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Graft failure is a severe complication of allogeneic hematopoietic stem cell transplantation
(HSCT). The mechanisms involved in this phenomenon are still not completely
understood; data available suggest that recipient T lymphocytes surviving the
conditioning regimen are the main mediators of immune-mediated graft failure. So far,
no predictive marker or early detection method is available. In order to identify a non-
invasive and efficient strategy to diagnose this complication, as well as to find possible
targets to prevent/treat it, we performed a detailed analysis of serum of eight patients
experiencing graft failure after T-cell depleted HLA-haploidentical HSCT. In this study, we
confirm data describing graft failure to be a complex phenomenon involving different
components of the immune system, mainly driven by the IFNg pathway. We observed a
significant modulation of IL7, IL8, IL18, IL27, CCL2, CCL5 (Rantes), CCL7, CCL20
(MIP3a), CCL24 (Eotaxin2), and CXCL11 in patients experiencing graft failure, as
compared to matched patients not developing this complication. For some of these
factors, the difference was already present at the time of infusion of the graft, thus allowing
early risk stratification. Moreover, these cytokines/chemokines could represent possible
targets, providing the rationale for exploring new therapeutic/preventive strategies.

Keywords: graft failure, cytokines, chemokines, inflammation, Th1 T cells, macrophage activation,
hemophagocytic lymphohistiocytosis
INTRODUCTION

One of the main complications occurring after allogeneic hematopoietic stem cell transplantation
(HSCT) is represented by graft failure (GF). It is a complex and multifactorial syndrome
characterized by hypocellular bone marrow (BM) associated with severe pancytopenia in
peripheral blood (PB). GF can be defined based either on the pathophysiology mechanisms or on
the timing of the event. Primary GF is characterized by lack of initial engraftment of donor cells,
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while secondary GF by the progressive loss of donor cells after
initial engraftment. From a pathophysiological point of view,
immune-mediated GF is caused by the attack of the donor cells
by host immune cells, mainly T and Natural Killer (NK) cells
surviving the conditioning regimen. Several factors have been
reported to be associated with GF, including HLA disparity in the
donor/recipient pair, presence of anti-HLA antibodies in the
recipient, underlying disease, viral infections, type of
conditioning regimen (particularly reduced-intensity
conditioning and non-myeloablative conditioning), T-cell
depletion of the graft (TCD) and stem cell source (1–4).

Our group has recently focused on a deep characterization of
this phenomenon, analyzing a cytokine/chemokine asset in PB,
(i.e., IFNg, sIL2Ra, CXCL9, CXCL10, TNFa, IL6, IL10, and
sCD163), as well as the cellular features in BM biopsies of
patients experiencing GF. From this analysis, we confirmed i)
the in vivo role of the IFNg-pathway in the development of
immune-mediated GF; ii) that the sole inhibition of this pathway
by an anti-IFNgmonoclonal antibody (mAb) was able to prevent
GF. Finally, after observing a strong similarity between immune-
mediated GF and hemophagocytic lymphohistiocytosis (HLH),
we treated with Emapalumab, an anti-IFNg mAb (5), on a
compassionate use basis, three patients with primary HLH
who, after having experienced GF, underwent a second
successful HSCT.

In the present study, we tested other 44 cytokines/chemokines
in the PB of the previously reported patients experiencing GF (5)
with the aim of: i) further characterizing the GF signature; ii)
identifying new possible targets to prevent/treat GF; iii)
developing strategies capable to target a single pathway/
molecule or a combination of them in order to prevent the
occurrence of GF in patients at high-risk of developing
this complication.
MATERIALS AND METHODS

Patients and Controls
Children aged 0.3 to 21 years, given an allograft from any type of
donor/stem cell source [including matched family donor (MFD),
matched unrelated donor (MUD), unrelated cord blood unit
(UCB), haploidentical family donor], between January 1, 2016,
and August 31, 2017, at IRCCS Bambino Gesù Children’s
Hospital in Rome, were considered eligible for the study.
Patients or legal guardians provided written informed consent,
and research was conducted under institutional review board
approved protocols, in accordance with the Declaration of
Helsinki. The Bambino Gesù Children’s Hospital Institutional
Review Board approved the study.

After completing the main study (5), we performed further
analyses on the remaining samples of 8 out of 15 patients
experiencing GF after TCD haplo-HSCT and compared them
with those of eight controls, matched for transplant
characteristics, who had been transplanted reaching sustained
donor engraftment during the same period.
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Cytokine Profile
Serum derived from patients experiencing GF and from a control
group were analyzed by immunoassays incorporating magnetic
microsphere technology (Merck, Darmstadt, Germany),
according to the manufacturer’s instructions, as previously
described (6). Plates were read on MAGPIX® and analyzed
using xPONENT® software (Luminex, Austin, Texas, USA).
The following cytokines and chemokines were analyzed: CCL1,
CCL2, CCL3, CCL5 (Rantes), CCL7, CCL19, CCL20 (MIP3a),
CCL24 (Eotaxin-2), CXCL11, CX3CL1, PDGFaa, CD40L, G-
CSF, GM-CSF, FLT3-L, IL1a, IL1b, IL2, IL4, IL5, IL7, IL8
(CXCL8), IL9, IL11, IL12p40, IL12p70, IL13, IL15, IL17A,
IL17E, IL17F, IL18, IL21, IL22, IL23, IL27, IL28A, IL31, IL33,
SCF, and TNFb.

Statistical Analyses
Data are summarized as mean ± standard error of mean (SEM)
and expressed as pg/ml. Student t-test (two-sided) was used to
determine statistically significant differences between samples.
When multiple comparison analyses were required, statistical
significance was evaluated by a repeated measures ANOVA
followed by a Log-rank (Mantel-Cox) test for multiple
comparisons. P-values were reported in detail if statistically
significant, i.e., <0.05 (*), <0.01 (**) and <0.001 (***). Graph
generation and statistical analyses were performed using Prism
version 7 software (GraphPad, La Jolla, CA). Interactome
analysis on identified cytokines and chemokines modulated
during GF was performed using STRING software (https://
string-db.org) with a high interaction score (0.7).
RESULTS AND DISCUSSION

The samples of eight patients experiencing GF after receiving
TCRab/CD19-depleted haploidentical HSCT (7) were compared
to those of eight patients who did not develop this complication
(during the study period we performed 115 haploidentical HSCT
and 15 patients developed GF, the GF rate being 13%). Patient
and control characteristics are detailed in Table 1. Main
transplant characteristics were comparable between the two
groups (except for a trend for a lower age in the GF group).

We found a significant modulation of IL7, IL8, IL18, IL27,
CCL2, CCL5 (Rantes), CCL7, CCL20 (MIP3a), CCL24
(Eotaxin2), and CXCL11 in patients experiencing GF (see
Figure 1).

Interestingly, several of these molecules (IL7, IL8, IL18, CCL5,
CCL7, CCL20, and CCL24) were significantly different from the
control group already at the time of graft infusion (IL7: 47.8 ± 9.2
pg/ml vs. 24.2 ± 2.5; IL8: 127.5 ± 18.7 vs. 68.7 ± 10.3; IL18: 4334.6 ±
2993 vs. 468.8 ± 53.9; CCL5: 2188.3 ± 721.8 vs. 4148.8 ± 590.1;
CCL7: 169.8 ± 19.2 vs 94.9 ± 11.3; CCL20: 108.1 ± 13.9 vs. 42.1 ±
8.2; and CCL24: 652.7 ± 217.8 vs 1426.5 ± 406.7). These findings
suggest possible effects related to the conditioning regimen.

It is well known that the conditioning regimen can cause mild
to severe tissue damage, which induces a production of several
January 2021 | Volume 11 | Article 613644
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pro-inflammatory cytokines and chemokines from both
hematopoietic cells, as well as by damaged endothelium and
epithelia, increased expression of adhesion molecules, major
histocompatibility complex antigens and costimulatory
molecules on the host antigen presenting cells (APCs) (8).
Host APCs, which survive the conditioning regimen, become
activated and capable of processing antigens present in the
transplanted cells. Activation of either recipient or donor T
cells after interaction with host APCs leads to their
proliferation, differentiation and migration.

The identified cytokines and chemokines underline the
involvement of an inflamed microenvironment where T
lymphocytes, NK cells, immature and mature APCs, among
which monocytes and dendritic cells (DC), are recruited from
the periphery to the BM (5). Several of these molecules are also
able to sustain the inflammation and maintain activation of
lymphocytes. In this context, our analysis reveals higher levels of
IL7 (Figure 1A), which contributes to an inflamed BM
microenvironment (9), sustains T-cell proliferation,
differentiation and survival, in particular of the naïve and
memory compartments (10), but also of mature differentiated
T lymphocytes, through the Bcl2 pathway (11, 12). IL7 has also
been reported to act as co-factor for T-cell activation by
stimulating production of Th1 cytokines, including IFNg, IL2,
and TNFa (13). Moreover, in the allo-HSCT setting, high levels
Frontiers in Immunology | www.frontiersin.org 3
of these cytokines have been associated with graft-versus-host
disease (GvHD) onset and its exacerbation, by either promoting
proliferation and survival of allo-reactive donor mature T cells or
by increasing their activation state (14). These data, associated
with high levels of IL27, support the assumption of an activated
environment, in particular in the BM niche (Figure 1B). This
latter cytokine, indeed, is able to control both innate and
adaptive immune responses by stimulating STAT3 (15, 16) and
to block Th17 T-cell activity (17). Furthermore, it has been also
associated with the development of GvHD, reducing the number
of CD4+Tbet+ cells, increasing the number of CD8+Tc1+

cytotoxic T cells and inducing IFNg response in vivo (18).
As reported in our previous study (5), this inflammatory state

is mainly driven by IFNg, which is able to activate macrophages
and epithelia to produce CXCL9, CXCL10, but also CXCL11 (19)
(Figure 1C). These chemokines are able to strongly recruit
antigen-primed Th1 T cells directly to the inflamed tissue.
Moreover, high levels of these cytokines have been associated
with organ rejection in kidney, lung and heart transplantation
(20–22). Furthermore, low levels of CCL5 and CCL24, like those
found in present analysis, could, instead, be caused by a damage
of endothelial and epithelial cells by activated and cytotoxic T
lymphocytes, this translating into a further increase of the
recruitment of Th1+ T cells expressing CXCR3 (Figures 1D,
E). It is important to underline, however, that the ligands of
CXCR3 (namely, CXCL9, CXCL10, and CXCL11) have been
reported to be more potent than CCR5 ligands (i.e., CCL3, CCL4,
and CCL5) and the frequency of CCR5+ T lymphocytes is
significantly lower in PB circulating T cells (23, 24). The
reduced levels of CCL5 can be also explained by the elevated
conversion of monocytes into activated macrophages during this
inflammation period (25, 26). As shown in Figure 1F, the
macrophages present in the BM are able to produce high levels
of CCL20 (MIP3a), which is actively involved in the recruitment
of T lymphocytes and reported to be increased in renal graft
rejection and, in general, during inflammation, causing a
recruitment of mature DC (27–29). Our data emphasize the
role of myeloid cells in boosting and maintaining inflammation:
in fact, high levels of CCL2 and CCL7 underline the recruitment
of monocytes, immature DCs, and macrophages together with
effector T and NK lymphocytes (Figures 1G, H) (30–36).
Furthermore, CCL2 has been also reported to play a crucial
role in the M1 macrophage polarization during inflammation, in
the recruitment of IFNg+ gd T cells and to regulate adhesion and
chemotaxis through activation of b1 integrin and p38-MAPK
(31, 37). In this altered microenvironment, we also detected high
levels of IL8 and IL18 (Figures 1K, I). The first is physiologically
produced by mononuclear cells and induces migration of
lymphocytes to an injured site. High levels of this cytokine
have been associated with GF, prolonged neutropenia and
impaired differentiation of hematopoietic CD34+ cells (38). Its
high expression has also been associated with increased levels of
CCL2, CXCL9, CXCL10, and IL2Ra (39). Lastly, elevated levels
of IL18 can be explained by an enriched IFNg environment (40).
The production of this cytokine, in fact, is mediated by the
inflammasome and, in turn, it is responsible for sustaining IFNg
TABLE 1 | Characteristics of patients and controls.

GF CTRL p

Total 8 8
Gender 0.99
Female 3 4
Male 5 4

Age at transplant, years (median and
range)

2.4 (0.2–
9.6)

7.0 (1.1–
19.8)

0.08

Disease 0.37
PID 2§ 1ç
AL 1 4
Hbpathies/IBMFS 2 2
Others 3* 1#

Type of transplant 0.2
T-cell depleted haploidentical 8 5
MUD 0 3

Source of stem cells 0.2
PBSC 8 5
BM 0 3

Conditioning regimen 0.43
TBI-based 0 1
Busulfan-based 7 5
Treosulfan-based 1 2

Sex mismatch 0.99
Yes 2 3
No 6 5
§One case each of combined immunodeficiency and HLH.
çOne case of autosomal recessive hyper-IgE syndrome.
*One case each of metachromatic leukodystrophy, mucopolysaccharidosis type 1 and
osteopetrosis.

#One case of adrenoleukodystrophy.
PID, primary immunodeficiencies; AL, acute leukaemia; IBMFS, inherited bone marrow
failure syndromes; MUD, matched unrelated donor: PBSC, peripheral blood stem cells;
BM, bone marrow.
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production in different lymphocyte subsets and is important for
the differentiation of various T cell populations (40). Its
accumulation has been associated with several immune-
mediated diseases, including GvHD, and low overall survival of
patients undergoing transplantations (41). IL18 is released by a
damaged endothelium and is involved in macrophage activation,
increasing expression of other pro-inflammatory cytokines (like
CCL2) and in enhancing the activity of Th1 T and NK cells (42,
43). Its function is normally regulated by the presence of the
high-affinity molecule IL18BP. For this reason, Liu et al. recently
proposed to neutralize IL18 with IL18BP for the treatment of
immune-mediated conditions, in which injury-associated
Frontiers in Immunology | www.frontiersin.org 4
cytokines are produced, including IFNg and CXCL10 (44). In
support to the probable role of macrophages and endothelial
damage in the development of GF, recently, IL18 has been also
described as potential biomarker and therapeutic target of
macrophage activation syndrome/HLH, which shares, as
mentioned before, several important features with GF (45).
Notably, after grouping cytokines analyzed in this and in our
previous study (5) as Th1, Th2, or “others,” the Th1 profile seems
to be predominant (Figure 2), although contra-regulatory Th2
cytokines (in particular IL10) are increased (as already reported
other hyper-inflammatory conditions, such as in primary
HLH (46)).
FIGURE 2 | Cytokines/Chemokines found to be preferentially expressed in GF at day +3 after HSCT, grouped as “Th1,” Th2,” and “other.” Cytokine/chemokine
levels are reported as ration between values measured in the GF and control group, respectively. This includes also cytokines/Chemokines previously reported in (5).
A B D

E F G

I

H

K

C

FIGURE 1 | Cytokines and chemokines modulated during GF. Serum levels of IL7 (A), IL27 (B), CXCL11 (C), CCL5 (D), CCL24 (E), CCL20 (F), CCL2 (G), CCL7 (H),
IL8 (K), and IL18 (I) in patients who either did (red line) or did not (blue line) experience GF are shown. In all graphs mean and SEM for each variable are represented.
* p<0.05, ** p<0.01, *** p<0.001.
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We acknowledge that, beside the limited sample size, the lack
of samples collected before the conditioning regimen represents
a limitation of the study, preventing the evaluation of its
influence on the cytokine “signature” at time of transplant.
Moreover, although not statistically significant, some
differences in the conditioning regimens used may have
influenced the cytokine profile. Additionally, since one patient
in the GF group was affected by HLH, this could impact the
cytokine profile of this individual subject (more in general,
patients with primary immunodeficiencies may have altered
Frontiers in Immunology | www.frontiersin.org 5
cytokine production). Finally, we acknowledge that infections
may influence the pattern of cytokine production. In this regard,
the cumulative incidence of bacterial, viral and fungal infection
was similar in the two groups investigated (see Table 2 and
Supplementary Figure 1 for details). For this reason and given
that the differences in cytokine levels were already present at
very-early time-points, it is unlikely that this factor has
influenced the cytokine profile of GF patients and controls.

Our data, together with those previously published by our
group, support the hypothesis that during GF, complex
mechanisms are activated and involve both soluble molecules
and cellular components (Figures 3 and 4). By interactome
analysis performed using STRING algorithm, several of these
molecules were shown to be critical for the triggering and
sustaining the pathophysiology of GF (Figure 3). Based on these
data, strategies to prevent and treat this life-threatening
complication can be considered. Notably, the use of
emapalumab, a humanized mAb that binds and neutralizes IFNg,
currently approved for the treatment of adult and pediatric patients
with primary HLH with refractory, recurrent or progressive disease
or intolerance with conventional HLH therapy (47), has been
explored as compassionate use (5, 48). Moreover, inhibition of
cytokines like IL18 or IL27, as well as strategies aimed at
compensation of the microenvironment increasing Th2 cytokines
and chemokines (IL1b and CCL24), can be hypothesized.
FIGURE 3 | Schematic representation of GF pathophysiology after HSCT.
TABLE 2 | Details on infections recorded in the GF and control cohorts during
the study period.

GF CTRL

Total 4 3
Viral 4* 1
CMV 3* 1
Adv 1*
HHV6 1
Bacterial 0 2
E. faecium 1
S. capitis 1
Fungal 0 0
*One patient developed a coinfection with CMV and Adv.
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