
molecules

Review

Hybrid Advanced Oxidation Processes Involving
Ultrasound: An Overview

Jagannathan Madhavan 1,* , Jayaraman Theerthagiri 2,3, Dhandapani Balaji 1, Salla Sunitha 4,
Myong Yong Choi 3 and Muthupandian Ashokkumar 5,*

1 Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore 632115, Tamilnadu, India;
baladgp@gmail.com

2 Centre of Excellence for Energy Research, Sathyabama Institute of Science and Technology,
Deemed to be University, Chennai 600119, India; j.theerthagiri@gmail.com

3 Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University,
Jinju 52828, Korea; mychoi@gnu.ac.kr

4 Department of Chemistry, Sathyabama Institute of Science and Technology, Deemed to be University,
Chennai 600119, India; sunithasalla@gmail.com

5 School of Chemistry, University of Melbourne, Parkville campus, Melbourne, VIC 3010, Australia
* Correspondence: jagan.madhavan@gmail.com (J.M.); masho@unimelb.edu.au (M.A.)

Academic Editor: Gregory Chatel
Received: 29 July 2019; Accepted: 11 September 2019; Published: 13 September 2019

����������
�������

Abstract: Sonochemical oxidation of organic pollutants in an aqueous environment is considered
to be a green process. This mode of degradation of organic pollutants in an aqueous environment
is considered to render reputable outcomes in terms of minimal chemical utilization and no need
of extreme physical conditions. Indiscriminate discharge of toxic organic pollutants in an aqueous
environment by anthropogenic activities has posed major health implications for both human and
aquatic lives. Hence, numerous research endeavours are in progress to improve the efficiency of
degradation and mineralization of organic contaminants. Being an extensively used advanced
oxidation process, ultrasonic irradiation can be utilized for complete mineralization of persistent
organic pollutants by coupling/integrating it with homogeneous and heterogeneous photocatalytic
processes. In this regard, scientists have reported on sonophotocatalysis as an effective strategy
towards the degradation of many toxic environmental pollutants. The combined effect of sonolysis
and photocatalysis has been proved to enhance the production of high reactive-free radicals in
aqueous medium which aid in the complete mineralization of organic pollutants. In this manuscript,
we provide an overview on the ultrasound-based hybrid technologies for the degradation of organic
pollutants in an aqueous environment.
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1. Introduction

Environmental pollutioncaused distinctively by anthropogenic sources is a common concern for
the human race over the past few decades that have led to the exhaustion of the natural resources, viz.,
air, water, land, and soil, etc. Rapid industrialization and mindless disposal of wastes by humans has
begun to exhibit deleterious consequences on Mother Nature, thus posing environmental degradation
as a threatening affair. Improper treatment and indiscriminate release of poisonous aromatic organic
compounds like phenols, benzene, chloro-aromatic chemicals, etc., by many industries are mainly
blamed for water pollution. Effluents released from these industries usually contain an assortment
of obstinate organic molecules of varying toxicity along with few inorganic molecules and heavy
metals, whose presence may contribute to cancer and mutagenic effects in humans and aquatic
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organisms [1–8]. Due to the unpredictable nature of these pollutants, it has always been hard to devise
one kind of treatment option that totally aids in covering a wide range of organic contaminants. For
instance, physical strategies like, adsorption on activated charcoal, reverse osmosis and flocculation are
regarded as non-destructive methods, but these processes move the pollutants from one phase to other,
thus offering to increase additional contamination by leaving all these organic pollutants remaining on
the Earth. This could possibly exhibit negative effects on both human health as well as the environment.
Therefore, designing of more eco-friendly techniques to eradicate these environmental pollutants has
turned into a challenging assignment for researchers worldwide.

In this regard, advanced oxidation processes (AOPs) are recognised as an efficient method for
the degradation of organic pollutants as they rely on the generation of highly reactive HO• (hydroxyl
radical) via chemical, solar or other types of energy options [9–11]. These radicals subsequently react
with contaminants through a series of multi-step reactions to form low molecular weight carboxylic
acids as end products and these products will further be mineralized into CO2 and H2O [12]. In general,
AOPs involve ultraviolet (UV)-based processes (UV/O3/H2O2), chemical oxidation processes (O3/H2O2),
Fenton and photo-Fenton processes (Fe2+/H2O2/UV), photocatalytic oxidation–reduction processes
(semiconductor/UV or ultraviolet–visible (UV–vis)), critical water oxidation, sonolysis, and electron
beams [13–16]. Of all these, photocatalysis is generally preferred for its ultimate mineralization
and outstanding degradation capability of converting toxic organic compounds to CO2 and H2O.
This process prompts a significant decrease of toxic heavy metal existence/conversion into non-toxic
states, the destruction/deactivation of almost all water borne microorganisms, breaks down air
pollutants, NO2, CO and NH3, and degrades plastics and a variety of industrially significant synthetic
substances [17–19]. The photocatalysis process is reported to involve reduction and oxidation responses
on the surface of photocatalyst material, mediated by the valence band (VB)holes(h+) and conduction
band (CB) electrons (e−) produced by the absorption of UV–visible light. Such photo-created sets of h+

and e- incites the development of powerful species, like, HO• and superoxide radicals from atmospheric
oxygen and moisture [20–24]. These species were reported to have the potentiality to oxidize and break
down organic pollutants/poisonous gas/eliminate microorganisms from an aqueous environment.
The most interesting component of AOPs is that they are profoundly intense in the generation of
oxidising radicals and thus enabling the destruction of a wide range of obstinate organic pollutants
with no selectivity. There are numerous reports on the generation of HO• involving AOPs towards
the degradation of organic pollutants [25–35]. Other than HO•, AOPs generate hydroperoxyl (HO2

•)
radicals which also aid the degradation of inorganic and organic compounds present in industrial
wastewater. Figure 1 depicts a schematic overview of photocatalytic degradation process [36].
As depicted in Figure 1, (i) photon energy higher than the band gap excites the photocatalyst and
creates e- and h+, (ii) pollutants are adsorbed on the surface of photocatalyst and subsequently the
oxygen molecules undergo reduction. At the same time, h+ reacts with adsorbed water molecules to
produce HO• that can oxidize harmful compounds [37,38]. The most widely studied semiconductor
metal oxide photocatalysts are TiO2, ZnO, Fe2O3 and WO3 [39–45].

Likewise, the removal/destruction of the organic pollutants by means of acoustic cavitation,
i.e., the use of ultrasound, is another efficient AOP [27–35,46–49]. The utilization of ultrasound in
AOPs, for the degradation of organic pollutants, is found to be technically and economically more
viable. The selectivity and enhanced reactivity are also main advantages of employing ultrasound
in AOPs.

Generally, the sonochemical responses occur in three zones: centre of cavitation bubble (cavity
interior), bubble–fluid interface (Gas-liquid interface), and bulk solution (Figure 2) [11,49].

1. Cavity interior (gaseous region): in this zone, hydrophobic and volatile molecules are degraded
due to high temperature. The cavitation bubbles produce free radicals such as HO• and H• by
the pyrolysis of water molecules.
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2. Gas–liquid interface: the primary radicals produced inside the cavitation bubbles can react
with solutes adsorbed at the cavitation bubble and solution interface, thus originating the
degradation progress.

3. Bulk solution: the free radicals move from the gas–liquid interface into the bulk solution to
produce secondary sonochemical reactions. Subsequently, the degradation reaction pathway
occursbased on the pollutant nature such as solubility, volatility and surface action.Molecules 2019, 24, x FOR PEER REVIEW 3 of 19 

 
Figure 1.Schematic overview of photocatalytic degradation process [36]. Copyright (2019) Elsevier. 

Likewise, the removal/destruction of the organic pollutants by means of acoustic cavitation, 
i.e., the use of ultrasound, is another efficient AOP [27–35,46–49]. The utilization of ultrasound in 
AOPs, for the degradation of organic pollutants, is found to be technically and economically more 
viable. The selectivity and enhanced reactivity are also main advantages of employing ultrasound in 
AOPs. 

Generally, the sonochemical responses occur in three zones: centre of cavitation bubble (cavity 
interior), bubble–fluid interface (Gas-liquid interface), and bulk solution (Figure 2) [11,49]. 
1. Cavity interior (gaseous region): in this zone, hydrophobic and volatile molecules are degraded 

due to high temperature. The cavitation bubbles produce free radicals such as HO• and H• by 
the pyrolysis of water molecules. 

2. Gas–liquid interface: the primary radicals produced inside the cavitation bubbles can react 
with solutes adsorbed at the cavitation bubble and solution interface, thus originating the 
degradation progress. 

3. Bulk solution: the free radicals move from the gas–liquid interface into the bulk solution to 
produce secondary sonochemical reactions. Subsequently, the degradation reaction pathway 
occursbased on the pollutant nature such as solubility, volatility and surface action. 

Figure 1. Schematic overview of photocatalytic degradation process [36]. Copyright (2019) Elsevier.
Molecules 2019, 24, x FOR PEER REVIEW 4 of 19 

 

Figure 2.The sonochemical process of three different cavitaion zones [49]. Copyright (2019) 
American Chemical Society. 

2. Ultrasound-Based Hybrid Advanced Oxidation Processes (AOPs) 

Ultrasound (US) was first used by Richards and Loomis [37] for creating the concept of 
cavitation and degassing of water by accelerating the chemical reactions. US has since been used for 
many applications such as cell disruption, crystallization, atomization, degassing, polymerization, 
emulsification, nanotechnology, wastewater treatment, chemical reactions, food preservation, drug 
delivery and many more [50]. The major advantages of ultrasonic irradiation are safety, high 
penetrability in water medium, high degradation efficiency and the use of relatively low energy 
[51,52]. Being an extensively used AOP, many recent publications provide good reviews on the use 
of sonochemistry for wastewater treatment aspects [53–56]. Babu et al. [57] reported on combined 
AOPs such as sonolysis, sono-ozone process, sonophotocatalysis, sono-Fenton systems and 
sonophoto-Fenton methods for the degradation of pollutants. Other reports on combination of US 
with one or more AOPs were found to exhibit enhanced performance than that of individual AOPs. 
This may be due to the synergistic effects of the hybrid AOPs. The application of ultrasound is not 
only used in the preparation of active catalysts but has also been extensively applied in wastewater 
treatment applications [58]. 

3. Sonolysis 

Sonolysis is the process of utilization of ultrasonic irradiation without the presence of catalysts, 
to produce HO• in aqueous media. It is one of the successful systems utilized for the degradation of 
organic pollutants in water [59,60]. The interaction between sound energy and dissolved bubbles in 
liquids leads to the growth of bubbles and subsequent near-adiabatic collapse, a process known as 
acoustic cavitation (Figure 3) [61]. Acoustic cavitation generates extreme temperature and pressure 
conditions within the collapsing bubbles [62–64]. In water, acoustic cavitation process generates 
HO•radicals that could be used for the degradation of organic pollutants [65–67]. 

Figure 2. The sonochemical process of three different cavitaion zones [49]. Copyright (2019) American
Chemical Society.



Molecules 2019, 24, 3341 4 of 18

2. Ultrasound-Based Hybrid Advanced Oxidation Processes (AOPs)

Ultrasound (US) was first used by Richards and Loomis [37] for creating the concept of cavitation and
degassing of water by accelerating the chemical reactions. US has since been used for many applications
such as cell disruption, crystallization, atomization, degassing, polymerization, emulsification,
nanotechnology, wastewater treatment, chemical reactions, food preservation, drug delivery and
many more [50]. The major advantages of ultrasonic irradiation are safety, high penetrability in water
medium, high degradation efficiency and the use of relatively low energy [51,52]. Being an extensively
used AOP, many recent publications provide good reviews on the use of sonochemistry for wastewater
treatment aspects [53–56]. Babu et al. [57] reported on combined AOPs such as sonolysis, sono-ozone
process, sonophotocatalysis, sono-Fenton systems and sonophoto-Fenton methods for the degradation
of pollutants. Other reports on combination of US with one or more AOPs were found to exhibit
enhanced performance than that of individual AOPs. This may be due to the synergistic effects of the
hybrid AOPs. The application of ultrasound is not only used in the preparation of active catalysts but
has also been extensively applied in wastewater treatment applications [58].

3. Sonolysis

Sonolysis is the process of utilization of ultrasonic irradiation without the presence of catalysts,
to produce HO• in aqueous media. It is one of the successful systems utilized for the degradation of
organic pollutants in water [59,60]. The interaction between sound energy and dissolved bubbles in
liquids leads to the growth of bubbles and subsequent near-adiabatic collapse, a process known as
acoustic cavitation (Figure 3) [61]. Acoustic cavitation generates extreme temperature and pressure
conditions within the collapsing bubbles [62–64]. In water, acoustic cavitation process generates HO•

radicals that could be used for the degradation of organic pollutants [65–67].
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Nair et al. [68] reported on the sonolysis treatment of dye-contaminated wastewater by two
methods, i.e., probe-type sonicator (named as dipping process) and bath-type sonicator (named as
without dipping process) maintained at an optimal pH of 6.0. The results of sonication treatment
without dipping showed 71% chemical oxygen demand (COD) removalin 90 min, whereas, the
sonication treatment with dipping showed a maximum COD removal of 82%. As a result of their
investigation, they reported that sonolysis with a dipping process was demonstrated to be competent
for degradation of organic pollutants. Pharmaceutical effluent containing β-blocker agent like atenolol
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was subjected to sonochemical degradation in an aqueous electrolyte as reported by Nejumal et al. [69].
In this study, four different ultrasound frequencies, 200, 350, 620 and 1 MHz, were employed to degrade
atenolol. A maximum degradation of 90% was noted at a frequency of 350 kHz. The respective
sonolysis degradation was studied in terms of total organic carbon (TOC), COD reduction and ion
chromatography (IC) and high-performance liquid chromatography (HPLC) analysis. The cavitation
efficiency was found to be maximum at 200 kHz, which could be due to a combination of radical yield
per bubble and the total number of active bubbles. Rayaroth et al. [70] reported on the degradation of
coomassie brilliant blue (CBB) by an ultrasonic irradiation technique. Nearly 90% of degradation was
noted in pure water after 30 min at 350 kHz frequency and 60 W power. Degradation studies conducted
in sea water also showed similar results after 90 min of sonication. The comparative results of pure
and sea water showed a time dependent COD removal as 94 and 48%, respectively. The degradation
mechanistic reaction pathway of CBB is shown in Figure 4.
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At different concentration and operational conditions, the naphthol blue black (NBB) reduction
rate was monitored by Dalhatou et al. [71] using sonochemical degradation at 278 kHz. The inorganic
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ions like bicarbonate and phosphate ions were found to play a role in maintaining a stable pH which
in turn influenced the interfacial radical species generation and increased the rate of degradation.
Rahmani et al. [72] reported a sonolysis treatment for tinidazole degradation by the combination of
ultrasound and H2O2. They reported that the production of H2O2 combined with ultrasonic irradiation
process exhibited better degradation results due to the formation of higher amount of hydroxyl radicals.
Drijvers et al. [73] proposed the sonolysis treatment of the four monohalo-generated benzene products
such as fluoro-benzene (FB), chloro-benzene (CB), bromo-benzene (BB) and iodo-benzene (IB) at
different initial concentrations under optimized conditions. A range of ultrasonic frequencies were
extensively used to report on the effective degradation of organic compounds [74–89].

However, ultrasonic process is a high-energy process. When the volume of contaminated water is
large, the process may not be energy efficient.

4. Sonocatalysis

Rapid growth in nanotechnology has gained a great deal of interest in environmental applications.
Nanomaterials in various shapes/morphologies/forms have a significant impact on the treatment
of water and air quality in natural environment [90–92]. A combination of nanocatalysts and
ultrasonication to create heterogeneous sonocatalytic processes advances the degradation efficiency of
organic pollutants to a huge extent. The sonocatalysts offer improved mass transfer owing to a larger
surface area. Furthermore, they also increase the number of cavitation bubbles by acting as nucleation
sites. The presence of catalysts can increase the quantity of free radicals generated, thus enhancing
the rate of degradation of organic pollutants [93–105]. An acoustic cavitation process is also useful
to generate active catalysts. For example, the conversion of rutile to anatase TiO2 under ultrasonic
irradiation is shown in Figure 5 [102].
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Khataee et al. [106] prepared ZrO2 on pumice and tuff by using a modified sol-gel process
and utilized for sonocatalytic degradation of rifampin (RIF). Zaman et al. [107] used highly active
SnO2/MWCNT nanocomposite for the sonocatalytic degradation of methylene blue (MB). A higher
degradation efficiency was obtained with SnO2/MWCNT nanocomposite (98%) compared to that of
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pure SnO2 (48%) and MWCNT (64%). The enhanced degradation performance of composite was due to
a synergistic effect by the coupling of SnO2 and MWCNT, which promoted the transfer of electrons from
SnO2 to MWCNT. Khataee et al. [108] synthesized TiO2-biochar (TiO2-BC) composite using a sol-gel
method and utilized for the sonocatalytic degradation of reactive blue 69 (RB69) dye. The optimized
parameters for an efficient degradation were found to be neutral pH, catalyst amount of 1.5 g/L, initial
concentration of dye 20 mg/L and ultrasonic intensity of 300 W.The higher sonocataytic degradation of
the nanocomposite was due to the formation of sonochemical hot spots. Khataee et al. [109] developed
GdxZn1-xO composite for the degradation of acid orange 7 (AO7) using sonocatalytic process at pH 7.
The optimized 5% Gd-doped ZnO composite showed a higher sonocatalytic performance of about
90% at 90 min. It was noted that the degradation percentage was decreased from 90% to 56% after the
addition of sodium carbonate, sodium sulfate and sodium chloride due to the interfering reactions by
the additives.

Siadatnasab et al. [110] synthesized CuS/CoFe2O4 (CuS/CFO) hybrids using hydrothermal method
and utilized as a sonocatalyst for the degradation of methylene blue. The degradation efficiency
under sonolysis/H2O2 was compared with different sonocatalysts, viz., CuS/H2O2, CFO/H2O2 and
CuS/CFO/H2O2. These systems showed 6%, 62%, 23% and 100% degradation efficiency, respectively
within a reaction time of 30 min for MB. The synergistic integration of H2O2 and sonocatalyst dosage
was found to favour more hydroxyl radical formation that resulted in higher degradation of MB.
Lee et al. [111] designed a GO/β-Bi2O3/TiO2/Bi2Ti2O7 (GBT) nanocomposite via a two-step hydrothermal
reduction process for the sonocatalytic degradation of pharmaceuticals such as carbamazepine (CBZ)
and acetaminophen (ACE). The degradation performance was carried out at various operating
frequenciessuch as 28, 580, and 970 kHz at power density level of 180 W/L and also compared
with pristine catalysts such as Bi-doped GO and Ti-doped GO. It was noticed that the highest
photocatalytic degradation performance was observed at an optimized frequency at 580 kHz and GBT
catalysts. Furthermore, the degradation of CBZ was found to be higher than that of ACE due to its
high hydrophobicity.

5. Sonophotocatalysis

Sonolysis has received much attention towards the organic pollutant degradation due to its
simplicity. The photocatalytic process is considered as one of the greatest technologies for wastewater
treatment processes. While sonolysis is an efficient process for the degradation of hydrophobic
pollutants, its efficiency towards hydrophilic compounds is weak [58]. Hydrophobic compounds
adsorb to the cavitation bubble interface and are efficiently attached by HO• radicals generated
on bubble collapse. On the other hand, photocatalysis is an efficient process for the degradation
of hydrophilic compounds since they have preferential adsorption to the relatively polar catalytic
surfaces. Hence, a combination of sonolysis and photocatalysis, sonophotocatalysis, would help to
overcome the disadvantages of the individual processes and synergistically combine the advantages of
these processes. In addition, an acoustic cavitation process would clean the surface of photocatalysts
regenerating the active sites and the surface of catalysts would act as cavitation bubble nucleation sites.
As can be seen from the above discussion, sonophotocatalysis is expected to be more efficient due to a
number of synergistic effects [58]. A schematic overview representation of synergetic effect during
sonophotocatalysis using doped semiconductor metal oxide is shown in Figure 6 [58].

Madhavan et al. [3] reported the degradation of paracetamol by sonophotocatalysis using TiO2 as
a photocatalyst, which exhibited a higher degradation performance than that of individual processes.
The rates of degradation observed for photocatalysis, sonolysis and sonophotocatalysiswere about
30.2, 8.3 and 40.2 × 10−7 M/min, respectively. The observed enhancement was due to the formation
of additional hydroxyl radicals via the excitation of the visible light active iron-aqua complex in
water. Madhavan et al. [4] studied the degradation of acid red 88 (AR88) by photocatalysis, sonolysis
and sonophotocatalysis processes using TiO2 photocatalysis. The degradation process of AR88 with
combined techniques of UV + TiO2, US + TiO2 and US+UV+TiO2 was carried out with an initial
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concentration of 0.09 mM AR88 and 1 g/L of photocatalyst. The results showed the sonophotocatalysis
with TiO2 exhibited an enhanced degradation activity due to positive synergetic effect with synergy
index of 1.3, demonstrating the coupling of sonolysis and photocatalysis as a potential process for AR88
degradation. Madhavan et al. [5] also investigated the degradation of metanate hydrochloride (FMT)
using various processes such as, sonolytic, photocatalytic and sonophotocatalytic processes with Fe3+

and TiO2 catalysts using ultrasound of 213 kHz. The rates of degradation attained for photocatalysis,
sonolysis and sonophotocatalysis with 1 g/L of TiO2 were about 32.6, 5.1 and 28.1 × 10−7 M/min,
respectively. The coupling of TiO2 photocatalysis and sonolysis exhibited a negative synergy effect
with the index of 0.7. However, the rates of degradation attained using UV+Fe3+, US+Fe3+ and
US+UV+Fe3+ were 10.1, 14.1 and 40.9× 10−7 M/min, respectively. The sonophotocatalysis process using
Fe3+ exhibited a positive synergy with index of 1.6. The degradation of diclofenac using photocatalysis,
sonolysis and sonophotocatalysis was studied [14] using ZnO as a photocatalyst. The degradation
efficiency of the observed process of photocatalysis, sonolysis, sonophotocatalysis were about 68%, 23%
and 73%, respectively. The enhancement was attributed to the continuous cleaning of the photocatalyst
surface to produce more hydroxyl radicals. The mineralization and degradation of orange-G using
sonophotocatalysis with TiO2 as a photocatalyst was also investigated [15]. The results inferred that
the solution pH played an important role on the degradation. The sonophotocatalytic degradation of
orange-G was comparatively higher at pH of 5.8 than 12, which indicate that an acidic medium was
more favoured for the degradation of orange-G with a TOC reduction of 82% at pH 5.8. At neutral pH,
the pollutant showed a relatively higher surface activity.
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Vinoth et al. [112] reported on an assembled p-type NiO on n-type TiO2 to synthesiseTiO2-NiO
nanocomposites with p-n junction via a US-mediated wet impregnation protocol. The sonophotocatalytic
efficiencies of the pure TiO2 and the as-synthesisednano composites were studied under diffused
sunlight employing methyl orange (MO) as an organic pollutant. The impregnation of NiO on to
TiO2 was found to enhance the optical absorption at 500–800 nm (visible region) due to p-n junction
formation at the interface. The degradation efficiency of MO by individual processes of photocatalysis
and sonolysis under diffused sunlight was found to be 6% and 30%, respectively. A 4.8-fold increase
was noted on combining the above processes due to their synergistic effect. The sonophotocatalytic
activity of TiO2-NiO photocatalysts at different NiO loading was also studied and found that 10 wt%
NiO loading to be the optimal range.
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Paul et al. [113] prepared an Ag-doped h-MoO3 sonophotocatalyst using a solvent-based
self-assembly technique and the catalyst was tested for MB degradation in the presence of diffused
sunlight. An improved degradation efficiency of MB was noticed when the doped Ag was added
onto MoO3 surface. In addition to HO• radicals, mechanical agitation and mass transfer effects were
also reported to increase the sonophotocatalytic degradation of MB.Gokul et al. [114] developed a
reduced graphene oxide supported binary metal oxide (TiO2-CuO/rGO) nanoparticle as a multilayer
thin film for enhanced sonophotocatalytic degradation of MO using UV irradiation. The degradation
level of MO was investigated by UV–visible and TOC measurements and 62% mineralisation was
achieved. The increased rate of degradation was due to efficient electron transport by multi-layered
TiO2/CuO/rGO. Sonophotocatalytic remediation of synthetic dye and textile effluent using Fe-doped
Bi2O3 was reported by Dinesh et al. [115]. The effect of optimized experimental parameters, viz., initial
pH, gas bubbling (oxygen, argon, air, and nitrogen) and oxidant addition (H2O2 and peroxymonosulfate)
on the degradation efficacy of 10 ppm of Basic Brown 1 dye showed a maximum decolourization
of 62% with 3 g/L peroxymono sulfate at 37 kHz frequency. A higher dye degradation efficiency
of 99% was noted for sonophotocatalys using Fe-doped Bi2O3 catalyst with peroxymonosulfate.
The higher degradation rate was reported due to the formation of both HO• and SO4

•− radical species.
Balakumara et al. [116] investigated the sonophototocatalyticdecolourization of MB in the presence of
ZnO/Bi2O3 synthesised using a hydrothermal method. An enhanced decolourization was observed
in a sonophotocatalytic process performed under optimized experimental parameters. The effect of
ZnO/Bi2O3 catalyst dosage on decolourization percentage of MB dye is shown in Figure 7. It was
observed that the decolourization increased as the amount of catalyst was increased, owing to the
increased surface area of the catalyst and reduced recombination rate by the successful formation of
heterojunction between two semiconductors of ZnO to Bi2O3.
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Dhanasekar et al. [117] reported a high MB degradation using β-NiMoO4 sonocatalyst synthesized
by a simple hydrothermal process in the presence of diffused sunlight. Hu et al. [118] prepared a
stable and low toxicity sonophotocatalyst made of polyethylene glycol-modified TiO2 porous thin film
for wastewater treatment. They reported 95% degradation of rhodamine B (RhB) using optimized
PEG2000-TiO2 film under UV irradiation for 60 min. The combined photocatalytic-ultrasonic system
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with a high amount of PEG2000-TiO2 coated glass beads was found to exhibit a stronger ultrasonic
efficiency. A longer irradiation time resulted in a higher RhB degradation efficiency due to the
synergetic effect of the combined sonolysis and photocatalysis. Kumar et al. [119] investigated a
Bi-doped TiO2 catalyst prepared by a sol-gel method and tested its efficiency on MB degradation in
aqueous medium by hydrodynamic cavitation (HC) integrated with H2O2. About 95% degradation
efficiency was reported after 60 min, which can be attributed to the synergetic effect of the photocatalytic
process. Liang et al. [120] fabricated high-performance Bi2WO6 sonophotocatalyst in the presence
of polyvinylpyrrolidone prepared by an optimized hydrothermal method and tested against the
degradation of RhB with or without visible light under various experimental conditions. An excellent
sonophotocatalytic activity of 100% degradation at 40 min was noted for RhB degradation, which
was enhanced by an improved active surface site of Bi2WO6 during the sonophotocatalysis process.
The related plots are shown in Figure 8.Molecules 2019, 24, x FOR PEER REVIEW 11 of 19 
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Sunasee et al. [121] assessed a commercially available titanium dioxide (TiO2, P25) for the
degradation of bisphenol A (BPA) using energy-based advanced oxidation process by combining US
and UV. The degradation kinetic rate was also observed at optimal experimental parameters viz, power
(50 W), frequency (35 kHz), temperature (20 ◦C) and mechanical stirring (300 rpm). The combined
approach of US/UV/P25 was reported to exhibit higher sonophotocatalytic degradation efficiency with
96% of BPA (28.0 × 10−3 min−1) than sonolysis and photocatalysisover2 h. The by-products and the
intermediates of the BPA were also analysed using HPLC–mass spectrometry (MS). The observed
enhancement was due to the synergistic effect of the combined process.

6. Fenton, Sono-Fenton, and Sonophoto-Fenton Processes

Zhang et al. reported on the decolourization of C.I acid orange 7, by Fenton process in combination
with ultrasound/goethite/H2O2 [122]. The decolourization was found to be affected by ultrasonic
power density, goethite addition, and hydrogen peroxide concentration. The decolorization took
place on the goethite surface and achieved a high performance with 90% of decolorization efficiency
over ultrasound/goethite/H2O2, which is higher than that of the Fenton process without ultrasound
(42%) with an optimal pH of 3 of the dye. Mishra et al. [123] investigated p-nitrophenoldegradation
by sonophotocatalytic process with hydrogen peroxide and Fenton chemistry was carried out under
the combination of US irradiation (25 kHz) with 1 kW of acoustic power and UV radiation (11 W).
A maximum p-nitrophenol degradation efficiency of 94% was noted with combined sonophotocatalysis
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and optimal concentration of H2O2. Fenton chemistry was reported to play a role in improving
the extent of degradation. Taghizade et al. [124] discussed the sonophotocatalytic degradation of
chitosan by sono-Fenton and sonophoto-Fenton processes in the presence of Fe (III)/H2O2 as a catalyst.
The operating conditions of ultrasound irradiation were 24 kHz and 16W. The combined system of
Fe (III) (2.5 × 10−4 mol/L) and H2O2 (0.020–0.118 mol/L) operated under UV irradiation showed a
degradation rate of 1.873 × 10−9–6.083 × 10−9 mol/L/s. However, the photo-Fenton process achieved
complete degradation of chitosan in 60 min with an increased rate and sufficient catalyst concentration.
The efficiency of the photo-Fenton system achieved was related to formation more hydroxyl radicals
through the active participation of iron in the redox cycle.

Zhou et al. [125] described the degradation kinetics of sodium alginate (NaAlg) via photo-Fenton,
sono-Fenton, and sonophoto-Fenton processes in the presence of TiO2 nanoparticles. The experimental
results obtained suggested that the photocatalytic degradation seemed to increase with increasing
TiO2 concentration from 0.05 to 0.5 gL−1. The sonophoto-Fenton process showed a better
NaAlg degradation result, which was due to the more positive synergy between ultrasound and
TiO2photocatalysis. Zhi et al. [126] synthesized a RG-I enriched ultra-low molecular weight pectin by
an ultrasound-accelerated Fenton process. An enhanced degradation efficiency of pectin (5.5 kD) was
achieved in 35 min by Fenton reaction in the presence of US. In addition, the antioxidant activity of the
US-Fenton-treated pectin was found to be significantly elevated. The combined process of ultrasound
and Fenton (US-Fenton process) enhanced the degradation efficiency and achieved 5.2 kDa products in
1 h, which was higher than the Fenton (0.5 mM Fe2+ and 6 g/L H2O2) process which degraded from
448 kDa to 19.78 kDa,. The enhanced performance was due to the positive synergistic effect of the
combined process, which produced more active free radicals.

Wu et al. [127] investigated the effect of US and hydrodynamic cavitation (HC) to treat cork
wastewater (CW) by flocculation (Floc) and Fenton processes. The pre-treatment by Fenton oxidation
(FE) of the diluted CW showed COD and polyphenol (PP) removal efficiency of 30% and 61%,
respectively, while optimized HC and US showed an 83%–90% increase in COD reduction and a
26%–33% increase in polyphenol reduction. While the flocculation process was found to show 55% and
91% of COD and polyphenol removal. The physical and chemical effects of the cavitational collapse
was found to responsible for the efficient removal of PP. The plot of COD and PP removal efficiency
using Floc and FE processes with and without US and HC is shown Figure 9. It can be seen that the
FE process alone provided comparatively low COD and PP removal of 30% and 61%, respectively.
However, when coupled with US and HC, it showed enhanced COD and PP removal (Figure 9).
The enhanced removal might be due to the cavitation effects causing the production of more reactive
species, such as H2O2 and HO• radicals.

Petrier et al. [104] reported on phenol degradation by the hydroxyl radicals at an acoustic power
of 50 W and at a frequency range of 20 to 500 kHz. An enhanced degradation rate was noted on the
addition of Fenton’s reagent at a lower frequency of 35 kHz. By contrast, Namkung et al. [105] observed
no appreciable enhancement in TOC removal during phenol degradation using advanced Fenton
by altering the sonication intensity from the power level 2.4 to 4.7 W in acidic medium containing
ferrous and zero valent iron as a Fenton’s type reagent. However, on increasing the H2O2 flow rate
from 14 to 60 mL/h, a four-fold improvement in the TOC removal from 11% to 38% was observed,
which evidenced the role of H2O2 as the most important factor responsible for enhanced degradation.
ElMetwally et al. [128] reported the role of metal oxychlorides(FeOCl (I), CuOCl (II), ZnOCl (III)
and BiOCl (IV)) in heterogeneous Fenton-sonophotocatalytic degradation of nitrobenzene at room
temperature and pH 7.0 in the presence of US (20 kHz), UV (6W, λ = 254 nm) and combined UV/US
irradiation in the presence of H2O2. The degradation was achieved with a higher mineralization
percentage for the combined process of US and UV, than that of pure UV and US processes. The order
of degradation was found to be US/UV > UV > US with the mineralization extents of 46%, 41%, 35%
and 33%, respectively, under the combined irradiation of US/UV for 60 min. The improved degradation
rate was due to the production of more reactive free radicals and positive synergistic effect.
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In addition to the above studies, the stability and reusability of a catalyst is significant for the
commercial and industrial applications. The catalyst can be recovered after the completion of each
cycle (sonophotocatalysis, sonocatalysis, and photocatalysis processes), dried, and reused.

7. Summary

A brief overview of the various methods involving sonolysis for the effective degradation of
organic contaminants in homogenous and heterogeneous solutions has been provided with specific
examples. The ultrasonic process for removal of organic contaminants is an efficient method because
of its non-toxic and non-selective features. However, utilization of the ultrasonic process as an
individual technique has some disadvantages for large-scale applications due to the low efficiency
for the removal of certain organic contaminants, mainly, hydrophilic compounds. The application of
ultrasound in combination with photocatalysis, photolysis, and Fenton processes may offer synergistic
effects. In photocatalysis, the disadvantages such as inactiveness towards hydrophobic pollutants and
catalyst poisoning due to product adsorption, etc. could be overcome by the combined process of
sonophotocatalysis. The technique of sonophotocatalysis can be an efficient process for the removal of
toxic pollutants. However, an extensive investigation is required for the utilization of a wide-range
of visible light-active catalysts in the sonophotocatalytic process for effective large-scale applications.
While numerous reports are available in the literature on lab-scale studies, the use of combined AOPs
in industrial processes has not yet been investigated.
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