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Top-down visual attention selectively filters sensory
input so relevant information receives preferential
processing. Feature-based attention (FBA) enhances the
representation of relevant low-level features, whereas
space-based attention (SBA) enhances information at
relevant location(s). The present study investigates
whether the unique influences of SBA and FBA combine
to facilitate behavior in a perceptually demanding
discrimination task. We first demonstrated that,
independently, both color and location pre-cues could
effectively direct attention to facilitate perceptual
decision making of a target. We then examined the
combined effects of SBA and FBA in the same design by
deploying a predictive color arrow pre-cue. Only SBA
effects were observed in performance accuracy and
reaction time. However, we detected a reaction time
cost when a valid spatial cue was paired with a feature
cue. A computational perceptual decision-making model
largely provided converging evidence that contributions
from FBA were restricted to facilitating the speed with
which the relevant item was identified. Our results
suggest that both selection mechanisms can be used in
isolation to resolve a perceptually challenging target in a
sparse display, but with little additive perceptual benefit
when cued simultaneously. We conclude that there is at
least some higher order interdependence between
space-based and feature-based selection during decision
making under specific conditions.

Introduction

Covert visual attention filters sensory input, where
desired input receives preferential processing, and
ultimately improves the perception of selected stimuli.
This selection process can occur in several different
ways. A space-based attention (SBA) mechanism
enhances the representation of stimuli at selected
spatial locations and suppresses responses outside the
selected region (Carrasco, 2006; Moran & Desimone,
1985; Posner, 1980; Reynolds & Chelazzi, 2004). In

contrast, feature-based attention (FBA) enhances
the representation of selected feature values (e.g.,
within color, motion direction, or orientation space)
throughout the visual field regardless of target location
while suppressing unselected feature values (Liu
& Mance, 2011; Motter, 1994; Rossi & Paradiso,
1995; Serences & Boynton, 2007; Treue & Trujillo,
1999; White & Carrasco, 2015). Both SBA and FBA
have been studied extensively in isolation, leading
to undisputed evidence that they are operationally
distinct. For example, SBA effects are present even
when only the expected location—but not the specific
feature(s)—of an upcoming target are known (e.g.,
Awh, Matsukura, & Serences, 2003; Awh, Sgarlata, &
Kliestik, 2005; Desimone & Duncan, 1995; Reynolds
& Chelazzi, 2004), and FBA effects are clearly present
in studies using spatially superimposed relevant and
irrelevant features such that SBA is of no use at all (e.g.,
Corbetta, Miezin, Dobmeyer, Shulman, & Petersen,
1991; Lankheet & Verstraten, 1995; see also Scolari,
Ester, & Serences, 2014).

Space- and feature-based selection have separately
been shown to exert similar influences both on
the perception of relevant stimuli and on relevant
underlying neural populations. Perceptually, both
selection mechanisms seem to elevate the subjective
salience of target stimuli relative to distracting input
(Carrasco, 2011; Lankheet & Verstraten, 1995; Liu,
Abrams, & Carrasco, 2009; White & Carrasco,
2011). Liu et al. (2009), for example, demonstrated
that stimuli presented at an endogenously attended
location were perceived to have higher contrast than
physically matched stimuli at an unattended location.
Similarly, Lankheet and Verstraten (1995) found
motion after-effects generated from superimposed
random dot kinetograms were significantly stronger
for an attended direction of motion compared with a
spatially overlapping unattended direction of motion.
Both SBA- and FBA-driven perceptual changes likely
result from corresponding response modulations
in specific sensory populations within visual cortex
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(Haenny & Schiller, 1988; Hayden & Gallant, 2009;
Moran & Desimone, 1985; Treue & Martinez-Trujillo,
1999). Together, the behavioral and physiologic findings
logically lead to investigations into possible interactions
between both selection mechanisms. When studied
in conjunction, however, broad investigations have
led to divergent conclusions on whether and how
the two selection mechanisms interact. This in turn
leads to conflicting accounts as to whether space- and
feature-based selection are deployed via common or
independent mechanisms.

One prospective supported by neuroimaging studies
proposes that SBA and FBA operate in parallel
(Andersen, Fuchs, & Müller, 2011; Boynton, 2005;
Cohen & Maunsell, 2011; Egner et al., 2008). Although
common frontal, parietal, and cingulate regions have
been shown to exhibit both SBA and FBA modulation,
interactions between mechanisms were not observed,
suggesting that distinct subregions within the structures
may be responsible for domain-specific forms of
attention (Egner et al., 2008; Greenberg, Esterman,
Wilson, Serences, & Yantis, 2010; Wager, Jonides,
& Reading, 2004). Physiology studies have similarly
demonstrated that both SBA and FBA independently
affect area V4 (Hayden & Gallant, 2009; McAdams &
Maunsell, 2000). In sum, the evidence presented here
suggests that the operation and magnitude of each
attention effect is unchanged whether or not the other
is simultaneously deployed.

A competing perspective proposes that SBA
and FBA interact as a result of a common control
mechanism (Ibos & Freedman, 2016; Patzwahl &
Treue, 2009), although the exact nature of this
interaction seems to be inconsistent at times. When
both relevant space and feature information are
cued, the extent to which relevant feature-matching
distractors affect performance accuracy can depend on
their spatial distance from targets (Leonard, Balestreri,
& Luck, 2015). Other behavioral, neuroimaging,
and electroencephalographic studies have produced
converging evidence that FBA does not always operate
globally, but may be restricted to attended regions of
space (Bengson, Lopez-Calderon, & Mangun, 2012;
Soto & Blanco, 2004; Stoppel et al., 2007). In contrast,
when feature selection is necessary to constrain the
search space, FBA precedes SBA (Kwak & Egeth, 1992;
Shih & Sperling, 1996). This finding is particularly
evident in cases of visual search, where attention is
directed to the specific location(s) containing the
relevant feature (Hamker, 2004; Hopf, Boelmans,
Schoenfeld, Luck, & Heinze, 2004; Lim & Sinnett, 2014;
Moore & Egeth, 1998). Taken together, these studies
suggest that FBA depends on SBA when both feature
and location are concurrently cued, and guides it when
feature information can be used to localize a target. In
either case, the effect of one may be dependent on the
other.

White et al. (2015) recently attempted to reconcile
the two divergent perspectives. They investigated
how top-down SBA and FBA jointly influence
perception in a superimposed dot pattern task. In their
design, participants were provided with an integrated
endogenous spatial and color cue before the onset of
two overlapping dot patterns in each of four quadrants,
defined by color (one of which was relevant). The
spatial cue could be used to decrease the search space
to a single visual field, whereas the feature cue could
further decrease the search space to a particular set
of colored dots within the attended field. Notably,
although many studies providing support for dependent
models have used RT evidence (Bengson et al., 2012;
Kingstone, 1992), they largely focused on performance
accuracy and limited the explanatory power of RT
by design—arguing that RTs reflect a combination of
attentional modulation and decision-related processes.
When the salience of a subset of distracting dot patterns
matched that of the target, attention effects in accuracy
were super-additive; when only the target dot pattern
was salient, attention effects were additive. Using a
novel computational model, they demonstrated that,
although behavioral effects point toward dependency
between SBA and FBA only in the presence of highly
salient distractors, the two selection mechanisms are
best modeled as independent systems that jointly impact
stimulus competition. Furthermore, they concluded
that, when deployed together, SBA and FBA additively
enhance relevant visual signals.

Although White et al. (2015) made important
research gains, the conclusions may nonetheless
be specific to certain task conditions and analysis
approaches. The aggregate results across the studies
presented here, after all, suggest that different task
demands may induce different patterns of attentional
modulation. Even among studies exploring interactions
between SBA and FBA, the collection of methodologies
and behavioral task designs are largely heterogeneous,
which may impact how selective attention operates.
Some studies that provided probable spatial and feature
information of an upcoming target display did so via a
single, integrated cue (e.g., Stoppel et al., 2007; White,
Rolfs, & Carrasco, 2015); others provided two unique
cues simultaneously (e.g., Bengson et al., 2012; Egner
et al., 2008). Second, and perhaps more important,
many of the studies cited included tasks in which an
accurate behavioral response was directly predicted by
the space and/or feature cue (e.g., Ibos & Freedman,
2016; Patzwahl & Treue, 2009), whereas another subset
of studies included simultaneous distractors that could
only be filtered out via use of specific cue(s) (e.g.,
Leonard et al., 2015; White et al., 2015). Delineating the
conditions under which interactions are expected—and
the nature of the interaction—is critical to fully
understanding the mechanics of selective attention.
Given that top-down attentional deployment seems to
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be at least partially flexible (Barbot & Carrasco, 2017;
Lambert & Hockey, 1986; Scolari et al., 2014); however,
demonstrations of combined and/or independent
effects when either both forms of selection are necessary
or each uniquely facilitates performance may not
warrant broad generalizations beyond similar task
environments.

In the current study, we set out to design a task in
which both a space-based or feature-based selection
strategy would be equally and redundantly viable
to facilitate target identification in a sparse display,
defined here as a single target and widely separated,
distinctly colored distractors. Briefly, a colored relevant
square was presented alone in one of four quadrants
and the remaining three quadrants each contained a
lone, uniquely colored distractor square. Crucially,
the to-be-reported target—a gap on one of two
vertical edges of the relevant square—was designed
to be entirely orthogonal to the space and feature
information provided by the pre-cue. Experiment 1
was first implemented to verify that attention effect
magnitudes were equivalent when only a single spatial
cue or single feature cue were provided during the task.
Next, Experiment 2 used a central color arrow pre-cue
that simultaneously provided the probable location and
color of the relevant item. Here, each component of the
cue predicted the related dimension of the relevant item
(i.e., location or color) with equivalent frequency; in a
small proportion of trials, one component accurately
cued the relevant item and, equally often, both
components were inaccurate. Therefore, deployment
of either one selection mechanism at the exclusion of
the other should equivalently facilitate performance.
Simultaneous, independent deployments should
afford a greater behavioral benefit simply by virtue of
increasing the likelihood that the relevant square is
attended, and even more so if such deployments are
super-additive.

Importantly, in cases where the pre-cue was valid
on both dimensions, space- and feature-based selection
would redundantly decrease the search space to
the single relevant item. Thus, interaction effects in
performance accuracy could indicate dependency
between mechanisms specifically within perceptual
resolution of the target gap. Similar effects in RT may
indicate 1) a speeded benefit for selecting the relevant
square among three distinct distractors without a
concurrent effect within target signal enhancement
and/or 2) a speeded benefit while accumulating evidence
in favor of one of the two response alternatives,
likely involving signal enhancement. In an attempt
to dissociate these possibilities, we implemented a
robust EZ-diffusion model (a simple modification of
the Ratcliff model; Ratcliff, 1978; Ratcliff & McKoon,
2007; van Ravenzwaaij, Donkin, & Vandekerckhove,
2017; Wagenmakers, Van Der Maas, & Grasman, 2007;
Wagenmakers, Van Der Mass, Dolan, & Grasman,

2008). This cognitive model describes behavior in a
two-alternative forced choice task via three unobserved
estimates: 1) the rate of information accumulation in
favor of one response alternative over another (drift
rate), 2) the relative amount of information required to
elicit a perceptual decision response (boundary separa-
tion). and 3) the remaining portion of RT that does not
include evidence accumulation (non-decision time).

In summary, the design of this study allows us to
address two important open questions regarding dual
deployment of SBA and FBA. First, we investigate
whether the two selection mechanisms combine in
an independent or dependent manner to resolve a
single target when the perceptual effects of attention
are largely restricted to signal enhancement. Note
that dependency can be either super-additive, where
the effect of deploying one selection mechanism is
magnified by deployment of the other; or sub-additive,
where deploying one selection mechanism precludes
deployment of the other. Second, using the diffusion
model, we can take a more nuanced view of our
data, allowing us to look for cueing effects and their
possible interactions at several stages of the perceptual
decision-making process.

Experiment 1

Methods

Participants
Thirty undergraduate students (8 males), naïve

to the purposes of the study, were recruited via the
Texas Tech University Research Participation System
(SONA). Given a between-participants design, we
elected to use a sample size on the high end of a
broad range (3–30 participants; M = 14.19) reported
in similar behavioral studies cited here (e.g., Leonard
et al., 2015; Lim & Sinnett, 2014; Liu, Stevens, &
Carrasco, 2007; White et al., 2015). Each participant
gave written informed consent in accordance with both
the requirements of the institutional review board and
the Declaration of Helsinki, and received course credit
for their participation. All participants had normal or
corrected-to-normal vision, and normal color vision
as determined by an Ishihara color test (described
elsewhere in this article). Data from two participants
(1 male) were removed from analyses owing to improper
eye-tracking; all analyses thus include the remaining
28 participants.

Materials and stimuli
Stimuli were generated in MATLAB 2017b

(MathWorks, Natick, MA) using Psychtoolbox3
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Figure 1. A single trial sequence in Experiment 1 (top) and Experiment 2 (bottom) with valid cues. A 300 ms central pre-cue predicted
with high reliability either the color (feature cue; Experiment 1), location (spatial cue; Experiment 1), or both the color and location
(feature and spatial cue; Experiment 2) of the task relevant square frame (a square with a small gap on one line segment). The target
display—containing the relevant square and three unique distractor squares—appeared either 500, 1000, or 1500 ms after pre-cue
offset. Participants reported the position of the small gap on the relevant square frame (left or right side). The size of the gap was
adjusted throughout the experiment according to participant performance.

(Kleiner et al., 2007), and displayed on a high-
resolution (1920 × 1080 pixels) color monitor (BenQ
XL2430T) with a frame rate of 100 Hz. Each stimulus
display consisted of four uniquely colored square frames
(red, yellow, blue, and green), measuring 1° width × 1°
height and with a frame width of 0.1° of visual angle.
The four colors used in the current study were set to
be isoluminant using a color map provided by Kovesi
(2015). Each square frame was positioned within a
unique quadrant of the screen at a distance of 10° from
central fixation. Although this is relatively far in the
periphery, it is well within the 30° region in which color
sensitivity is expected (Hansen et al., 2009). The target
was the only square frame of the four to contain a small
gap (0.25° on trial 1; see Titration Procedure) centered
on either the left or right vertical edge (Figure 1).
The remaining three fully closed color square frames
served as distractors. The color and the position of the
target and three distractors were randomly assigned on
each trial.

Participants were assigned to one of two groups:
spatial cue only (SC; N = 14) and feature cue only
(FC; N = 14). The task paradigm was identical for
both (see Procedure), with the only exception being the
central pre-cue. The probable pre-cue for the SC group
was a central black arrow, measuring 0.71° in length
and 0.15° in width, pointed toward one of the four
quadrants. The pre-cue for the FC group was a colored
square frame the same size as the target and distractors,
depicted in one of the four stimulus colors.

Procedure

Main experiment: Figure 1 illustrates the sequence of
events. Participants were seated in a dark room and
positioned at a distance of 92 cm from a computer
monitor. Each trial began with a central black fixation
cross, with each line segment measuring 1° of visual
angle in length and 0.1° width. Simultaneously,
four black square frames were presented in the four
quadrants, matching the size and position of the
colored square frames described. These squares served
to highlight all four possible locations of an upcoming
target. After a 1000-ms delay, the fixation cross was
replaced by the 300-ms pre-cue (a black arrow for
the SC group; a colored square frame for the FC
group). The endogenous pre-cue accurately predicted
the location (SC group) or color (FC group) of the
upcoming target square frame on 80% of all trials
(valid cue). For the remaining 20% of trials, the pre-cue
indicated the location (SC group) or color (FC group)
of a randomly selected distractor (invalid cue).

After a variable delay period of 500, 1000, or 1500
ms from cue offset, all black square frames were
temporarily changed to three distractors and one
target, each of which was uniquely colored red, yellow,
blue, and green (see Materials and Stimuli above). The
location of each object, as well as the color of the
target, varied from trial to trial. All colored square
frames remained on screen for 80 ms. After a 100-ms
blank period, the original four black square frames
reappeared on the screen to serve as backward masks,
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along with the fixation cross for 1000 ms. Participants
were instructed to maintain fixation throughout each
trial, and their compliance was verified with an eye
tracker (see Eye Tracking).

Participants reported the location of the small
gap on the target square frame (left or right edge) by
making a speeded button press (left or right arrow key
on a standard QWERTY keyboard) within a 1500-ms
response window starting frommask onset. Participants
completed four blocks of 150 trials each, for a total
of 600 trials. The first block (structurally identical to
the remaining three blocks) was treated as practice and
excluded from later analysis. However, our results do
not qualitatively change with its inclusion. Throughout
all blocks, feedback on the accuracy of each response
was given on a trial-by-trial basis. Because the task
was perceptually demanding, participants were offered
short breaks designated within and between blocks;
otherwise, trials auto-advanced.
Titration procedure: Given the short stimulus exposure
duration and backward masks, participants were
expected to preallocate selective attention in response
to the cue, in anticipation of an upcoming target
after a variable delay. Maintaining top-down selective
attention during relatively long delays is effortful
(Ariga & Lleras, 2011; Manly, Robertson, Galloway, &
Hawkins, 1999), and participants may not be inclined to
do so if a target is salient enough to capture attention
upon onset. Furthermore, signal enhancement tends
to be weak or behaviorally undetectable via accuracy,
even when selective attention is directed to a sufficiently
salient target (Awh, Sgarlata, & Kliestik, 2005; Dosher
& Lu, 2000; Grindley & Townsend, 1968; Scolari &
Awh, 2019; Shiu & Pashler, 1994). To this end, many
attention studies using similarly sparse displays have
typically reported high accuracy rates for both valid
and invalid cueing conditions, with attention effects
restricted to RT (Egner et al., 2008; Kingstone, 1992;
Lambert & Hockey, 1986). Because the goals of our
study necessitated that we observe attention effects
in both accuracy and RT, we implemented a titration
procedure to ensure that the target gap was not salient
enough to 1) capture attention in the absence of
ongoing top-down deployment or 2) prevent us from
observing effects of signal enhancement as a result of
attentional deployment. The size of the small gap in
the target square frame was titrated throughout each
experimental session to achieve an overall performance
criterion of 60% to 70% (similar criteria were used in
Scolari & Awh (2019) and Williamson et al. (2009)).
For each participant, the gap was initially set to 0.25°,
or one-quarter the size of the line segment. Every 15
trials, performance accuracy was evaluated. If accuracy
exceeded the upper bound of the expected range, the
gap size decreased by 20% with the constraint of a
0.05° length minimum; if accuracy decreased to less
than the lower bound of the expected range, the gap size

increased by the same amount, with the constraint that
it could not exceed 0.5°. This titration procedure was
uniformly applied to both valid and invalid trials for
the course of the full experiment to allow for possible
deviations in attentional control over time (Manly
et al., 1999). Importantly, the overall mean accuracy
should fall within the performance criterion range for
each participant, but without artificially restricting how
much performance in any given condition could deviate
from the mean.
Ishihara color test: Because color was a critical feature
in the main experiment, participants first completed a
computerized Ishihara color test (Nakajima, Ichikawa,
Nakagawa, Majima, & Watanabe, 1960) to ensure all
had normal color vision. Each participant reported,
orally and without time pressure, what number or
pattern was embedded in a color dot pattern on the
screen (if any). All participants passed this screening,
and these data were discarded from further analyses.
Eye tracking: Each participant’s right eye gaze
position was recorded at a sampling rate of
500 Hz via an Eyelink 1000 Plus system (SR Research,
Ontario, Canada) for the full length of each trial. The
eye-tracking camera was positioned in front of the
stimulus presentation monitor, approximately 55 cm
from the participant. The tracker was calibrated for
each participant’s eye using 13 reference points in the
chinrest-free mode before the start of the experiment.
For the purposes of data analysis, an interest time
period was set from pre-cue onset to target offset. An
interest area was defined as a square of 3.33° × 3.33°
(less than one-half of the distance – 4.7°, between
fixation and any one of the possible target positions)
centered on fixation. Individual trials were removed
from further analyses offline if the participant blinked
or made a saccade outside of the interest area during
the interest period.

Data analysis
Attention effects in accuracy and RT: We examined
participants’ performance via accuracy (d′) and RT for
each pre-cue group. First, trials in which responses were
made in 250 ms or less were removed for all analyses
(Wagenmakers et al., 2007) to eliminate what are likely
to be fast guesses. RT analyses were further restricted
to correct trials only. Next, we calculated attention
effects by subtracting the invalid pre-cue condition from
the valid pre-cue condition in both accuracy and RT.
Because participants were randomly assigned to each
of the two pre-cue groups, a 2 × 2 (pre-cue group x cue
validity) mixed-design analysis of variance (ANOVA)
was deployed to analyze the results.
Titration outcomes: As described in Titration procedure,
we used a staircasing procedure to titrate the size of
the target gap with the goal of matching task difficulty
across participants (see Titration procedure). In addition



Journal of Vision (2020) 20(4):5, 1–21 Liang & Scolari 6

to compensating for individual differences in perceptual
ability, the outcome of this procedure can serve as an
objective measure of the relative effectiveness of the
endogenous pre-cues. If both the spatial and feature pre-
cues are equally effective at facilitating target processing
on the valid trials, then we should observe no differences
in gap size between groups. First, we verified that the
average gap size between validly and invalidly pre-cued
trials was matched for both SC and FC groups using
a pair of within-participants t tests, so that no external
saliency differences between pre-cueing conditions
could account for any observed attention effects. Then,
we conducted a between-participants comparison to
determine whether the average gap size across the
length of the experiment differed between groups.
Robust EZ-diffusion model: We used a two-alternative
forced choice task where participants were instructed
to respond as accurately and as quickly as possible
to a target, allowing us to examine accuracy and RT
across conditions. Separately, these two measurements
can show us how fast and how well participants
localized the gap in the target square frame. However,
considering their weighted contributions together to
form a unified behavioral response provides us with a
more nuanced view of these data. We therefore used a
robust EZ-diffusion model.

The EZ-diffusion model is a simple modification of
the Ratcliff diffusion model (Ratcliff, 1978; Ratcliff &
McKoon, 2008) that estimates three critical components
to decision making: 1) drift rate (v), or the rate at which
evidence is accumulated for a given response alternative,
2) boundary separation (a), or the conservativeness of
a response criterion, and 3) non-decision time (Ter),
or the proportion of time spent outside of evidence
accumulation, including some perceptual and motor
processes (see Wagenmakers et al., 2007; Wagenmakers
et al., 2008). The robust EZ, an extension to the original,
additionally models out contaminated data that may
result from lapses of attention and thus add noise
and/or inaccuracies to the aforementioned estimates
(Ratcliff, 2008; Wagenmakers et al., 2008).

To estimate these parameters, three keymeasurements
from each participant and each condition are entered
into the model: proportion of correct responses (Pc),
mean correct RT (MRT), and the variance of the
correct RT (VRT). At the same time, three important
assumptions must be made: 1) the RT data are skewed
rightward to some degree; 2) the RT distributions for
correct and incorrect responses are identical; and 3)
the starting point (before evidence accumulation) is
equidistant from both response alternative decision
boundaries. The model has been shown to perform well
when small violations to these assumptions are present
(Wagenmakers et al., 2007), but the output should be
interpreted with caution in the case of severe violations.
Thus, we report the results of our misspecification
checks in the Results and Discussion.

Results and discussion

The goal of Experiment 1 was to demonstrate that
both the feature and spatial cues were independently
effective at directing attention to the target and
facilitating perceptual decision making. Although we
used three cue-to-target interstimulus intervals in our
design (500, 1000, and 1500 ms; see Procedure), we
did not observe reliable interactions with interstimulus
intervals in any comparisons. Thus, we collapse across
all delays in the following analyses.

To accurately assess attention effects in our sparse
display, it was critical that participants maintain fixation
from cue onset to response. Thus, data were first
preprocessed by removing trials in which participants
blinked or made saccades and/or fixations outside
of a central interest area (see Eye Tracking). As a
result, 13.07% of trials were removed on average across
participants. Next, trials in which button presses were
made in less than 250 ms, signaling that the participant
was making a fast guess, were removed from analyses
(7.5% of trials on average), as well as trials in which
neither of two response buttons were selected (1.01%
of trials on average). All analyses reported below were
conducted after these preprocessing steps.

Attention effects in accuracy and RT
Across both groups, participants appropriately

used the endogenous pre-cue to attend to the target,
as indicated by behavioral performance: the valid
cue led to better performance than the invalid cue in
both accuracy (d′ (percent correct in parentheses) for
valid: M = 0.58 (60.9%); invalid M = 0.084 (52%))
and RT (valid M = 443.5 ms; invalid M = 464 ms).
A 2 × 2 (pre-cue group x cue validity) mixed-design
ANOVA revealed that these differences were significant
(accuracy: F(1, 26) = 31.13, p < 0.001, η2

G = 0.33;
see Figure 2A; RT: F(1,26) = 7.69, p = 0.01, η2

G = 0.03;
see Figure 2B).

Critically, both groups performed equally well on
the task, F(1, 26) = 0.81, p = 0.38, η2

G = 0.02, and
we did not observe a significant pre-cue group by
cue validity interaction within accuracy, F(1, 26) =
0.39, p = 0.54, η2

G = 0.006. Furthermore, a pair of
within-participants t tests revealed that both groups
exhibited significant attention effects in accuracy: FC
group, t(13) = 4.29, p = 0.00088, d = 1.15; SC group,
t(13) = 3.80, p = 0.0022, d = 1.02. Similarly, RTs
were statistically matched between groups, F(1, 26) =
0.64, p = 0.43, η2

G = 0.02, and there was no significant
interaction between factors, F(1,26) = 0.92, p = 0.35,
η2
G = 0.004. Within-participants t tests further revealed

that attention effects in RT were significant for the FC
group, t(13) = 2.62, p = 0.02, d = 0.70, and marginal in
the SC group, t(13) = 1.99, p = 0.068, d = 0.53. Thus,
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Figure 2. Results from Experiment 1, where participants were
either presented with a feature cue (FC group) or a spatial cue
(SC group). Performance accuracy (A) and reaction time (B) on
valid and invalid trials are plotted for each of the two groups.
Mean reaction times (RTs) were calculated for correct trials
only. Error bars reflect ±1 within-participant SEM.

both the spatial and feature pre-cues elicited attention
effects of similar magnitudes.

Titration outcomes
We titrated the size of the gap on the target square

frame to ensure that task difficulty was matched across
participants. The gap size generally reached asymptotic
levels for most participants by the end of the practice
block, and did not significantly differ between valid
and invalid trials over the course of the experiment:
FC group, t(13) = 1.27, p = 0.227, d = 0.029; SC
group, t(13) = 0.049, p = 0.962, d = 0.0008 (Figures 3A
and 3B).

To the extent that the spatial and feature cues are
equally effective in both guiding selective attention and
resolving a perceptually demanding target, each should
produce equivalently small gap sizes across participants.
Although the mean gap size was qualitatively larger
for the SC group, an unequal variances two-sample t
test showed there was no significant difference between
groups, t(14.28) = 1.22, p = 0.244, d = 0.46. This
finding suggests that both cue types were equally
effective in facilitating target identification.

Robust EZ-diffusion model
To further investigate how use of the pre-cue

informed perceptual decision making, we next used
the robust EZ-diffusion model (Wagenmakers et al.,
2008). First, we checked that the assumptions of the
model were met. Across participants, the distributions
of RTs for both correct and incorrect trials are right
skewed (FC group: correct, skew = 1.26; incorrect,
skew = 1.02; SC group: correct, skew = 1.36; incorrect,
skew = 1.11, where a nonzero positive value indicates
rightward skew; see Supplementary Figure S1 for
individual participant plots). We next conducted a series
of within-participant t tests to determine whether the
RT distribution for correct and incorrect responses were
statistically matched for each participant (Wagenmakers
et al., 2007; see Supplementary Figure S1). Using
uncorrected p values, 6 of the 28 participants (21.4%)
violated this assumption (smallest p = 0.004). This
finding is approximately on par with the percentage of
participants who violated the same assumption in the
original application of this model and were nonetheless
included in the full analyses (18%; Wagenmakers
et al., 2007). When our series of p values were subjected
to a false discovery rate (FDR) correction (Benjamini
& Hochberg, 1995), none of the significant values
remained (range of p = 0.11 to p = 0.99; mean
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p = 0.47). Thus, the first two assumptions of the model
are satisfactorily met.

Next, we set out to determine whether participants
exhibited a starting point bias toward one response
alternative over another. First, we found that, on
average, participants selected each response alternative
(leftward gap versus rightward gap) at a similar
frequency, t(27) = 1.73, p = 0.096, d = 0.33. We then
conducted a series of two-way ANOVAs—one for
each participant—investigating whether individual
participants showed an RT bias toward one alternative
over the other (i.e., by making comparatively
faster correct responses to one alternative and
comparatively slower correct responses to the other,
as would be demonstrated by a crossover interaction
between stimulus alternative and response accuracy;
Wagenmakers et al., 2007; see Supplementary Figure
S2). Of the 28 participants, eight exhibited a significant
crossover interaction (28.6%; smallest p = 0.0001),
suggesting a starting point bias for those individuals
(well-matched with the 28.9% included in the model
who showed a similar bias in Wagenmakers et al.,
2007). After FDR correction, only four participants
maintained evidence of a bias (range of p = 0.0027 to
p = 0.99; mean p = 0.42).

To check the robustness of the model against these in-
dividual instances of violated assumptions, we removed
the four participants who exhibited a starting point
bias (see Supplementary Material for Experiment 1
and Supplementary Figure S3). The patterns of results
across all model outputs were qualitatively matched
regardless of whether they were included. We thus
report the three parameter estimates, including drift
rate, boundary separation, and non-decision time in
turn below, with all participants included (Figure 4).
Drift rate: The drift rate parameter serves as a measure
of the speed at which evidence in favor of one response
alternative over the other is accumulated. Recall that,
in this task, each participant covertly attended to the
relevant square frame to determine whether the target
gap was present on the left or right vertical edge; thus,
the response alternatives are left or right.

We reasoned that a sharper perceptual representation
of the relevant item should result in faster evidence
accumulation; thus, the drift rate can serve as an
indirect indicator of signal enhancement, much like
performance accuracy. As would be expected, the drift
rate was greater following a valid pre-cue (M = 0.06)
than after an invalid pre-cue (M = 0.013) across both
cue types, F(1, 26) = 23.10, p < 0.001, η2

G = 0.26;
Figure 4A. Both groups showed this pattern: FC group,
t(13) = 3.65, p = 0.0029, d = 0.98; SC group, t(13) =
3.19, p = 0.0071, d = 0.85, and drift rate estimates did
not differ between groups, F(1, 26) = 0.95, p = 0.34, η2

G= 0.02. We also did not observe a significant interaction
between groups and cue validity within drift rate, F(1,
26) = 0.02, p > 0.99, η2

G < 0.0001. Thus, both the valid
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spatial and valid feature cues elicited equivalent rates of
evidence accumulation.
Boundary separation: The boundary separation
parameter serves as a measure of response
conservativeness, or the relative amount of
acquired discriminative evidence that precedes
response execution. Greater response caution
suggests slower reaction times with typically
fewer errors; relatively decreased response caution
suggests faster responses at the risk of more
errors (i.e., a speed–accuracy trade-off). Boundary
separation was numerically larger on valid trials
(M = 0.076) compared with invalid trials (M = 0.070),
and the difference was statistically significant across
groups, F(1, 26) = 5.38, p = 0.03, η2

G = 0.07. However,
this pattern did not emerge when considering each
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individual group alone, nonsignificant for the FC group,
t(13) = 1.21, p = 0.25, d = 0.32; marginal for the SC
group, t(13) = 1.98, p = 0.069, d = 0.53 (Figure 4B).
Boundary separation estimates were not significantly
different between groups, F(1, 26) = 1.27, p = 0.27,
η2
G = 0.03, and, although the difference between validity

conditions was numerically larger for the SC group,
there was no reliable interaction between pre-cue group
and validity, F(1, 26) = 1.30, p = 0.27, η2

G = 0.02.
These results suggest, albeit somewhat weakly, that
participants accumulatedmore evidence before response
selection after a valid pre-cue than an invalid pre-cue,
thus resulting in relatively more conservative responses.
Non-decision time: Non-decision time refers to
the proportion of RT spent outside of evidence
accumulation (as captured by drift rate and boundary
separation). In our paradigm, this would include
verifying that attention had been preallocated to
the correct item, and, in the event of an invalid cue,
potentially making additional attentional shift(s). Note
that the 80-ms target duration should preclude volitional
shifts of attention during stimulus presentation (Itti
& Koch, 2001; Liu, Stevens, & Carrasco, 2007), in
which case any shift would occur among internal
representations of the stimuli from which to accumulate
evidence. Non-decision time additionally includes
motor response execution once a decision criterion is
reached (Wagenmakers et al., 2007); however, because
the speed of the motor response is not expected to vary
with cue validity, we focus on early components of
non-decision time when interpreting any cueing effects.

Echoing drift rate and boundary separation
estimates, we observed a significant cue validity effect
in non-decision time collapsed across groups, F(1,
26) = 6.63, p = 0.02, η2

G = 0.07; see Figure 4C.
Participants generally spent less time preparing for
evidence accumulation following a valid cue (M = 0.28)
than an invalid cue (M = 0.31). Departing from the
previous two parameter estimates, however, here we
observed a significant pre-cue group effect, F(1, 26) =
7.32, p = 0.01, η2

G = 0.17: across valid and invalid trials,
spatial cues resulted in shorter non-decision times (M =
0.28) than feature cues (M = 0.31). This result may be
related to previous research findings that FBA is slower
to activate than SBA (Anllo-Vento & Hillyard, 1996;
Liu, Stevens, & Carrasco, 2007). Furthermore, a pair of
within-participant t tests indicate that the validity effect
reported above was restricted to the SC group (SC:
t(13) = 2.38, p = 0.033, d = 0.64; FC: t(13) = 1.065,
p = 0.31, d = 0.28), but an interaction between pre-cue
group and validity failed to reach significance, F(1, 26)
= 1.95, p = 0.17, η2

G = 0.02.
The attention effect observed for the SC group may

not be surprising, given an invalid spatial cue may
require a shift between internal object representations
before the target gap can be localized, while a similar
shift is unnecessary in response to a valid cue. Because

internal representations generated from unattended
stimuli are more degraded than those from attended
stimuli (Carrasco, 2006; 2011; Liu et al., 2009), a shift
to the former for the purpose of evidence accumulation
should additionally produce a slower drift rate (as
reported in Robust EZ-diffusion model: Drift rate).

We do not have a firm explanation at this time as
to why a valid feature cue would not similarly reduce
non-decision time. To speculate, though, we consider
the global nature of FBA: attention is deployed to
sensory populations across the full visual field that
respond maximally to the cued feature, regardless of
the (anticipated) target location (Rossi & Paradiso,
1995; Serences & Boynton, 2007; White & Carrasco,
2011). Given that our task was to detect a single
target gap that was purposefully orthogonal to the
attended color, only one subset of the activated sensory
populations is informative; the others contribute noise.
Thus, identifying the most informative signal may
be necessary on both valid and invalid trials before
evidence accumulation can begin (this explanation
would similarly be consistent with the overall longer
non-decision time for the FC group). Even so, we
would still expect a slower drift rate to result on invalid
trials (again, as reported in Robust EZ-diffusion model:
Drift rate) because the color of the relevant square
was misaligned with the cue and therefore unattended,
thus producing a noisier representation of the relevant
item. Note that, if this explanation is correct, it would
hold for numerous existing FBA studies in which the
attended feature is used to identify an orthogonal target
(e.g., Liu et al., 2007; Serences & Boynton, 2007; White
et al., 2015).

In this experiment, perceptual decision making was
facilitated by both the spatial and feature cues. Given
statistically equivalent attention effects in accuracy and
RT, as well as equivalent average gap sizes, we conclude
that both cue types were equally effective in directing
attention and resolving the perceptually challenging
target. Importantly, patterns across decision-making
components estimated by the diffusion model suggest
some differences between selection mechanisms.
Although attention effects within RT were matched,
our model outputs suggest divergent accounts for those
effects: Given that a feature cueing effect was only
reliably observed in drift rate, FBA effects in RT may
be restricted to evidence accumulation. In contrast, a
spatial cueing effect was reliably observed in both drift
rate and non-decision time, such that a valid spatial
cue both speeded the onset of evidence accumulation
and accelerated the rate at which it occurred. We
tentatively account for these differences by invoking the
unique ways in which space-based and feature-based
modulatory signals are distributed across sensory pop-
ulations according to their spatial and color selectivity,
respectively. Despite these differences, our conclusions
with respect to the effectiveness of each cue type remain.



Journal of Vision (2020) 20(4):5, 1–21 Liang & Scolari 10

Having established the equivalent effectiveness of
a lone spatial and lone feature cue in enhancing the
representation of a perceptually challenging target,
we next turned to our main objective: to investigate
whether and how SBA and FBA interact to facilitate
target identification in a sparse display.

Experiment 2

Experiment 1 demonstrated that our design is
sufficient to elicit comparable SBA and FBA effects
in accuracy, RT, and rates of evidence accumulation.
The larger goal of this study, however, is to explore if
and how these two selection mechanisms interact to
facilitate perceptual decision making of a single item
when both space and feature information is made
available simultaneously via an endogenous pre-cue.
We used the same task paradigm from Experiment 1,
changing only the pre-cue: here, we used a colored
arrow that indicated both the color and location of
an upcoming target with equal probability (80%).
If SBA and FBA are deployed independently, we
should observe the same pattern of results reported in
Experiment 1 for each cue type, and an additive effect
when both are valid. If, however, the two mechanisms
interact, we should expect a different pattern that may
reveal the nature of this interaction.

Methods

Participants
Thirty-one undergraduate students (2 males)

with normal or corrected-to-normal vision were
recruited through the Texas Tech University research
participation system (SONA) and received course
credit for their participation. A target sample size of
30 participants was selected a priori to roughly match
the sample size in Experiment 1. All participants
gave written informed consent as required by the
institutional review board and in compliance with
the Declaration of Helsinki. Each had normal color
vision as determined by the Ishihara color test (see
Experiment 1 Methods). One participant withdrew
before completing the task, and hence was excluded
from the analyses; the remaining 30 participants are
included in all analyses.

Materials and stimuli
The material and stimuli matched those reported in

Experiment 1.

Procedure
Main experiment: The procedure of the main
experiment largely matched those reported in
Experiment 1, except here the independent space and
feature pre-cues were combined in a single colored
arrow (Figure 1). The validity of the pre-cue was as
follows: for 70% of the trials, it accurately predicted
both the spatial location and color of the upcoming
target square frame (space- and feature-valid condition,
or wholly valid); for 10% of the trials, it accurately
predicted only the location of the target square frame
(space valid/feature invalid); for 10% of the trials,
it accurately predicted only the color of the target
square frame (feature valid/space invalid); and for
the remaining 10% of the trials, it predicted neither
the location nor the color of the upcoming target
square frame (wholly invalid). Notably, this means that
location and color were each validly cued on 80% of all
trials (consistent with Experiment 1), and that a strategy
that used both selection mechanisms independently
would result in the greatest performance accuracy.

Participants completed a total of 1,050 trials over the
course of seven blocks. The first block of 150 trials was
treated as practice and excluded from later analysis.
Titration procedure: See Experiment 1 Methods for a
description of the titration procedure used here.
Ishihara color task: See Experiment 1 Methods for a
description of the Ishihara color test.
Eye tracking: See Experiment 1 Methods for a
description of the eye tracking apparatus and
procedures.

Data analysis
Attention effects in accuracy and RT: A 2 × 2 (spatial
cue validity × feature cue validity) repeated-measures
ANOVA was deployed to examine participants’
performance via accuracy (d′) and correct RTs.
Attention effects in both measures were calculated
by subtracting the relevant invalid pre-cue from the
relevant valid pre-cue, while holding the validity of the
remaining cued dimension constant. For example, the
SBA effect on feature-invalid trials was calculated as
space valid minus wholly invalid, and on feature-valid
trials, as wholly valid minus feature valid. The same
logic was applied to FBA effects.
Titration outcomes: Just as we did in Experiment 1,
we used a staircasing procedure to titrate the size of
the target gap on a participant-by-participant basis.
We again used the outcome of this procedure as an
objective measure of the relative effectiveness of the
endogenous pre-cues. In this case, all participants were
exposed to the same pre-cues, and all pre-cues for
each participant were included in a single staircase.
Thus, here we divided participants into one of four
groups based on their pre-cue preference. To do this,
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we averaged across the magnitude of each participants’
attention effects in accuracy when 1) the remaining
pre-cue component was invalid and 2) the remaining
pre-cue component was valid, and plotted the results
in an orthogonal, two-dimensional space. We then
used this visualization to classify participants as
exhibiting a preference for the spatial cue, feature cue,
both, or neither. Finally, we made between-participant
comparisons of average gap size across the length of
the task. This analysis allowed us to investigate whether
individual differences in pre-cue preference produced
different degrees of perceptual facilitation.
Robust EZ-diffusion model: The robust EZ-diffusion
model was again used using the same analysis
procedure as described in Experiment 1, following our
misspecification checks.

Results and discussion

The goal of Experiment 2 was to investigate if and
how SBA and FBA interact to facilitate perceptual
decision making of a single, non-salient target. As
in Experiment 1, we did not observe any reliable
interactions with the three interstimulus intervals used
in our design (500, 1000, and 1500 ms; see Experiment
1 Procedure), and so we collapse across delays in the
following analyses.

The same preprocessing steps described in
Experiment 1 were used here, before the data analyses
described next. On average, 13.7% of trials were
removed due to blinks or saccades away from fixation;
9.75% of trials were removed because response times
occurred in or under 250 ms; and another 2.1% of trials
were removed because neither of the two response keys
were selected.

Attention effects in accuracy and RT
Figure 5A depicts the average accuracy for each

trial type (wholly valid, feature valid, space valid,
wholly invalid). We observed a significant space-based
cueing effect: d′ (percent correct in parentheses) for
valid: M = 0.44 (58.2%); invalid: M = 0.13 (52.4%),
F(1,29) = 10.70, p = 0.003, η2

G = 0.1. No such cueing
effect was observed in response to the feature cue: d′
(percent correct in parentheses) for valid: M = 0.40
(57.6%); invalid: M = 0.27 (54.8%), F(1,29) = 0.47, p
= 0.50, η2

G = 0.002. Furthermore, we did not observe
an interaction between cue types, F(1,29) = 0.82,
p = 0.37, η2

G = 0.004. A series of FDR-corrected t
tests confirmed that the SBA effect was significant for
feature-valid trials, t(29)= 2.42, p= 0.044, d= 0.44, and
feature-invalid trials t(29) = 3.11, p = 0.017, d = 0.57.
Thus, the size of the SBA effect was not modulated by
the validity of the feature cue. At the same time, there
was no detectable FBA effect regardless of location
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Figure 5. Results from Experiment 2, where all participants
were presented with an integrated space and feature cue.
Performance accuracy (A) and reaction time (B) are plotted for
space-valid, feature-valid, space- and feature-valid, and invalid
trials. Mean reaction times (RTs) were calculated for correct
trials only. Error bars reflect ±1 within-participant SEM.

validity: space-valid, t(29) = -0.26, p = 0.79, d = -0.048;
space-invalid, t(29) = 1.06, p = 0.40, d = 0.19.

This somewhat surprising albeit straightforward
pattern of results indicates that participants did not
use the feature cue to identify the target, despite
its expected equivalent reliability and independent
effectiveness with the spatial cue (as demonstrated in
Experiment 1). The mean accuracy was admittedly
low for a two-alternative forced choice task at 57.02%,
such that task difficulty could have had unintended
consequences on participants’ willingness to effortfully
deploy top-down attention. Notably, however, the mean
accuracy was similar in Experiment 1 (59.35%), where
we observed both effects separately. Furthermore, when
we considered only the first two blocks of Experiment 2
(including the practice block), where the mean accuracy
was higher at 65.36% and each of the three valid cue
types was significantly above chance, we observed the
same pattern of results: significant SBA effect, F(1,
29) = 20.36, p < 0.0001, η2

G = 0.25; nonsignificant
FBA effect, F(1, 29) = 0.83, p = 0.37, η2

G = 0.004; no
interaction, F(1, 29) = 0.08, p = 0.78, η2

G = 0.0004.
Therefore, we conclude that participants relied solely
on SBA for target identification.

Just as we observed in accuracy, a 2 × 2 ANOVA
revealed a significant space-based cueing effect in RT,
F(1, 29) = 18.78, p < 0.001, η2

G = 0.05, but not a
feature-based cueing effect F(1,29) = 1.86, p = 0.18,
η2
G = 0.002; see Figure 5B. A series of FDR-corrected

t-tests confirmed that the SBA effect was significant
for both feature-valid, t(29) = 4.28, p = 0.0047, d
= 0.78, and feature-invalid trials, t(29) = 2.51, p =
0.036, d = 0.46. There was no detectable FBA effect
on space-invalid trials, t(29) = -0.35, p = 0.73, d =



Journal of Vision (2020) 20(4):5, 1–21 Liang & Scolari 12

Trial number Feature cue

Spatial cue

Valid

Invalid

B.A.

G
ap

 s
iz

e
(°

)

Preference groupFeaturecueing effect

S
pa

tia
lc

ue
in

g 
e

ffe
ct

Feature Space Both
G

ap
 s

iz
e

(°
)

C. D.

Valid Invalid

0

0.1

0.2

0.3

0.4

0.5

0

1

2

-0.1 -0.5 0.0 0.5 1.0
1

0

0.1

0.2

0.3

0.4

0 250 500 750 1000
Practice

0.5

Figure 6. Target gap sizes (in degrees) from Experiment 2, depicted on a trial-by-trial basis (A) and averaged over valid and invalid trials
for both the feature and spatial cues outside of the practice block (B). Participants were assigned to cue preference groups based on
their cueing effects in accuracy (d′). Participants’ accuracy scores are plotted in a four-quadrant space (C), where the feature cueing
effect is defined as feature-valid–invalid performance, and the spatial cueing effect is defined as space-valid–invalid performance.
Each dot is a single participant. Participants with a positive feature cueing effect (only) were assigned to the feature preference group
(n = 3); those with a positive spatial cueing effect (only) were assigned to the space preference group (n = 11); those with both
positive feature and space cueing effects were assigned to the both preference group (n = 12). The target gap size (D) is plotted for
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0.064, and although one did appear to emerge on
space-valid trials, t(29) = 2.89, p = 0.0097, d = 0.53, an
interaction between cue types did not reach significance,
F(1,29) = 2.69, p = 0.11, η2

G = 0.005. We revisit this
pattern in the EZ-Diffusion Model section below.

Titration outcomes
Because we observed FBA effects in accuracy when

the feature cue was presented alone in Experiment 1,
we admittedly expected to find evidence of feature
cue use in target identification here as well. Across
all participants, the data demonstrate clearly that
this was not the case. Notably, however, we observed
individual differences in cueing effects, such that
some participants exhibited only an SBA effect in
accuracy, whereas others exhibited both SBA and FBA
effects. It is possible, then, that those who showed
both cueing effects in accuracy used the two selection
mechanisms to resolve the target. We thus divided our

participants into groups according to whether they
exhibited qualitative FBA, SBA, or SBA and FBA
effects. Following similar logic given in Experiment 1, if
SBA and FBA can be combined to improve perceptual
resolution—either additively or super-additively—we
would expect significantly smaller gap sizes for the
participants who showed attention effects for both cue
types.

First, visual inspection of the trial-by-trial average
gap size revealed that asymptote was reached after
the practice block and remained largely stable for
the first 500 trials, echoing Experiment 1. However, it
steadily increased again after this point, perhaps due to
participant fatigue (note that Experiment 2 had 75%
more trials than Experiment 1). Importantly, gap size
stabilized again for approximately the last 100 trials
and remained below the upper-bound (see Figure 6A).
Furthermore, average gap size across participants was
similar for all four trial types, F(3, 87) = 1.99, p = 0.12,
η2
G < 0.001 (see Figure 6B).
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We next visualized participants’ performance in a
four-quadrant space, where the x-axis demarks the
feature cue effect on accuracy, and the y-axis demarks
the orthogonal spatial cue effect (Figure 6C). Each
quadrant represents a unique cue preference: spatial
cue (n = 11), feature cue (n = 3), both spatial and
feature cues (n = 12), and neither cue (n = 4). Given
the small number of participants who showed a feature
cue-only preference, we elected to only compare the two
preference groups that either showed reliance on the
spatial cue or both spatial and feature cues. If using
both cues results in greater perceptual resolution, we
would expect our titration procedure to produce on
average smaller gap sizes for the latter group. However,
this was not the case: gap sizes were matched between
groups, t(22) = 0.86, p = 0.40, d = 0.37 (Figure 6D).
This finding suggests that, even when participants used
the feature cue in conjunction with the spatial cue to
identify the target, it did not seem to improve their
perceptual resolution of the target gap.

Robust EZ-diffusion model
The performance accuracy and gap size results

described suggest that, across participants, SBA alone
contributed to the perceptual resolution of the target.
At the same time, the RT data trended toward an (albeit
insignificant) interaction between cue types, with an
FBA effect emerging only on space-valid trials. Notably,
RT combines distinct elements of decision making,
such as signal strength, response conservativeness, and
processing speed (Ratcliffe, 1978; Wagenmakers et al.,
2007; White et al., 2015). Thus, although an interaction
between cue types did not reach significance when
considering RT as a unitary measure, we nonetheless
may observe reliable interactions for distinct portions of
response time. We therefore next used the EZ-diffusion
model to further investigate the contributions of each
selection mechanism during unique components of
perceptual decision making.

As in Experiment 1, we first verified that all three
assumptions of the model were met. The average
distributions of RT for correct and incorrect trials were
both right skewed as expected (correct: skew = 0.89;
incorrect: skew = 0.73; see Supplementary Figure S4
for individual participant plots), satisfying the first
assumption. We also determined that correct and
incorrect RT distributions were largely overlapping
for the majority of participants, although eight of
the 30 participants violated this assumption based on
uncorrected p-values (smallest p < 0.001); this rate is
decreased to seven of 30 after FDR correction (23.3%;
range of p < 0.001 to p < 0.99; mean p = 0.43; see
Supplementary Figure S4). Again, this is on par with
the violation rate reported in Wagenmakers et al.
(2007). Finally, we looked to see whether participants
exhibited a starting point bias, in violation of the third

assumption. On average, there was no bias toward
one response alternative over another, t(29) = 0.27,
p = 0.79, d = 0.05. However, a series of two-way
ANOVAs revealed that nine of the 30 participants
exhibited a starting point bias as depicted by a
significant crossover interaction (decreased to eight
of 30 after FDR correction; Supplementary Figure
S5), which is consistent with the rate reported in
Wagenmakers et al. (2007).

As in Experiment 1, we checked the robustness of
the model against individual instances of violated
assumptions by removing the participants who
exhibited 1) a significant difference in RT between
correct and incorrect trials, and/or 2) a starting point
bias (12 participants total; see Supplementary Material
for Experiment 2 and Supplementary Figure S6).
Although the smaller sample size affected our power to
detect significance in some cases, the patterns across
model outputs were largely matched regardless of
whether they were included. We thus report the three
parameter estimates, including drift rate, boundary
separation and non-decision time in turn below, with all
participants included (Figure 7).
Drift rate: The drift rate estimates of the EZ-diffusion
model mirrored the results we observed in accuracy
(Figure 7A). The drift rate was significantly faster
after a valid spatial cue compared with an invalid
spatial cue, F(1, 29) = 9.39, p = 0.005, η2

G = 0.09. This
pattern was marginally significant on feature-valid
trials, t(29) = 2.27, p = 0.062, d = 0.41, and significant
on feature-invalid trials, t(29) = 2.83, p = 0.034,
d = 0.52. No such cueing effect was observed for
the feature cue, F(1, 29) = 0.14, p = 0.72, η2

G =
0.0006, regardless of the validity of the spatial cue:
space-invalid, t(29) = 0.83, p = 0.55, d = 0.15;
space-valid, t(29) = −0.53, p = 0.60, d = −0.10.
Furthermore, we did not observe an interaction
between pre-cue types, F(1, 29) = 0.98, p = 0.33, η2

G =
0.004, suggesting that the size of the SBA effect did not
change with the inclusion of a valid feature pre-cue. We,
therefore, conclude that SBA alone contributed to the
rate of evidence accumulation, much the same as we
observed with accuracy.
Boundary separation: Unlike d′ and drift rate—
measures we interpret as indicative of attention-related
perceptual enhancements—we observed influences of
both pre-cue types in response caution. When collapsed
across valid and invalid spatial pre-cues, valid feature
pre-cues were followed by more conservative responses
than invalid feature pre-cues, F(1, 29) = 16.45,
p = 0.0003, η2

G = 0.08. The same validity effect was true
for spatial pre-cues as well, F(1, 29) = 11.54, p = 0.002,
η2
G = 0.03. For both cue types, the validity effect appears

to be largely driven by the wholly valid condition (Figure
7B), and indeed, we observed a significant interaction
between pre-cue types, F(1, 29) = 13.45, p = 0.001,
η2
G = 0.09. A series of FDR corrected t tests confirmed
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Figure 7. Results from the robust EZ-diffusion model are plotted
for all participants from Experiment 2. Drift rate (A), boundary
separation (B), and non-decision time (C) are plotted for
space-valid, feature-valid, space- and feature-valid, and invalid
trials. Error bars reflect ±1 within-participant SEM.

that cueing effects were present only when both cue
types were valid: SBA effect, feature-valid, t(29) = 5.20,
p < 0.001, d = 0.95; feature-invalid, t(29) = 1.14, p =
0.35, d = 0.21; FBA effect, space-valid, t(29) = 6.90, p
< 0.001, d = 1.26; space-invalid, t(29) = 0.087, p = 0.93,
d = 0.016. Thus, participants accumulated relatively
more evidence before executing a response on trials in
which both the spatial and feature pre-cues were valid.
Non-decision time: Figure 7C depicts the non-decision
time for each pre-cue type. Like boundary separation,
we again found evidence of influence from both
the feature and spatial cues. Non-decision time was
significantly shorter following a valid feature cue
compared with an invalid feature cue, F(1, 29) = 8.12,
p = 0.008, η2

G = 0.02. The same validity effect was
observed for space, F(1, 29) = 18.25, p = 0.0002, η2

G= 0.05. We again observed a significant interaction
between pre-cue types, F(1, 29) = 6.00, p = 0.02,
η2
G = 0.02. The SBA effect was only significant on

feature-valid trials, t(29) = 5.41, p < 0.001, d = 0.99,
and was insignificant on feature-invalid trials, t(29) =

1.01, p = 0.43, d = 0.18. The analogous pattern existed
for the FBA effect as well: space-valid, t(29) = 4.99,
p < 0.001, d = 0.91; space-invalid, t(29) = 0.30,
p = 0.98, d = 0.0055. Thus, non-decision time was
reduced only when all aspects of the pre-cue were valid.

In the current experiment, perceptual decision
making primarily benefited from valid spatial cues.
Given the nonequivalent attention effects in accuracy
and RT across space and feature cues, we conclude that
participants heavily relied on spatial cues to enhance
the target signal during the task, even though both cues
were equivalently reliable and independently effective
(see Experiment 1). This finding was further supported
by gap size estimates and the drift rate outputs of the
robust EZ-diffusion model. FBA was engaged, however,
in processes outside of signal enhancement. When
combined with a valid spatial cue, valid feature cues
facilitated the speed with which evidence accumulation
onset and in turn elicited relatively conservative
responses, without improving the resolution in the
directed search area.

Comparisons between experiments

Thus far, we have argued that, in the current
experiment, SBA was used primarily to enhance
the perceptual representation of the target, and
FBA influences were largely restricted to decision
making processes outside of signal enhancement.
This conclusion is supported in part by the accuracy
results presented, in which we did not observe an
FBA effect, nor an interaction between cue types.
The latter result is consistent with Experiment 2 of
White et al. (2015), in which the authors argue that
the absence of an interaction between cue types is
indicative of independent space and feature selection
mechanisms. However, the surprisingly absent FBA
effect in accuracy observed here, when considered alone,
makes it difficult to draw conclusions about a possible
interactive relationship between mechanisms. Because
we observed FBA effects in accuracy when the feature
cue was presented alone in Experiment 1, it is possible
that our data reflect a form of interdependence among
selection mechanisms, albeit one where the deployment
of one precludes the deployment of the other for the
purposes of target identification.

Given that the patterns between Experiments 1
and 2 largely differed, we next conducted statistical
comparisons to determine if these differences were
meaningful. These comparisons serve two goals. First,
we may be able to draw firmer conclusions about
possible signal enhancement-specific dependencies
between selection mechanisms when contrasting
single cue and dual cue conditions. Thus, we focused
primarily on comparing the lone valid cue conditions
from Experiment 1 to both the single valid and wholly
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valid cue conditions from Experiment 2. Note that
this analysis allows us to secondarily investigate
any potential benefits and/or costs associated with
combining two cues. All p values reported here were
subjected to FDR correction to ward against an inflated
type I error resulting from multiple comparisons.

Feature cue
There was a signal enhancement cost associated

with pairing a valid feature cue with an invalid spatial
cue as reflected in d′, t(42) = 3.35, p = 0.0069, d =
1.06, and drift rate, t(42) = 3.45, p = 0.0051, d = 1.09.
A cost also existed in RT, t(42) = 3.03, p = 0.006,
d = 0.98. At the same time, pairing a valid feature cue
with a valid spatial cue did not result in a detectable
benefit in any of these measures: d′, t(42) = 1.13, p
= 0.53, d = 0.37; drift rate, t(42) = 1.64, p = 0.22, d
= 0.53; RT, t(42) = 1.42, p = 0.16, d = 0.45. In fact,
when we compared FBA effects (feature valid – feature
invalid), we found they were significantly larger in
both accuracy and drift rate when the feature cue was
presented alone than when it was paired with a valid
spatial cue: (d′, t(42) = 4.78, p < 0.0001, d = 1.55; drift
rate, t(42) = 4.35, p < 0.001, d = 1.36. Note that this
pattern runs counter to independent model predictions
of additive effects manifested as statistically equivalent
FBA effects regardless of the presence or validity of a
spatial cue. Instead, our result suggests that SBA may
have been used for signal enhancement at the exclusion
of FBA in Experiment 2.

There was no change in boundary separation when
a valid feature cue was paired with an invalid spatial
cue, t(42) = 0.19, p = 0.85, d = 0.06, but responses
were significantly more conservative with the addition
of a valid spatial cue, t(42) = 4.18, p < 0.001, d = 1.29
(albeit with no concurrent change in accuracy). The
addition of either an invalid or valid spatial cue had no
detectable impact on non-decision time: invalid spatial
cue, t(42) = 1.74, p = 0.12, d = 0.61; valid spatial cue,
t(42) = −0.58, p = 0.57, d = –0.20.

Spatial cue
The analogous analyses described, applied to the

spatial cue, produced almost entirely opposite patterns.
In this case, there was no cost in signal enhancement
when a valid spatial cue was paired with an invalid
feature cue: d′, t(42) = 0.58, p = 0.56, d = 0.20; drift
rate, t(42) = 0.46, p = 0.65, d = 0.16. Similarly, the
addition of a valid feature cue did not elicit an increase
in signal enhancement compared with a lone valid
spatial cue: d′, t(42) = 0.85, p = 0.54, d = 0.28; drift rate,
t(42) = 0.85, p = 0.53, d = 0.27. In fact, SBA effects
in both measures were statistically matched when the
spatial cue was presented alone or paired with a valid
feature cue: d′, t(42) = 1.59, p = 0.12, d = 0.52; drift

rate, t(42) = 1.24, p = 0.22, d = 0.41. Thus, unlike the
pattern observed for FBA, the size of the SBA effect
within accuracy and drift rate did not depend on the
presence or validity of a concurrent feature cue.

There was, however, a cost in RT, t(42) = 3.90,
p = 0.0014, d = 1.35, and non-decision time, t(42) =
4.26, p < 0.001, d = 1.53, when a valid spatial cue was
paired with an invalid feature cue, as well as a decrease
in boundary separation, t(42) = 2.44, p = 0.025, d =
0.81. An invalid feature cue led to slower non-decision
time and, in turn, less conservative responses. Somewhat
surprisingly, we also observed a relative cost in RT when
a valid spatial cue was paired with a valid feature cue,
t(42) = 3.01, p = 0.006, d = 1.04, and a marginal cost
in non-decision time, t(42) = 2.27, p = 0.056, d = 0.81,
albeit of smaller magnitudes than what was observed
with a paired invalid feature cue (see Experiment 2
Results). Note that a similar relationship did not exist
when we considered feature cues above, indicating that
the inclusion of two relevant cues instead of one did
not broadly increase non-decision time. Instead, this
dimension-specific cost may be accounted for by the
relatively longer non-decision time associated with the
feature cue (see Experiment 1 Results and Discussion).

The sum of these results indicate that SBA was
largely used to resolve the target, whereas FBA was
relegated primarily to perceptual decision processes
outside of signal enhancement.

General discussion

The present study investigated possible interactions
between SBA and FBA by providing both spatial and
feature information via an endogenous pre-cue to
facilitate upcoming target identification in a sparse
display. Notably, in this task both a valid location
and color cue would redundantly filter out the same
distracting items while directing attention to the same
relevant stimulus. Thus, we can explore whether SBA
and FBA combinatorially improve the perceptual
decision making of a single item.

Attention effects within accuracy are typically
larger in cluttered displays in which nearby distractors
compete for selection with the target, where signal
enhancement and distractor suppression operate
in tandem to facilitate perceptual processing of a
target (Awh, Sgarlata, & Kliestik, 2005; Carrasco,
2011), and can be difficult to detect in sparse displays
(Dosher & Lu, 2000; Grindley & Townsend, 1968;
Scolari & Awh, 2019; Shiu & Pashler, 1994). As such,
attention effects within sparse displays have typically
been restricted to RT (Egner et al., 2008; Kingstone,
1992; Lambert & Hockey, 1986; but see Bengson et al.,
2012), precluding a strong test of signal enhancement.
Here, we ensured the uncluttered relevant item was
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nonetheless nonsalient by titrating the size of the
target gap to keep accuracy within a prescribed range,
thus, revealing attention effects in both behavioral
measures. In addition to analyzing RT and accuracy
separately, keeping performance below ceiling allowed
us to use a simple diffusion model to further investigate
selective attention influences on unique components of
perceptual decision making.

Signal enhancement effects

In Experiment 1, we demonstrated that our sparse
display design can elicit detectable selective attention
effects of similar magnitudes following either a location
or color pre-cue in both accuracy and RT. Furthermore,
the titration procedure we used to match task difficulty
across participants produced similar gap sizes across
cue types, indicating equal effectiveness. These patterns
were corroborated by the drift rate estimates produced
by the diffusion model: for both cue types, the speed of
evidence accumulation on correct trials was significantly
faster after valid compared with invalid pre-cues. Based
on these results, we conclude that each endogenous
cue was used effectively to resolve the target, when
presented in isolation.

Given that SBA and FBA independently showed a
similar degree of perceptual facilitation in Experiment 1,
we next set out to characterize possible interactions
between both selection mechanisms using an integrated
space and feature cue with the identical stimulus display.
Surprisingly, our findings indicate that only the spatial
cue, and not the feature cue, was used to perceptually
resolve the target gap. This finding is indicated in
our analysis of performance accuracy: only an SBA
effect was significant, and the size of the effect did not
increase when paired with a concurrent valid feature
cue. Similarly, when compared with Experiment 1
in which one of the two relevant dimensions was
never cued for each participant, pairing a valid spatial
cue with an invalid feature cue did not detrimentally
affect accuracy. The same pattern held across cueing
conditions within estimated drift rates. Together, these
results suggest that, across all participants, FBA did not
impact the rate at which evidence was accumulated in
favor of a correct response, nor did it impact response
selection.

White et al. (2015) investigated how top-down SBA
and FBA jointly influence perception in a task using
superimposed dot patterns. They concluded that, when
deployed together, SBA and FBA additively enhance
visual signals, consistent with an independent systems
model. In contrast, while using a sparse display and a
perceptually demanding task, we were unable to find
evidence of additive (or super-additive) enhancement,
despite our expectations. This difference may be due in
part to the absent FBA effect reported in Experiment 2.

Note that models of selective attention that assume
either independent or dependent mechanisms would
predict the same pattern of results observed here if
one mechanism was not deployed. However, a strictly
independent model would also predict that if FBA is
effective alone, as was demonstrated in Experiment 1,
it should be used in signal enhancement regardless of
the presence or validity of a concurrent spatial cue.
Here, our results depart from this expectation: When
we compared FBA effects across experiments, we found
that it was significantly smaller in Experiment 2 (note
again that this was not the case for the SBA effect).
Thus, FBA effects were convincingly absent only when
a feature cue was paired with a spatial cue. This finding
suggests some interdependence between mechanisms,
whereby the deployment of spatial selection to enhance
the target signal may have precluded similar deployment
of feature selection.

Higher order effects

Although our results do not conform to the
expectations of strictly independent models, it is
important to note that neither are they necessarily at
odds withWhite et al. (2015). Top-down visual attention
is broadly subdivided into two interactive components:
attentional control, localized to a broad swath of
frontoparietal cortex, and attentional modulation
of ongoing visual processing within sensory cortex
(Scolari, Seidl-Rathkopf & Kastner, 2015). Behavioral
evidence of signal enhancement likely is the result of
the latter. It is possible, then, that space-based and
feature-based modulatory signals occurring within
visual cortex are independent in nature (Hayden
& Gallant, 2009; McAdams & Maunsell, 2000),
whereas a domain-general control center governs such
modulations (Andersen et al., 2011; Scolari et al., 2014;
Scolari et al., 2015). Consistent with this possibility,
several studies have demonstrated that a common
network of frontoparietal regions are activated during
space-, feature-, and object-based attention tasks
(Corbetta & Shulman, 2002; Greenberg et al., 2010;
Ibos & Freedman, 2016; Liu, Hospadaruk, Zhu, &
Gardner, 2011; Serences, Schwarzbach, Courtney,
Golay, & Yantis, 2004; Shomstein & Behrmann, 2006).
In that case, in our experiment, control centers may
have generated modulatory signals on the basis of space
alone, while restricting such signals in response to the
feature cue. This notion leaves open the possibility of
independent, additive effects within signal enhancement
when a domain-general attentional control system
generates modulatory signals in accordance with both
selection mechanisms.

The possibility of a higher order dependency between
space- and feature-based selection mechanisms is
supported when we consider components of perceptual
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decision making outside of signal enhancement. First,
when considering RT as a unitary measure, we found
a significant FBA effect only when the spatial cue
was valid (in line with Bengson et al., 2012; Soto &
Blanco, 2004; Stoppel et al., 2007), and similarly, the
spatial cueing effect was numerically larger when paired
with a valid feature cue. However, although other
studies have reported significant interactions within RT
between cue type and cue validity in similarly sparse
displays (Bengson et al., 2012; Kingstone, 1992), the
patterns observed here did not reach significance. On
the face of it, our RT results may be more in line with
Lambert and Hockey (1986), where over the course of
four experiments and seven testing sessions, apparent
trends toward interactions between SBA and FBA
only reach significance in one scenario; as well as
Egner et al. (2008), who reported only additive effects
within RT.

Notably, however, RT is likely indicative of a
multitude of perceptual decision-making processes and,
as such, may obscure differential patterns within signal
strength, response conservativeness and processing
speed (Ratcliff, 1978; Wagenmakers et al., 2007; White
et al., 2015), thus potentially accounting for some
of the disparate patterns in the literature. When we
subjected our response time and accuracy data to a
robust EZ-diffusion model to separately estimate each
of three unobservable component parts (Wagenmakers
et al., 2008), we found compelling evidence for an
interactive relationship between SBA and FBA within
perceptual decision-making processes outside of signal
strength. The amount of time spent before evidence
accumulation (non-decision time) was shortest when
both dimensions of the cue were valid, and both spatial
cueing and feature cueing effects only emerged when the
other dimension was valid. Response conservativeness
(or boundary separation) mirrored these results,
suggesting that reduced non-decision time allowed for
more time spent engaged in evidence accumulation
without a concurrent change in accumulation rate.
Thus, super-additive effects, reflecting dependency
between mechanisms, were present within perceptual
decision making (Andersen et al., 2011). Importantly,
these findings may shed light on why many behavioral
studies that support a model of dependency between
selection mechanisms more frequently (albeit not
exclusively) rely on RT evidence, whereas those that
claim independency more frequently rely on accuracy
(e.g., Bengson et al., 2012; Kingstone, 1992; White,
Rolfs, & Carrasco, 2013; 2015).

Interestingly, although a wholly valid cue exhibited
a reduced non-decision time compared with a
valid–invalid cue, pairing a valid spatial cue with
a feature cue, regardless of its validity, resulted
in a significantly longer non-decision time than
a spatial cue alone (see Comparisons between
Experiments). The estimate for the dual cue was

matched with the non-decision time estimated for
a lone feature cue. This finding is consistent with
previous demonstrations that have shown engaging
FBA may be sluggish relative to SBA. Importantly,
the cue-to-target SOAs used in the current study
exceeded the expected duration needed to effectively
deploy FBA (Liu et al., 2007; see Experiment 1).
Therefore, the relative speed reduction observed here
is unlikely attributable to the interpretation of, and
attentional preallocation in response to, the pre-cue.
Rather, it may be reflective of the finding that FBA
effects emerge on a relatively slower timescale after
stimulus display onset, even without the need to
interpret and respond to a trial-by-trial feature cue
(Anllo-Vento & Hillyard, 1996). As we speculate in the
Results and Discussion of Experiment 1, this finding
may be a consequence of a global deployment of FBA
across space (Liu et al., 2007; Rossi & Paradiso, 1995;
Serences & Boynton, 2007).

Importantly, the results of the diffusion model
demonstrate that participants were not simply ignoring
the feature cue in Experiment 2. Instead, the feature
cue was likely used to help determine whether the
correct item was within the focus of attention before
evidence accumulation; once participants began
accumulating evidence for one of the two response
alternatives, though, FBA influences were uniformly
and convincingly absent. In contrast, evidence of
SBA was present in all aspects of perceptual decision
making.

Single versus dual deployment of selection
mechanisms

Although our data are well accounted for via a
descriptive model of higher order dependency between
mechanisms, we are left to puzzle about why FBA effects
did not emerge, despite expectations, within indirect
measures of signal enhancement in Experiment 2.
First, we consider in general why only one cue might be
used for this purpose when two are available. We then
turn to the specific absence of an FBA effect in favor of
SBA.

In the current task design, we set the pre-cue to be
wholly valid on 70% of all trials under the assumption
that if both selection mechanisms could be deployed
simultaneously to (super-)additively improve the
perceptual resolution of the target gap, participants
should be motivated to do so given the impact it would
have on a large majority of trials. However, we failed
to detect dual deployment across all participants. Even
among those who exhibited both SBA and FBA effects
in accuracy, target gap size was not reliably different
from those who only exhibited SBA effects. This pattern
of results indicates that either the former subset of
participants switched between selection mechanisms
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from trial to trial and thus failed to deploy both
simultaneously, or that deploying both mechanisms
simultaneously did not improve perceptual resolution.

Following the findings and logic of White et al.
(2015), we suspect that the low stimulus competition
used in the present study could in part account for this
result. In their design, a relevant dot pattern was defined
both by its color and location, each of which was shared
with irrelevant dot patterns. Thus, the feature and space
components of the endogenous cue served to both
1) direct attention to a particular color and location
(signal enhancement), and 2) filter out irrelevant
colors at the attended location and irrelevant locations
containing the relevant color (distractor suppression).
Thus, deploying both selection mechanisms in response
to a wholly valid cue decreased the amount of attended
information. Furthermore, attention effects were super-
additive only when the irrelevant dot patterns were
highly salient, presumably operating simultaneously to
decrease stimulus competition. In our experiment, no
distractors shared color or location information with
the relevant item, and both components of the frequent,
wholly valid cue directed attention to the same,
single item (signal enhancement without distractor
suppression).

Given that we did not see additive effects between
SBA and FBA, but rather an apparent nearly complete
reliance on just the spatial cue to enhance the
target signal, we suggest that such dual independent
deployments may only emerge when the two selection
mechanisms make sufficiently unique contributions to
identifying the target. If top-down selection is limited
to (largely redundant) signal enhancement, it may be
the case that only one mechanism is deployed for this
purpose even when cues for two (or more) are available.
The high frequency of the wholly valid cue, where
either cue type is equally predictive, and the limited
benefit of using both dimensions to resolve the target,
may have prompted participants to strategically use
only one throughout the task. This plausible account is
consistent with our suggestion that higher order control
centers may have generated space-based modulatory
signals in visual cortex while restricting analogous
feature-based signals.

We argue that participants deployed one attention
mechanism nearly unilaterally to resolve the
perceptually demanding target in the sparse display, and
that deploying both to a single item may be of limited
benefit to enhancing the signal. We next consider why
participants largely preferred the spatial cue, specifically,
over the feature cue, despite our expectations that
both should be equally viable. Although we used a
localization task, neither cued dimension predicted the
to-be-reported target gap. The arrow cue was never
fully aligned with the two response alternatives (right vs.
left), given that it directed attention to the center of one
of four quadrants (upper right, lower right, upper left,

or lower left). Furthermore, on approximately one-half
the trials, the horizontal aspect (left or right) of the
arrow cue conflicted with the object-based location
of the target gap. Nonetheless, the Experiment 2
results raise the possibility that the spatial cue was
more closely related to our localization task. This
finding is consistent with the speculation regarding
non-decision time offered in Experiment 1 Results and
Discussion: following pre-allocated FBA, only the
subset of modulated sensory neurons whose receptive
fields included the relevant item would be informative
for locating the gap. In contrast, all sensory neurons
modulated by SBA, regardless of color selectivity,
should carry at least some information for the task.
Thus, although the participants used FBA effectively
in Experiment 1, they may have strategically used
only the more useful SBA when both cue types were
available.

A potential caveat to this explanation is that
Experiment 1 demonstrated that both cue types were
equally effective in resolving the target—as reflected
in accuracy, gap size, and drift rate—when presented
alone. This finding suggests that the advantage of
space-based selection exists just before evidence
accumulation. Yet, participants exhibited a prolonged
non-decision time in Experiment 2, presumably to use
feature information to verify that the relevant item was
attended. A second possibility is that faster onset time
of SBA (Anllo-Vento & Hillyard, 1996) led participants
to detect its effectiveness at resolving the target
more easily than the feature cue, despite both being
equally effective. Similarly, onset speed of evidence
accumulation may have impacted implicit statistical
learning of regularities in the task (Zhao, Al-Aidroos,
& Turk-Browne, 2013), leading to differences in the
probabilistic expectancy between the two types of cues
(Mordkoff & Yantis, 1991). This finding would suggest
that cue preference should be modulated by cue validity
(a factor that we did not manipulate here). Whether this
post hoc speculation holds is an intriguing question for
future research.

Conclusion

Our results show that both FBA and SBA can be
used in isolation to resolve a perceptually challenging
target in a sparse display. However, there may be little
signal enhancement benefit to voluntarily deploying
both simultaneously in the absence of stimulus
competition. Instead, we showed that both mechanisms
conjunctively facilitate components of decision making,
while only spatial selection enhanced the target
representation. This suggests at least some higher order
interdependence between mechanisms.
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