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Germline mutation rates in humans have been estimated for a variety of mutation types, including single-nucleotide and

large structural variants. Here, we directly measure the germline retrotransposition rate for the three active retrotransposon

elements: L1, Alu, and SVA. We used three tools for calling mobile element insertions (MEIs) (MELT, RUFUS, and

TranSurVeyor) on blood-derived whole-genome sequence (WGS) data from 599 CEPH individuals, comprising 33 three-

generation pedigrees. We identified 26 de novo MEIs in 437 births. The retrotransposition rate estimates for Alu elements,

one in 40 births, is roughly half the rate estimated using phylogenetic analyses, a difference in magnitude similar to that

observed for single-nucleotide variants. The L1 retrotransposition rate is one in 63 births and is within range of previous

estimates (1:20–1:200 births). The SVA retrotransposition rate, one in 63 births, is much higher than the previous estimate

of one in 900 births. Our large, three-generation pedigrees allowed us to assess parent-of-origin effects and the timing of

insertion events in either gametogenesis or early embryonic development. We find a statistically significant paternal bias in

Alu retrotransposition. Our study represents the first in-depth analysis of the rate and dynamics of human retrotransposi-

tion from WGS data in three-generation human pedigrees.

[Supplemental material is available for this article.]

Non–long terminal repeat (non-LTR) retrotransposonshaveplayed
a large role in shaping the human genome by creating structural
variation and influencing gene expression (Elbarbary et al. 2016;
Bourque et al. 2018). In addition, there are at least 130documented
instances of retrotransposition events associated with human dis-
ease (Hancks and Kazazian 2016; Kazazian and Moran 2017).
These retrotransposons mobilize via a “copy-and-paste” mecha-
nism using an mRNA intermediate that is reverse-transcribed into
the genome. There are three currently activenon-LTR retrotranspo-
sons inhumans: the autonomous long interspersed element 1 (L1);
and two nonautonomous elements, the Alu short interspersed ele-
ments (SINE), and the composite element SINE-R-VNTR-Alu (SVA).
These three retrotransposon families alone account for >25%of the
human genome, and younger copies are polymorphic for their
presence or absence in humans (Cordaux and Batzer 2009). There
aremore than 1.5millionnon-LTR retrotransposons in the human
genome (Cordaux and Batzer 2009), and a small fraction of them
are active and still capable of creating new mobile element inser-
tions (MEIs) in germline and somatic tissue. L1 elements, for exam-
ple, are active and have been extensively studied in the human
brain (for review, see Faulkner and Billon 2018) and in tumors
(for review, see Burns 2017).

Inherited retrotransposition events occur either in the paren-
tal gametes or in early embryogenesis of the individual, with the
latter leading to mosaicism of the element. Studies have suggested
that the majority of inherited MEIs originate in the male germline
(Nellåker et al. 2012), and likely in individuals with compromised
control of retrotransposition (Newkirk et al. 2017). A few de novo

Alu and L1 elements in humans have been tracked to either the
germline (Kazazian et al. 1988; Wallace et al. 1991; Richardson
et al. 2017) or early embryogenesis (van den Hurk et al. 2007).
L1 retrotransposition studies in mice indicate that retrotransposi-
tion mainly occurs in early embryogenesis (Kano et al. 2009;
Richardson et al. 2017; for review, see Richardson and Faulkner
2018). The timing of Alu and SVA element insertions remains
largely unknown.

Alu, L1, and SVA germline retrotransposition rates have been
estimated through phylogenetic and disease-based studies. It is
estimated that one de novo Alu insertion occurs in about every
20 births and a de novo L1 insertion event occurs once in about ev-
ery 150 live human births (Deininger and Batzer 1999; Kazazian
1999; Li et al. 2001; Cordaux et al. 2006; Xing et al. 2009b;
Ewing and Kazazian 2010; Huang et al. 2010; Hormozdiari et al.
2011; Hancks and Kazazian 2012). There are only a few thousand
SVA elements in the human genome, and the current estimate for
the rate of new SVA insertion events is one in roughly every 900
live human births (Xing et al. 2009b). Although previous studies
have identified de novo Alu, L1, and SVA insertions in large co-
horts using whole-genome sequencing (WGS) (Werling et al.
2018) and whole-exome sequencing (WES) (Gardner et al. 2018),
there has not yet been a rigorous empirical study of heritable retro-
transposition and retrotranspositional timing in multigeneration-
al pedigrees. Moreover, it is unknown whether human germline
retrotransposition is affected by the parent’s age or sex, or whether
retrotransposition rates differ among pedigrees.

We undertook WGS of 599 members of 33 three-generation
Utah Centre d’Etude du Polymorphisme Humain (CEPH) pedi-
grees (Dausset et al. 1990) because of the historical significance
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of this cohort in human genetic research and because of the
unique research opportunities offered by these large multigenera-
tional pedigrees. TheUtahCEPHpedigreeswere used to help estab-
lish the human linkage map (White et al. 1985), and trios from
these pedigrees (CEPH from Utah [CEU]) were an important com-
ponent of the International HapMap Project (The International
HapMap Consortium 2003, 2007) and the 1000 Genomes Project
(The 1000Genomes Project Consortium2010). The pedigreeswere
drawn from a population of primarily northern European descent
which has experienced very low consanguinity (Jorde 1989), no
evidence of founder effect (McLellan et al. 1984), and heterozygos-
ity similar to that of other populations of European ancestry (Xing
et al. 2009a). A previous study identified several related pairs
of individuals in the Utah and non-Utah CEPH pedigrees (Stevens
et al. 2012), but only onemating pair used in our study had detect-
able consanguinity, with a coefficient of relationship of 0.001.
Here, we present our findings of de novo L1, SVA, and Alu retro-
transposition events in these pedigrees using three MEI-calling
tools: MELT (Gardner et al. 2017), RUFUS (https://github.com/
jandrewrfarrell/RUFUS) (Ostrander et al. 2018), and TranSurVeyor
(Rajaby and Sung 2018).

Results

Analysis of de novo MEIs in three-generation pedigrees

Blood-derived DNA samples from 599 individuals in 33 three-gen-
eration pedigrees were whole-genome sequenced at an average
depth of ∼30× using Illumina paired-end technology (Supplemen-
tal Table S1). In these pedigrees, we designate the grandparents as
generation 1, their offspring as generation 2, and their grandchil-
dren as generation 3. A separate study (Sasani et al. 2019) presents
an analysis of single-nucleotide variants (SNVs) and small indels in
these pedigrees.

Tomaximize sensitivity (at the expenseof specificity),weused
liberal criteria for initial MEI detection in the three MEI-calling
tools. This resulted in a large number of false-positive cases that
were subsequently identified by Integrative Genomics Viewer
(IGV) evaluation (Robinson et al. 2011; Thorvaldsdóttir et al.
2013). MELT identified 907 candidate de novo loci from 12,594
called Alu, SVA, and L1 loci. These candidates were evaluated in
IGV for characteristic signatures of MEIs, including a target site
duplication (TSD), a poly(A) tail, and split/discordant reads with
pairs that mapped to a retrotransposon family (Methods; Supple-
mental Data S1). Nineteen loci met these criteria and were absent
in the parents, and all were validated via PCR and Sanger sequenc-
ing (Supplemental Figs. S1 and S2). TranSurVeyor identified 21 de
novo loci from 86,649 breakpoints, including 14 of the 19 identi-
fied by MELT and an additional six loci not found by MELT (Sup-
plemental Data S2). The RUFUS algorithm called 23 de novo loci
from 44,190 breakpoints (Supplemental Data S3), including 22
calledbyMELTor TranSurVeyor, andone additional denovo locus.
In total, we identified and PCR-validated 26 de novoMEIs, includ-
ingeightL1, sevenSVA, and11Alu insertions in16of33CEPHped-
igrees (Table 1; Fig. 1; Supplemental Table S2; Supplemental Figs.
S1, S2). PCR validation showed that every locus with preliminary
evidence of a MEI event was a true-positive de novo insertion.

Twenty-four of 26 de novo MEIs contain all of the hallmarks
of L1-mediated retrotransposition: a poly(A) tail, a TSD, and the
endonuclease cleavage site motif (5′-TTTT/AA-3′) (for review, see
Cordaux and Batzer 2009; Hancks and Kazazian 2016). The inser-
tion sites of the remaining two loci,Alu #4 and L1 #1, do not fit the
canonical pattern. Alu #4 is full-length but has a 1.7-kb deletion at
its 5′ flanking region, which may have occurred during the inser-
tion event, and thus does not have a TSD. Alu #4 is de novo in in-
dividual 8327 (NA07355) but is also present at low levels by IGV
and PCR in sibling 8439 (NA07351) (Supplemental Fig. S1).
Amplification of a nearby SNP indicates that there is low-level

Table 1. Characteristics of 26 de novo MEIs identified in 437 births

Insertion Chr Cleavage site TSD (bp) poly(A) (bp) Generation Features

Alu #1 4q TTTT/AT 13 ∼68 3
Alu #2 1p TTTT/GA 13 ∼44 2
Alu #3 3p TCTT/AA 11 ∼80 3
Alu #4 12p TTCT/AT N/A ∼41 3 1.7-kb 5′ deletion
Alu #5 6p TTTT/AT 12 ∼66 3
Alu #6 2p TTTT/AA 16 ∼24 3
Alu #7 1p TCTT/AT 15 ∼47 3
Alu #8 2q TATT/AT 14 ∼113 3
Alu #9 7q ATTT/GA 14 ∼107 2
Alu #10 4q TTTT/AA 11 ∼113 3
Alu #11 17p TTTT/AA 14 ∼76 2
L1 #1 5q N/A N/A N/A 3 Nonclassical L1 insertion
L1 #2 4q TGTT/AA 15 ∼96 3
L1 #3 3p TTTT/AA 17 >139 3
L1 #4 1p TCTT/AC 13 ∼96 2
L1 #5 4q TTTA/AA 628 ∼83 3
L1 #6 Xq TATT/AA 8 ∼60 3 Orphan transduction
L1 #7 6q TTTT/AA 13 ∼62 3
L1 #8 Yq TCTT/AA 12 >60a 3
SVA #1 6p TTTT/AA 13 ∼127 3
SVA #2 4q TCTT/AA 18 ∼45 2
SVA #3 11p TTTA/GA 12 ∼115 3
SVA #4 8p TTCT/AA 16 ∼62 3
SVA #5 3p TTTC/AA 11 ∼40 2
SVA #6 12p CTTT/CT 14 ∼115 3
SVA #7 1q TTTC/AT 10 ∼59 3

aLocal reassembly predictions of poly(A) tail.
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sample contamination of 8327 (NA07355) in 8439 (NA07351), but
this had no effect on the results in this study (Supplemental Fig.
S1). L1 #1 is 5′ and 3′ truncated, does not have hallmarks of retro-
transposition, and contains a deletion of an “A” at the insertion
site. This indicates a nonclassical L1 insertion event, which is hy-
pothesized to play a role in double-stranded break repair (Morrish
et al. 2002; Sen et al. 2007). Because L1 #1wasnot inserted through
retrotransposition, we excluded it from the retrotransposition rate
estimates.With 437 trios in this data set, we estimate retrotranspo-
sition rates of oneAlu event in 39.7 births (95%CI 22.2–79.4), 1 L1
in 62.5 births (95% CI 30.6–153.8), and 1 SVA in 62.5 births (95%
CI 30.6–153.8) (Methods).

The genomic context of the 26 de novo MEIs is shown in
Figure 1. Detailed information on each breakpoint is provided in
Supplemental Figure S2. The MEIs are randomly distributed across
the genome (Fig. 1A). Forty-two percent of the loci inserted outside
of repetitive DNA regions (Fig. 1B). Nearly all of the MEIs inserted
in intergenic or intronic regions (Fig. 1C). L1 #7 inserted 25 bp
away from exon 4 in PM20D2 (Supplemental Fig. S2). L1 # 5 insert-
ed within the 3′ UTR of PGRMC2 and created a 628-bp TSD
(Supplemental Fig. S2). As expected for a nondisease cohort and
this number of MEIs, we did not find any de novo MEIs in exons.

Subfamily analysis of the de novo MEIs

Weperformed subfamily characterization for the de novoMEIs us-
ing MELT’s CALU tool and Repbase (Bao et al. 2015; Gardner et al.
2017). The 11 Alu elements belong to seven subfamilies. Alu ele-
ments #1 and #5 are exact matches to the Yb8 subfamily, whereas
Alu #8 and #9 belong to the Ya5 subfamily. Alu #10 is truncated by
>250 bp and could possibly belong to many Y (or the older S) sub-

families (Kryatova et al. 2017). Sequence
alignment and FASTA files for the 11 Alu
elements are presented in Supplemental
Figure S3 and Supplemental Data S4.
We matched the full-length L1 #2 to
the young L1Ta1d subfamily. We did
not get sequence information for the
other full-length L1 (L1 #7), and the oth-
er six elements are too truncated for clas-
sification. SVA #3–5 and #7 contain part
of the 5′ transduction of MAST2 exon 1
and therefore belong to the SVA_F1 sub-
family (Bantysh and Buzdin 2009;
Damert et al. 2009; Hancks et al. 2009).
SVA #4 also contains a 3′ transduction
of an AluSp, which is present in the
SVA_F1 master element H10_1 (Damert
et al. 2009; Hancks et al. 2009). The se-
quences of the SINE-R regions for SVA
#1–2 and #6 align to the other known
active subfamilies, D-F. The subfamily
assignment for each element is in
Supplemental Table S2.

Several de novo MEIs have hallmarks

of retrotransposition activity

To determine whether any of the de
novo Alu elements are capable of further
retrotransposition, we examined each
element for its potential capacity for ret-
rotransposition activity. Hallmarks of ac-

tive Alu elements include intact box A and B internal RNA
polymerase III (Pol III) promoters (Mills et al. 2007; Bennett et al.
2008; Comeaux et al. 2009), intact SRP9/14 sites, an uninterrupted
poly(A) tail at least 20 bases long (Dewannieux and Heidmann
2005), and a Pol III termination sequence, TTTT, preferably within
15 bp of the TSD downstream from the poly(A) tail (Comeaux et al.
2009). In addition, there are 124 conserved nucleotides in active
Alu elements, andmultiplemutations in these nucleotides may af-
fect retrotransposition efficiency (Bennett et al. 2008). Alu ele-
ments #1 and #8 contain all of these hallmarks and therefore
may be active (Supplemental Data S4).

To identify potentially active L1/SVA elements, we focused on
the full-length de novo elements in our data set. L1 #2 is potential-
ly active because it is not truncated relative to its source element
and has two intact open reading frames (ORFs 1 and 2) as deter-
mined by L1Base2 (Penzkofer et al. 2017). L1 #7 is full length,
but wewere unable to sequence the ORFs to determine activity po-
tential. The other six L1 elements are 5′ truncated and therefore
not active. SVA #2 is the only element with the CCCTCT hexamer
promoter andmay be active, althoughwewere unable to sequence
through the VNTR region. SVA #5 and #7 are de novo SVA_F1 ele-
mentswith the fullMAST2promoter and therefore could be active.
The other SVA elements do not contain the CCCTCT hexamer but
may be transcribed if they inserted downstream from a promoter.

Identification of source elements

We used the human reference genome (hg19) and reconstructed
FASTA files from the MELT output to identify potential source ele-
ments of the de novo MEIs (Methods; Fig. 1). Alu #2 and #4 each
had a unique match to a reference Alu element (hg19 Chr 3:

B

A

C

Figure 1. Distribution of de novo MEIs throughout the genome. (A) Genomic map of de novo MEIs
using HumanIdiogramLibrary (https://zenodo.org/record/1210245#.XVhePuhKiUk). The numbers to
the right of the triangles indicate the ID number of each element listed in Table 1. (B) RepeatMasker
(UCSC Genome Browser) context of de novo MEIs (Kent et al. 2002). (C) Genic context of de novo
MEIs (UCSC Genome Browser) (Kent et al. 2002). The genomic context in B and Cwas determined using
the TSD region of each locus.
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190,156,698–190,156,966 and Chr 1: 246,470,713–246,471,020,
respectively). Alu #3 is 40 bp truncated but uniquely matches a
full-length polymorphic Alu element identified by MELT that
was paternally transmitted (hg19 Chr 2: 185,125,618). SVA #1 is
identical to a reference SVA_D element (hg19 Chr 17:
42,314,401–42,316,970) except for a 725-bp deletion region as a
result of splicing (Supplemental Fig. S2). SVA #5 contains a 22-bp
deletion within the MAST2 promoter, which is unique to a refer-
ence SVA_F1 element (hg19 Chr 3: 48,251,893–48,254,907)
(Damert et al. 2009). There were too many potential source ele-
ments to pinpoint the candidate source element for the remaining
eight Alu and five SVA elements.

We identified the unique source element for the three L1 ele-
ments with 3′ transductions (Figs. 1, 2). L1 #2 contains an 82-bp
3′ transduction that maps to an active L1
on Chr4q25. This source element was pa-
ternally transmitted. L1 #4 contains an
846-bp 3′ transduction from a L1 on
Chr5q22 thatwasmaternally transmitted.
L1 #6 is a 497-bp orphan 3′ transduction
(i.e., the entire L1 was 5′ truncated) that
maps to the 3′ end of a ∼2 kb 3′ transduc-
tion from Chr13q21.2. We identified
four additional 3′ transduction events
from these source elements in our data
set by examining the source loci in IGV
(Fig. 2A; Supplemental Table S3). Two
loci were present in a single grandparent,
one locus was polymorphic in a pedigree,
and the other locus was polymorphic in
17 pedigrees (Supplemental Table S3).
All three source elements are nonrefer-
ence insertions that are polymorphic
across nearly all of the major population
groups in the Simons Genome Diversity
Project (Fig. 2B; Supplemental Fig. S4;
Mallick et al. 2016). These three source el-
ements have also been previously found
to produce somatic 3′ transductions in
cancer genomes (Tubio et al. 2014).

Estimation of parental origin of MEIs

We used the three-generation pedigree
structure to infer the stage at which the
retrotransposition event occurred during
development for all de novoMEIs in gen-
eration 2 (three Alu, one L1, and two
SVA). These six second generation MEIs
were all found in females, which is statis-
tically significant (exact binomial test
P-value <0.0313), but this pattern was
not seen in the 21 third generation MEIs
(n=10/18 exact binomial test P-value
>0.814). Using the haplotype of the
children that inherited the de novo
MEI, all six second generation insertions
were phased to the maternal grandfa-
ther’s chromosome (Fig. 3; Supplemental
Tables S5–S10). We reason that de novo
MEIs that are inherited in Mendelian
ratios (50:50) in generation 3 and are

cotransmitted with the grandfathers’ haplotype likely arose in
the grandfathers’ germline. In contrast, de novo MEIs that are in-
consistently associated with the grandfathers’ haplotype provide
evidence that the MEIs arose during early embryogenesis in the
mother, making her cells mosaic for the MEI.

The three Alu elements that arose in generation 2 were trans-
mitted to generation 3 atMendelian ratios (χ2 test with one degree
of freedom, two-tailed P-value >0.05), and the Alu insertions were
always cotransmitted with the maternal grandfathers’ haplotype
(Fig. 3). This suggests that the Alu elements originated during the
development of the maternal grandfathers’ germline, rather than
in early embryogenesis in the mothers. In contrast, L1 #4 and
SVA #2 and #5 are not transmitted at the expected ratios (χ2 test
with one degree of freedom, two-tailed P-value <0.02). These

B

A

Figure 2. Three source L1 elements identified by 3′ transductions. (A) Circlize plot of L1 elements to
identified offspring elements in the CEPH data set (Gu et al. 2014). Source elements are highlighted
with a star. (B) Minor allele frequency (MAF) of the three source elements in the Simons Genome
Diversity Project (Mallick et al. 2016). Genotypes were manually typed from IGV screenshots
(Supplemental Table S4).
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MEIs were only transmitted to one offspring each, and there were
multiple offspring in each pedigree who inherited the maternal
grandfathers’ haplotypes but not the MEIs (Fig. 3). Further,
because the source element for L1 #4 was maternally transmitted
but L1 #4 inserted on the paternal chromosome, L1 #4 was insert-
ed post-zygotically. Both the transmission frequency and haplo-
type inconsistencies indicate that the three L1/SVA insertions are
somatic/germline (gonosomal) mosaic in the second generation.

Another approach for determining whether each de novo
MEI is mosaic or nonmosaic in an individual is to calculate the
breakpoint allele frequency (BAF), which is the percentage of reads
that support the MEI breakpoint (Supplemental Figs. S5, S6). We
chose the highest BAF of the two breakpoints for each locus, but
this may still be a slight underestimate (i.e., split reads may have
mapped elsewhere). BAFs for the 22 third generation individuals
who inherited a de novo MEI ranged from 25% to 58%.
Therefore, we used a threshold of 25% to estimate heterozygosity.
BAFs of the gonosomal mosaic generation 2 L1 and SVA elements
ranged from12% to 21%. This is in the reported range of allelic im-
balances of SNV/SV gonosomal mosaicism in parents (Campbell
et al. 2014; Acuna-Hidalgo et al. 2015; Rahbari et al. 2016;
Jónsson et al. 2018). In contrast, BAFs for the three second gener-
ation individuals who have a de novo Alu element were 38%–50%,
which is within the range of the inherited de novoMEIs and likely
reflects retrotransposition in the parental germline. BAFs of all of
the third generation Alu elements were within the range of inher-
itedMEIs, althoughAlu #7–8were the lowest at 25.8%and 31%. L1

#2–3 and SVA #3 were the only L1/SVA
elements to have BAFs indicating poten-
tial heterozygosity (41%–58%). The
hemizygous L1 #6 and #8 had BAFs of
100%. These results support the hypoth-
esis indicated by the multigenerational
analysis that Alu retrotransposition gen-
erally occurs in the germline.

We identified the parental origin of
the chromosome for half of the de novo
generation 3 MEIs using sex chromo-
some hemizygosity and SNP-based phas-
ing approaches including two SVA, two
L1, and six Alu insertions (Methods;
Supplemental Table S2). SVA #4 inserted
on the maternal chromosome, and SVA
#1 inserted on the paternal chromo-
some, although these insertions are like-
ly mosaic in the individuals indicated
by their BAFs. The hemizygous L1 #6
and L1 #8 in twomale individuals insert-
ed on the maternal (Chr X) and paternal
(Chr Y) chromosomes. We identified the
parental chromosome for six of the eight
third generation de novo Alu elements,
except for Alu #6–7. Including both sec-
ond and third generation Alu elements,
we found that eight Alu elements were
transmitted on the paternal chromo-
some, and one element was transmitted
on the maternal chromosome (exact bi-
nomial test, P-value <0.04). We conclude
that assuming these elements occurred
during gametogenesis, there is a statisti-
cally significant paternal sex bias with

respect to Alu retrotransposition, whereas L1/SVA retrotransposi-
tion appears to generally occur post-zygotically. We did not
find statistical support for a paternal age effect on Alu retro-
transposition (P-value =0.26), although the sample size is small
(Supplemental Fig. S7).

Evaluation and comparison of the three MEI-calling tools

We used three tools with different approaches to identify MEIs to
maximize the likelihood of finding all de novo MEIs. MELT uses a
transposon reference file to identify and characterize nonreference
MEIs for each transposon family (Gardner et al. 2017). In contrast,
RUFUS and the recently published TranSurVeyor identify break-
points regardless of the transposon family, each producing tens
of thousands of false-positive breakpoints (https://github.com/
jandrewrfarrell/RUFUS) (Ostrander et al. 2018; Rajaby and Sung
2018). MELT missed the orphan transduction (L1 #6) as well as
six other MEIs. MELT preliminarily identified SVA #6 in the indi-
vidual but then misgenotyped it as homozygous reference (BAF
9.4%). We hypothesize that the other MEIs were missed by not
aligning to the transposon family by either having too many dif-
ferences or a lack of split reads outside of the poly(A) tail. RUFUS
missed the two SVA elements in the parents and SVA #6, which
may be attributable to the low BAFs in these MEIs. TranSurveyor
did not detect five MEIs, but we could not detect a pattern that ex-
plained why these were missed. Our results show the importance
of utilizing different tools for MEI detection (Ewing 2015;

Figure 3. Tracking de novo retrotransposition in multigenerational pedigrees. The maternal grandfa-
ther’s haplotype is shown in light blue, and the maternal grandmother’s haplotype is shown in light red.
An individual with the de novo MEI is in black.
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Rishishwar et al. 2016; Goerner-Potvin and Bourque 2018),
because only half of the validated de novo MEIs were detected
by all three tools, and 12% of the de novo MEIs were detected by
a single tool (Supplemental Table S2).

With our three-generation pedigrees, we were able to identify
obligate carriers of a MEI in generation 2 as individuals whose par-
ent (generation 1) carried the MEI and whose offspring (genera-
tion 3) inherited the MEI (Supplemental Fig. S8). This allowed us
to estimate MELT’s sensitivity. MELT’s unfiltered call set has a sen-
sitivity of 68% for all MEIs, whereas MELT’s standard call set has a
sensitivity of 94%, because it excluded many incorrect calls. For
our identified de novo MEIs, we estimate sensitivity for MELT,
RUFUS, and TranSurVeyor calls as ∼73%, 88%, and 77%, respec-
tively. Using only loci that passed MELT’s filters (i.e., “PASS”)
would have reduced the de novo candidate list from 907 to 217
loci, but 42% (8 of 19) of the de novo loci would have been unde-
tected. Nevertheless, even using three tools, we may have missed
additional de novo MEIs because of low sequencing depth or their
location in regions with high repeat content. Therefore, our retro-
transposition rate estimates should be regarded as lower bounds.

Discussion

With rapid advances in high-throughput sequencing technology,
a large number of human pedigrees have been sequenced, and
many studies have directly estimated the single-nucleotide de
novo mutation rate (Roach et al. 2010; Jónsson et al. 2017). New
technology also affords an opportunity to estimate the rate of de
novo retrotransposition, which generates genomic variation
through an entirely different mutation mechanism. From 437
births, we estimate an Alu retrotransposition rate of about 1:39.7
births (95% CI 22.4–79.4), a SVA rate of about 1:62.5 births (95%
CI 30.6–153.8), and a L1 rate of about 1:62.5 births (95% CI
30.6–153.8) (Fig. 4). MELT was used previously to identify de

novo MEI transmission in 519 quartets in the Simons Simplex
Collection (SSC) (Werling et al. 2018). Using these published
data, we estimated comparative retrotransposition rates for Alu,
L1, and SVA elements (Fig. 4). The Alu retrotransposition rate in
SSC is nearly identical to the estimate in this study, but our L1
and SVA retrotransposition rates are 2.4× and 5.5× higher but do
not differ significantly (Fig. 4, 95% CIs; Werling et al. 2018). The
latter differences reflect in part our use of multiple MEI-calling
tools, which showed that MELT detects 91% of de novo Alu ele-
ments detected by TranSurVeyor and RUFUS, but only 75% of
the L1 and 43% of the SVA elements detected by the latter tools
(Supplemental Table S2). These two data sets both estimate an
Alu retrotransposition rate that is twofold lower than previous
phylogenetic and disease-based estimates. GivenMELT’s high sen-
sitivity for Alu detection (Gardner et al. 2017) as well as the use of
multiple MEI-calling tools, it is unlikely that our lower rate is
caused by false-negative calls, although we could be missing calls
in highly repetitive regions. Instead, it is likely that the phyloge-
netically estimated rate is affected by assumptions about the diver-
gence time of humans and chimpanzees, the effective population
size of the human-chimpanzee ancestral population, and retro-
transposition rate variation over time (Cordaux and Batzer 2009;
Roach et al. 2010; Campbell and Eichler 2013; Ségurel et al. 2014).

Although preliminary, our results suggest there may be dif-
ferences in retrotransposition timing among the non-LTR retro-
transposon families. All of the de novo Alu elements appear
heterozygous in WGS, and all three Alu elements in generation 2
conform to Mendelian expectations and cosegregate with the pa-
ternal grandfather’s chromosome, indicating retrotransposition
in the germline. Further, there appears to be a paternal sex bias
in de novo Alu retrotransposition, which is similar to the paternal
transmission bias seen in SNVs and short tandem repeats (Jónsson
et al. 2017; Willems et al. 2017). We found evidence of L1 retro-
transposition events in both the germline (the hemizygous ele-
ments, L1 #6 and #8) and early embryogenesis (L1 #4) (Fig. 3),
which corroborates previous findings (van den Hurk et al. 2007;
Richardson et al. 2017). The two second generation SVA elements
appear to be mosaic in the germline and somatic tissue in the
mother and likely arose during early embryogenesis. Inheritance
of gonosomal mosaic L1 and SVA elements in large pedigree anal-
yses has thus far only been seen in females: three in this study and
four in a recentmouse study (Richardson et al. 2017). The observa-
tion of likely post-zygotic SVA element insertions suggests that
SVA elementsmay be underreported in studies of somatic or tumor
cells.

Our data allow us to identify the subfamily distribution of ac-
tivemobile element subfamilies. Yb8 andYa5 subfamilies account-
ed for 72% of 322 polymorphic Alu elements in a previous study
(Konkel et al. 2015), yet only 36% of de novo Alu elements identi-
fied here belong to the Ya5 or Yb8 subfamilies (Fisher’s exact test,
P-value <0.02). Our identification of only two Yb8 elements cor-
roborates our pilot ME-Scan study of Yb8/9 elements in the
CEPHdata set, inwhichwe initially discoveredAlu #1 (the individ-
ual with Alu #5 was not included in the study) (Supplemental
Methods; Supplemental Tables S11, S12). Indeed, the variety of
de novo Alu sequences detected here corroborates the “stealth
model” hypothesis of Alu amplification, in which there are multi-
ple active subfamilies that proliferate, rather than one large, active
subfamily/locus (Deininger et al. 1992; Deininger and Batzer 1999;
Han et al. 2005; Konkel et al. 2015). We detected insertions of all
active SVA subfamilies, with the youngest SVA_F1 subfamily
(Bantysh and Buzdin 2009; Damert et al. 2009; Hancks et al.

Figure 4. Estimated retrotransposition rates. Estimated retrotransposi-
tion rates for previous studies are listed (Deininger and Batzer 1999;
Cordaux et al. 2006; Xing et al. 2009b; Ewing and Kazazian 2010; Huang
et al. 2010). Confidence intervals are shown if available from the study.
Rates and binomial 95% CI were determined for Werling et al. (2018) and
this study. Alu element rates are shown in red, L1 in green, and SVA in blue.

Feusier et al.

1572 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.247965.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.247965.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.247965.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.247965.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.247965.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.247965.118/-/DC1


2009) accounting for 57% of the de novo SVA elements. Our data
show that there are many active AluY subfamilies, and the youn-
gest SVA subfamily, SVA_F1, may be currently one of the most ac-
tive SVA subfamilies.

In addition to the three non-LTR retrotransposon families,
there are other substrates of retrotransposition in the human ge-
nome. Processed pseudogene insertions occur when processed
mRNA is inserted into the genome using the L1 machinery
(Esnault et al. 2000; Abyzov et al. 2013; Ewing et al. 2013;
Schrider et al. 2013). There are also several polymorphic HERV-K
(HML-2) elements in humans, including at least one potential-
ly active insertion (Wildschutte et al. 2016). We searched for
HERV-K (HML-2) elements using MELT and did not identify any
candidate de novo loci (Methods; Supplemental Data S1). RUFUS
and TranSurVeyor did not detect any de novo pseudogene or
HERV-K (HML-2) insertions. Processed pseudogene retrotransposi-
tion events are rare (Ewing et al. 2013; Gardner et al. 2018), and
tools specific to identifying these events in WGS would allow for
retrotransposition rate estimates in pedigrees.

Retrotranspositional activity may differ across pedigrees and
populations (Chaisson et al. 2019), similar to how polymorphic
PRDM9 variants affect recombination hotspot activity (Baudat
et al. 2010; Kong et al. 2010). It is predicted that every human con-
tains 80–100 active L1 elements (Brouha et al. 2003), and this may
influence variation in retrotransposition activity among humans.
The three source L1 elements in this study are present in all major
regional groups in the SGDP (Mallick et al. 2016), which suggests
that these elements may also be active in non-European popula-
tions (Fig. 2; Supplemental Fig. S4). However, we did not investi-
gate any polymorphic internal variants that may affect the
“hotness” of the source element (Seleme et al. 2006).We identified
an overabundance (six) of de novo MEIs in pedigree 1331; siblings
8549 (NA07033) and 8310 (NA07023) were also the only individ-
uals with more than one de novo MEI in the data set (Alu #1 and
SVA #4 in 8549 [NA07033], and L1 #5 and SVA #1 in 8310
[NA07023]). Preliminary analysis of the pedigree did not reveal
any pathogenic SNPs in a gene list of proteins that restrict retro-
transposition activity (Goodier 2016). Future studies of retrotrans-
position in large pedigree-based cohorts may help to elucidate
variants and genetic factors involved in the regulation of L1-medi-
ated retrotransposition activity.

Methods

CEPH individuals

Blood-derived DNA samples from 599 individuals, including
454 trios within larger pedigrees, were collected from either
the original CEPH cohort (Dausset et al. 1990) or the Utah
Genetic Reference Project (Prescott et al. 2008). These samples
were whole-genome sequenced at ∼30× coverage (Supplemental
Methods) and aligned to the GRCh37 reference genome using
BWA-MEMv0.7.15 (Li andDurbin 2009). BAMswere not realigned
to the updated GRCh38 because de novo MEIs are by definition
not found in the reference sequence. SAMBLASTER was used to
de-duplicate the aligned BAM files (Faust and Hall 2014). GATK
v3.50 was used to realign regions containing potential short inser-
tions and deletions and base quality score recalibration (DePristo
et al. 2011). Alignment quality metrics for the BAM files were cal-
culated by running samtools stats and flagstats (Li et al. 2009).
Approximate coverage estimates for each BAM file were calculated
using the covstats tool (goleft v0.1.17; https://github.com/brentp/
goleft) (Supplemental Table S1). Box plots for coverage of each

pedigree are shown in Supplemental Figure S9. Evaluation by
peddy identified nine individuals with a het_ratio > 0.2 who
were also declared duplicates, indicating potential sample contam-
ination before sequencing (Pedersen andQuinlan 2017). All 17 tri-
os with these individuals were removed from the rate estimate
post-IGV evaluation. Therefore, 437 births were used in the rate es-
timates. All sampled individuals provided informed consent. All
ascertainment was performed under University of Utah institu-
tional review board approvals.

Identification of MEIs in the CEPH data set

We used three complementary approaches to identify de novo
MEIs in this data set. All 599 individuals were joint-called with
the MELT-Split protocol in MELT (v2.14) for detection of Alu,
L1, SVA, and HERV-K (HML-2) elements using the consensus
transposon files provided by MELT (Gardner et al. 2017).
Coverage estimates for each BAM file were rounded down for the
IndivAnalysis step. To increase sensitivity, loci were not filtered us-
ing the filtering criteria provided by MELT. To identify de novo
MEIs in generations 2 and 3 simultaneously, the Genotype
Query Tools (GQT) package (Layer et al. 2016) was used to identify
loci that were restricted to a unique CEPH pedigree and homozy-
gous reference in generation 1.

All 454 trioswere processed throughRUFUS, and all structural
variant breakpoints were extracted for detection of L1-associated
retrotransposition events (https://github.com/jandrewrfarrell/
RUFUS) (Ostrander et al. 2018). RUFUS was unable to process trios
1788, 2020, and 4877 successfully. These trios were not among the
17 removed after peddy analysis.

Each sample was individually processed through
TranSurVeyor, and unfiltered breakpoints with fewer than four
discordant reads of support were removed (Rajaby and Sung
2018). Then, we merged overlapping breakpoints in each individ-
ual using the BEDtools merge command (Quinlan and Hall 2010)
and merged samples into three BED files: children, parents, and
grandparents. We next used BEDtools intersect to identify
MEIs that are present in parents and absent in the grandparents,
and children MEIs that are absent in the parent and grandparent
BED files.

We created a BED file that contained each candidate locus
and included the sample BAM ID in the fourth column. This was
processed through a custom Python script that generated an IGV
batch script. Scripts to generate IGV images in one individual
and a trio are available (https://github.com/julieefeusier/IGV-
Batch-Script-Generator-for-bed-files) (Supplemental Code S1).
Each candidate locus was visualized as a trio in IGV to identify can-
didate de novo MEIs (Robinson et al. 2011; Thorvaldsdóttir et al.
2013). Any image with evidence of a structural variant (but not
small indels) or MEI was flagged for further investigation. These
criteria include the presence of one or more features: discordant
read pairs, split reads, clear breakpoints, TSDs, and poly(A) tails.
Breakpoints were then further investigated in IGV and in BLAT
to rule out non-MEI SVs. Candidate loci that passed these initial
steps were then locally reassembled for PCR validation.
TranSurVeyor took 4.5 h on average per individual. For RUFUS,
k-mer counting took on average 2 h per sample, and each trio
run took 6 h using 40 cores. MELT took about 1 wk per mobile el-
ement family with 10 threads for the individual steps.

Local reassembly of candidate MEIs for primer design

After IGV evaluation, the de novo TE insertion breakpoints provid-
ed by the three tools were further analyzed by extracting the reads
mapped to a 250-bp region flanking the breakpoint in each
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individual. Discordant reads mapped to that 500-bp window
were identified, and mates of those discordant reads mapped
elsewhere in the BAM file were collected (http://broadinstitute
.github.io/picard/) (Li et al. 2009). A local de novo assembly of
all the extracted reads was performed (Huang and Madan 1999)
for each breakpoint in each individual. The assembled contigs
were further probed for the presence of TEs. These steps were per-
formed using a custom Perl script (https://github.com/jainy/
local_assembly_nonreferenceTE) (Supplemental Code S2).

PCR/Sanger validation of de novo MEIs

PCR amplifications of about 10–25 ng of template DNA (blood-de-
rived or transformed lymphoblast DNA) were performed in 25-µL
reactions according to the Phusion Hot Start Flex DNA Polymerase
protocol (using 5× GC buffer) and Q5 Hot Start DNA Polymerase
(using GC Enhancer). The thermocycler conditions were initial
denaturation for 30 sec at 98°C, 40 cycles of denaturation for
10 sec at 98°C, for 30 sec at optimal annealing temperature
(58°C–68°C), a 30 sec–3 min extension at 72°C, and a final exten-
sion for 5min at 72°C. Every primer set reaction was performed on
the pedigree with the candidate de novo MEI, a positive control,
and sterile water. PCR amplicons were run on a 1%–2% gel con-
taining 0.12 mg/mL ethidium bromide for 75–90 min at
120 V. Gels were imaged using a Fotodyne Analyst Investigator
Eclipse machine. Bands were cut out and purified for Sanger se-
quencing using the Qiagen QIAquick Gel Extraction Kit. Primer
sets for Alu elements are in Supplemental Table S13, and primers
sets for L1/SVA elements are in Supplemental Table S14.

L1 and SVA elements were amplified using the Thermo Fisher
Scientific Platinum SuperFi DNA polymerase and cloned using
Thermo Fisher Scientific Zero Blunt Topo II/4 kits. We followed
the Platinum SuperFi PCR setup for 25-µL reactions using 2 µL
starting DNA (∼5 ng/µL). For the PCR procedure, each reaction
was denatured for 30 sec at 98°C, and then amplified for 35 cycles
(for 10 sec at 98°C, annealing for 10 sec, an extension for 30 sec or
longer at 72°C based on amplicon size). Annealing temperatures
were estimated for each primer pair based on Thermo Fisher
Scientific calculations. A final extension was performed for
5 min at 72°C. The Invitrogen PureLink Quick Plasmid Miniprep
Kit was used to extract DNA from the clones. Clones were Sanger
sequenced through the whole length of the fragment
(Supplemental Table S15). We used several internal primers from
previous studies (Scott et al. 2016; Feusier et al. 2017). The three
generation 2 L1/SVA elements were analyzed in generation 3
because of the availability of DNA.

Retrotransposition rate estimates

The retrotransposition rate and 95% confidence intervals were cal-
culated using an exact binomial confidence interval estimate with
x=number of de novo Alu, L1, or SVA elements andN=437 births.
We dropped L1 #1 from the number of L1 elements because this
insertion did not likely occur by retrotransposition. This rate was
also calculated for the SSC data set using the identified 23 Alu, sev-
en L1, and three SVA elements in 1038 births (Werling et al. 2018).
We included all listed MEIs in the rate estimates, including one
SVA element that did not have orthogonal support (PCR,
Microarray, or liWGS) (Werling et al. 2018). The estimates and
confidence intervals are listed in Supplemental Table S16.

Investigation of source elements

MELT lists differences from the consensus for eachMEI locus in the
DIFF section of the INFO column (Gardner et al. 2017). These dif-
ferences were extracted and converted to FASTA format using the

MELT consensus transposon FASTA file as the reference. A custom
Python script was used for this step (https://github.com/
julieefeusier/MEI-VCF-to-FASTA) (Supplemental Code S3). Each
de novoMEI sequencewas compared to theMELT FASTA file using
the “grep” command to identify potential source elements. The de
novo MEIs were also compared to the hg19 reference genome us-
ing BLAT (Kent 2002; Kent et al. 2002).

Source elements in Simons Genome Diversity Project and CEPH

Paired-end BAM DNA sequences (hg19) for 279 individuals from
the Simons Genome Diversity Project (Mallick et al. 2016) were
downloaded from the European Nucleotide Archive at the
European Bioinformatics Institute (PRJEB9586). DNA samples
were remapped to hg38. The locations of the three source elements
were converted to hg38 using liftOver in the UCSC Genome
Browser (Kent et al. 2002). Individuals were genotyped from IGV
screenshots for each of the three source elements (Supplemental
Table S4).

We used IGV of the source element to identify additional
3′ transduction events in CEPH. IGV screenshots of the source el-
ement and 2 kb downstream from the MEI were generated in each
CEPH individual for the three source elements. These 3′ transduc-
tion events were discovered by identifying one breakpoint down-
stream whose mate pair mapped to a retrotransposition event
elsewhere in the genome.

Parental origin analysis

For haplotype phasing of de novoMEIs in the parents (second gen-
eration), we extracted SNPs in a 200-kb window surrounding the
MEI’s position. We filtered on SNPs that were heterozygous in
the parent and the parental grandparents and absent in the other
parent (Supplemental Tables S5–S10). The childrenwere assigned a
grandparent haplotype based on the transmission of the SNPs
from the grandparent individuals. Then, the transmission of the
de novo MEI was placed on the children’s grandparent haplotype
to determine the parental origin. There was no evidence of recom-
bination between the de novo MEI and the markers on the grand-
parent haplotype.

Parental origin of the chromosome of de novoMEIs in gener-
ation 3 was analyzed using sex chromosome hemizygous status
and SNP phasing (Supplemental Table S2). We considered a hemi-
zygous insertion on a sex chromosome to be a retrotransposition
event on the parental chromosome in the germline. For SNP phas-
ing, we considered informative SNPs to be either heterozygous to
one parent and the child, or heterozygous in the child and homo-
zygous ref/alt in the parents. Paired-end reads that connected the
MEI and a nearby informative SNP confirmed parental origin.
For Alu elements with SNPs <5 kb away, we designed primers
that amplified the Alu-SNP region and confirmed the SNPs of the
children and their parents via Sanger sequencing (primers listed
in Supplemental Table S13).

Estimating BAF in de novo MEIs

We manually estimated BAF in each individual with a de novo
MEI, including the children (third generation) with the inherited
de novo MEIs. In IGV, we counted the number of split/discordant
reads supporting the MEI at the position that was 1 bp outside of
the TSD. Hard-clipped reads were counted as supporting evidence
of the breakpoint. We summed the total reads at that position and
excluded any reads that could not reliably distinguish the MEI
from the reference sequence. We performed these steps for both
breakpoints of the TSD. Alu #4, and L1 #1 did not have TSDs,
and the L1 #5 TSD was 628 bp, so the BAFs for these loci were
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calculated using the two positions 1 bp before the start of the
breakpoints. Then, the number of reads supporting theMEIwas di-
vided by the total number of reads at the position for each break-
point. We used the highest BAF of the two breakpoints for each
MEI. The BAFs and the average BAF are included in
Supplemental Table S17.

MELT sensitivity analysis

We used the MELT genotype output to estimate its sensitivity in
the three-generation CEPH cohort. Each transposon family was
analyzed separately. For each pedigree, we used GQT (Layer et al.
2016) to extract loci that were present in at least one grandparent
and at least two grandchildren to identify all of the inherited loci.
Then we extracted loci that were present in at least one grandpar-
ent, at least two grandchildren, and absent in both parents (gener-
ation 2). Thesewere deemed false-negative calls. The false-negative
rate was calculated by dividing the total false-negative calls by
the total inherited loci. We also calculated the false-negative/sen-
sitivity rates for filtered loci by extracting only loci with MELT’s
“PASS” filter after identifying loci in GQT. These results are in
Supplemental Figure S7.

Data access

Whole-genome sequencing data for the human samples from this
study have been submitted to the database of Genotypes and
Phenotypes (dbGaP; https://www.ncbi.nlm.nih.gov/gap/) under
accession number phs001872.v1.p1.
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