10 ɥm 111
Membrane filter 3 ɥm 111
Membrane filter 1 ɥm 111
Benzonase® endonuclease 71,
MidiKros 750 kDa MWCO hollow fiber D0
0.2 mm Filter 461
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2.2. Cell culture

For human primary salivary epithelial cell culture, a small
portion of a non-tumor bearing parotid gland (PG), submandibular
gland (SMG), and sublingual gland (SLG) were resected and washed
with Hanks’ Balanced Salt Solution (Invitrogen, USA) containing 1%
antibiotics (Invitrogen, USA). Tissues were chopped with fine scis-
sors for 7 min, centrifuged at 1500 rpm for 5 min, plated on a
culture dish containing DMEM/F12 medium (Invitrogen, USA)
containing 10% FBS (ATCC, USA) and 1% antibiotics (Invitrogen,
USA), and incubated in a 5% CO2 atmosphere at 37 �C. All specimens
were collected after obtaining informed consent and institutional
review board approval [NON2017-002].
2.3. Irradiation

Cultured human salivary epithelial cells from a parotid gland
(human parotid gland epithelial cells, hPGECs), submandibular
gland (human submandibular gland epithelial cells, hSMGECs), and
sublingual gland (human sublingual gland epithelial cells, hSLGECs)
were exposed to 2, 5 or 15 Gy of 4 MV X-rays produced by a linear
accelerator (Mevatro MD, Siemens Medical Laboratories Inc.,
Germany).
2.4. Cell proliferation test

The proliferations of hPGECs, hSMGECs, and hSLGECs were
evaluated using the CELLOMAX™ assay (PreCareGene, Korea).
Briefly, cells were seeded in 96-well plates (4 � 103 cells/well) and
irradiated with 0, 2, or 5 Gy in the presence or absence of 5 � 107,
1 � 108, 5 � 108, or 1 � 109 CDVs and then incubated for nine days
in 5% CO2 at 37 �C. On day 9, cells were treated with CELLOMAX™
solution and incubated for 1 h at 37 �C in 5% CO2. Absorbance was
read at 450 nmwith a microplate reader (Molecular Devices, USA).
2.5. Amylase activity assay

The amylase activities of hPGECs, hSMGECs, and hSLGECs were
determined using an a-amylase assay kit (Abcam, USA). Cells were
seeded in 96-well plates (4 � 103 cells/well) and irradiated or not
with 5 Gy in the presence of 5 � 107, 1 � 108, 5 � 108, or 1 � 109

CDVs and incubated for 6e9 days at 37 �C in a 5% CO2 atmosphere.
Cells were then homogenized with assay buffer, centrifuged at
13,000 rpm for 5 min at 4 �C, and supernatants were transferred to
clean tubes. Reaction mixtures were added, and absorbances were
measured at 405 nm using a microplate reader.
alog no Manufacturer

5006, batch no: 0000669,429 Lonza
6 Corning
885,092 Gibco
140,163 Thermo Scientific
010,049 Gibco
CFDCRL50 AventaCell
,115 Whatman
,112 Whatman
,110 Whatman
206e3 Milipore
2-E750-05-N Repligen
2 Pall
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2.6. Transepithelial electrical resistance (TEER) detection

hPGECs, hSMGECs, and hSLGECs were seeded in trans-well
plates (Corning, USA) at 1 � 105 cells/well and cultured in a 5%
CO2 atmosphere at 37 �C until over-confluent. Cells were then
irradiated or not with 5 Gy in the presence of 5 � 107, 1 � 108,
5 � 108, or 1 � 109 CDVs and incubated for 6e9 days in 5% CO2 at
37 �C. TEER (Ohm/cm2) values weremeasured using aMillicell ERS-
2 (EMD Millipore, USA).
2.7. Western blot analysis

Western blotting was performed to assess the changes in
apoptosis related protein expression in hPGECs treated with
1 � 109 CDV under IR exposure. Cells were homogenized in PRO-
PREPTM protein extraction solution (iNtRON Biotechnology, Ko-
rea), incubated on ice for 30 min, centrifuged at 13,000 rpm for
10 min at 4 �C, and supernatants were collected. Primary anti-
bodies for caspase-3, caspase-9, Bax, p21, p16, and GAPDH (all
from Santa Cruz Biotechnology, 1:1000) were used. Goat anti-
mouse IgG-HRP was used as the secondary antibody (Santa Cruz
Biotechnology, 1:5000). Proteins were visualized using Super-
SignalTM West Femto Maximum Sensitivity Substrate (Thermo
Fisher Scientific, USA) using a ImageQunatTM LAS 4000 unit (GE
Healthcare, USA). All blots derive from the same experiment and
were processed in parallel. Quantitative analysis was performed
using ImageJ software (version 1.49; Wayne Rasband, National
Institutes of Health).
2.8. Statistical analysis

The analysis and graphical presentations of data were carried
out in Graphpad Prism 8.2.1 (GraphPad Software Inc., USA). One-
and two-way ANOVA were used to determine the significances of
intergroup differences. Statistical significance was accepted for P
values < 0.05.
3. Results

3.1. Irradiation inhibited the proliferation of SG epithelial cells

Irradiation dose-dependently reduced the proliferations of
hPGECs, hSMGECs, and hSLGECs (Fig. 1, all p < 0.05), though human
submandibular gland epithelial cells (hSMGECs) were more resis-
tant than other SG cells.
Fig. 1. Irradiation-induced reductions in the proliferation of SG cells. (A) Human parotid glan
(C) human sublingual gland epithelial cells (hSLGECs). Irradiation inhibited the proliferation
*, vs. non-treated controls. *p < 0.05.
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3.2. ADMSC-CDVs restored irradiation-induced reductions in
proliferative capacities

Irradiation-induced reductions in the proliferation capacities of
hPGECs, hSMGECs, and hSLGECs were partially restored by ADMSC-
CDVs, and these increases in proliferative capacities were signifi-
cant when SGs were treated with 1 � 109 ADMSC-CDVs (Fig. 2,
p < 0.05 for all). ADMSC-CDV administered SGs, irradiation-only
treated SGs, and irradiation þ ADMSC-CDV treated SGs were
compared with non-treated controls. The proliferative ability of
ADMSC-CDV administered hPGECs was greater than that of non-
treated controls, but that of irradiated hPGECs was less. Prolifera-
tive ability was restored in the irradiation þ ADMSC-CDV admin-
istered cells (Fig. 3, all p < 0.05). For hSMGECs, proliferative abilities
of ADMSC-CDV treated SGs and controls were similar, but prolif-
erative abilities of irradiated cells were less than controls, and
irradiation-induced reduction in proliferative ability was recovered
by ADMSC-CDV treatment (p < 0.05). Results for hSLGECs and
hPGECs were similar (p < 0.05).
3.3. Effect of ADMSC-CDVs on irradiation-induced reductions in
amylase activity

Amylase activity was reduced in hPGECs exposed to radiation
(Fig. 4, p < 0.05). Amylase activity was higher in
irradiation þ ADMSC-CDV cells than irradiated cells, particularly in
cells treated with 1 � 109 ADMSC-CDVs. Results for hSMGECs and
hSLGECs were similar (Fig. 4, p < 0.05).
4. Effect of ADMSC-CDV on irradiation-induced reductions in
transepithelial electrical resistance

Transepithelial resistance (TEER) was measured to evaluate the
function of SG epithelial cells. In hPGECs, hSMGECs, and hSLGECs
irradiation-induced reductions in TEER values were partially
restored by ADMSC-CDV treatment (Fig. 5, p < 0.05).
4.1. ADMSC-CDV regulates apoptosis related protein expression in IR
damaged hPGECs

We studied the expressions of the apoptosis related molecules
caspase 3, caspase 9, Bax, p21, and p16 by Western blot and found
the expressions of all tested molecules were significantly increased
in IR treated hPGECs than in control hPGECs. And increased
expression levels of caspase 3, caspase 9, Bax, p21 and p16 were
significantly diminished after treatment of ADMSC-CDV (Fig. 6,
p < 0.05).
d epithelial cells (hPGECs), (B) human submandibular gland epithelial cells (hSMGECs),
of all three SG epithelial cells. Dots and error bars denote means ± standard deviations.



Fig. 2. The effects of ADMSC-CDVs on the proliferation of irradiated SG cells. (A) Human parotid gland epithelial cells (hPGECs), (B) human submandibular gland epithelial cells
(hSMGECs), and (C) human sublingual gland epithelial cells (hSLGECs). Quantitative results showed ADMSC-CDVs restored the proliferative abilities of irradiated (D) hPGECs, (E)
hSMGECs, and (F) hSLGECs. Scale bar: 50 mm. Error bars represent standard deviations. *, compared to irradiated cells. *p < 0.05 (IR, Irradiation; CDV, Cell-derived vesicle).

Fig. 3. The effects of ADMSC-CDVs on the proliferation of SG cells. (A) Human parotid gland epithelial cells (hPGECs), (B) human submandibular gland epithelial cells (hSMGECs),
and (C) human sublingual gland epithelial cells (hSLGECs). Quantitative results showed ADMSC-CDVs restored the proliferative abilities of irradiation and non-irradiated (D)
hPGECs, (E) hSMGECs, and (F) hSLGECs. Scale bar: 50 mm. Error bars represent standard deviations. #, compared to non-treated controls; *, compared to irradiated cells. *p < 0.05,
#P < 0.05 (CON, Control; IR, Irradiation; CDV, Cell derived vesicle).
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Fig. 4. The effects of ADMSC-CDVs on irradiation-induced changes in SG cell amylase activities. (A) Human parotid gland epithelial cells (hPGECs), (B) human submandibular gland
epithelial cells (hSMGECs), (C) human sublingual gland epithelial cells (hSLGECs). The amylase activity was increased by ADMSC-CDV administration in all irradiated SG cells. Error
bars denote standard deviations. *p < 0.05, compared to IR cells (Cont, controls; IR, Irradiation; CDV, Cell derived vesicle).

Fig. 5. The effects of ADMSC-CDVs on irradiation-induced changes in transepithelial electrical resistance (TEER) in SG cells. (A) Human parotid gland epithelial cells (hPGECs), (B)
human submandibular gland epithelial cells (hSMGECs), (C) human sublingual gland epithelial cells (hSLGECs). ADMSC-CDV administration increased TEER values in all irradiated
SG cells. Error bars denote standard deviations. *p < 0.05, compared to IR cells (CON, controls; IR, Irradiation; CDV, Cell derived vesicle).
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5. Discussion

The parotid, submandibular, and sublingual glands are the pri-
mary SGs, and it is well known that saliva maintains oral homeo-
stasis, aids digestion due to amylase secretion, prevents tooth
decay, and improves the sense of taste. However, SG function may
decline due to aging or radiation exposure. To address SG dys-
functions, experiments have been conducted on SG regeneration
using stem cells, and because ADMSCs are easily collected and
abundant, they are commonly used to regenerate organs. Many
studies have been conducted on the regeneration of SGs, and as we
have reported, ADMSCs provide an effectivemeans of salivary gland
regeneration [6e8].

CDVs are exosome-mimicking nanovesicles and can be har-
vested in quantity at high yields. CDVs participate in cell-to-cell
communication by transferring cellular information to neigh-
boring cells. Furthermore, CDVs derived from MSCs contain
various bioactive factors such as proteins, mRNAs, and micro-
RNAs [13], and it has been shown that extracellular vesicles
derived from ADMSCs contain functional components that can
regenerate damaged tissues, including SGs, by mimicking the
paracrine actions of stem cells [14e16]. Thus, we hypothesized
that CDVs derived from ADMSC might also have a SG regener-
ating effect and initiated this study to determine whether
ADMSC-CDV administration can reverse irradiation-induced
damage in human SGs. To validate the contribution of ADMSC-
CDV in salivary epithelial cell proliferation, ADMSCs were co-
cultured with salivary epithelial cells, and the proliferation of
salivary epithelial cells damaged by IR significantly increased
after co-culture with ADMSCs.
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In the present study, SG cells exposed to radiation exhibited a
gradual decrease in proliferative ability. hSMGECs were found to be
more resistant to the effects of radiation than hPGECs, which is
consistent with previous reports that the parotid gland is more
sensitive to radiation than the submandibular gland [17]. None-
theless, damaged hPGECs, hSMGECs, and hSLGECs tended to
recover their proliferative abilities in proportion to the amount of
ADMSC-CDV administered, a similar effect was observed for the
ADMSC-CDV-induced recovery of amylase activity. TEER values,
which provide a measure of SG activity and are sensitive to culture
environment and duration [18], also exhibited a weaker positive
correlation between ADMSC-CDVs administered and the recovery
of amylase activity.

The previous study showed that ADMSC protected the mice
salivary gland against IR induced cell death by secreting paracrine
factors. And also, ADMSC treatment exhibited a decreased TUNEL
positive cells and the expressions of apoptosis related protein such
as Bax, caspase-3 and caspase-9 in IR exposed mouse salivary gland
tissue [7]. In this study, irradiation increases expression of pro-
apoptotic proteins such as caspase 3, caspase 9 and Bax, and
ADMSC-CDVs treatment significantly decreases the expression of
pro-apoptotic proteins in salivary epithelial cells. These results
could suggest the possibility that ADMSC-CDV as one of the para-
crine bioactive factors of ADMSC exhibits the effect of restoring
salivary epithelial cell functions through the anti-apoptosis
mechanism.

Here, we report for the first time that ADMSC-CDVs can affect
the SG cell proliferation. We chose to use irradiation to damage SGs
because this technique is commonly used to investigate SGs with
reduced functions and to study SG regeneration. The present



Fig. 6. Effect of ADMSC-CDV on apoptosis-related protein expression. (AeE) Quantitative analysis of Western blot image. (G) The representative image of Western blot analysis.
Error bars denote standard deviations. *, compared to non-treated controls; #, compared to irradiated cells. *p < 0.05, #p < 0.05 (CON, Control; IR, Irradiation; CDV, Cell derived
vesicle). (CON, controls; IR, Irradiation; CDV, Cell derived vesicle).
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in vitro study confirms that ADMSC-CDVs have reparative effects on
SGs. We suggest that further studies be conducted in animal
models and that attempts be made to identify the active substances
present in ADMSC-CDVs.

6. Conclusion

Summarizing, this study demonstrates that ADMSC-CDVs have
the ability to restore the proliferative abilities of SG epithelial cells
exposed to penetrating radiation. Our findings show ADMSC-CDVs
should be considered a potential cell-free therapy in the regener-
ative field.
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