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Abstract: Carrier phase measurement is a ranging technique that uses the receiver to determine the
phase difference between the received signal and the transmitted signal. Carrier phase ranging has a
high resolution; thus, it is an important research direction for high precision positioning. It is widely
used in global navigation satellite systems (GNSS) systems but is not yet commonly used inwireless
orthogonal frequency division multiplex (OFDM) systems. Applying carrier phase technology to
OFDM systems can significantly improve positioning accuracy. Like GNSS carrier phase positioning,
using the OFDM carrier phase for positioning has the following two problems. First, multipath and
non-line-of-sight (NLOS) propagation have severe effects on carrier phase measurements. Secondly,
ambiguity resolution is also a primary issue in the carrier phase positioning. This paper presents a
ranging scheme based on the carrier phase in a multipath environment. Moreover, an algorithm based
on the extended Kalman filter (EKF) is developed for fast integer ambiguity resolution and NLOS
error mitigation. The simulation results show that the EKF algorithm proposed in this paper solves
the integer ambiguity quickly. Further, the high-resolution carrier phase measurements combined
with the accurately estimated integer ambiguity lead to less than 30-centimeter positioning error for
90% of the terminals. In conclusion, the presented methods gain excellent performance, even when
NLOS error occur.

Keywords: extended Kalman filter; localization; time of arrival; carrier phase; ambiguity resolution

1. Introduction

With the rapid development of industries such as the Internet of Things and industrial
control, high-precision indoor positioning technology has become an important issue
to be solved. It is challenging to receive valid satellite navigation signals in the indoor
environment, and other high-precision positioning technologies need to be studied. In
recent years, positioning services based on wireless communications are rapidly developing.
The mobile cellular network covers a wide area and is one option for dense urban areas and
indoor positioning. Benefit from the advance of 5G technology, high-precision positioning
using the wireless access network has become a hot research direction. In wireless networks,
traditional ranging-based positioning methods include angle of arrival (AOA), received
signal strength (RSS), and time-of-arrival (TOA). Among them, AOA determines location
of the user by measuring the angle between the terminal and the base station (BS) [1].
Since measuring angle often requires a sufficient number of antennas at the receiver,
the application range of AOA technology is limited. RSS technology needs to establish
an accurate signal energy propagation model, making it challenging to achieve high
measurement accuracy [2]. TOA-based positioning technology converts arrival time to a
distance and then uses the distance information for positioning. TOA has been widely used
due to its low requirements of positioning equipment [3]. This paper mainly studies high-
precision TOA measurement and positioning algorithms based on orthogonal frequency
division multiplex (OFDM) systems.
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TOA estimation can be considered as a channel estimation problem. Many documents
carry out channel impulse response (CIR) estimation from the time domain or frequency
domain perspective in the OFDM multi-carrier system [4–9]. Typical schemes are cross-
correlation algorithms based on the pseudo-randomness of the transmission sequence,
including the maximum criterion algorithm and the threshold algorithm[4]. However,
this positioning method is limited by the signal bandwidth and receiver resolution, and it
is challenging to achieve sub-meter accuracy. Besides, TOA-based parameter estimation
techniques have been widely studied, including multiple signal classification algorithm
(MUSIC) [10], Signal Parameters via Rotational Invariant Techniques (ESPRIT) [11], and
Space-Alternating Generalized Expectation maximization (SAGE) [12] algorithms. These
algorithms are not limited by the system sampling rate but are determined by the search
interval for time delay estimation. A smaller search interval will effectively improve the ac-
curacy of TOA estimation but will significantly increase the computational complexity. The
vast computational overhead makes it difficult to apply such algorithms to real-time user
localization scenarios. Other studies have attempted to apply phase ranging techniques to
indoor localization [13–15]. However, specific phase emission and measurement devices
are challenging to reduce the cost of localization effectively. Phase measurement techniques
based on OFDM systems can provide high accuracy positioning measurements while satis-
fying communication requirements, and therefore are a research direction for phase-based
positioning. References [16–18] describe methods for distance measurement through the
phase difference of subcarriers in OFDM systems. Still, such schemes are often only suitable
for LOS propagation or multipath propagation when the Rice factor is high. Carrier phase
localization techniques based on wireless cellular networks have been proposed in the
literatures [19,20]. Furthermore, carrier phase measurement in multipath environments
and the suppression of non-line-of-sight (NLOS) error require further research.

There are two modes for receivers in global navigation satellite systems (GNSS):
pseudorandom code (C/A code or P-code) and the carrier phase [21,22]. The ranging
principle of pseudorandom code mode is similar to TOA, and the measurement error of
pseudorandom code mode is vast. The carrier phase ranging method uses the carrier
phase of the measurement signal to extract the propagation distance information. Under
line-of-sight (LOS) conditions, the carrier phase’s measurement error is a small fraction
of the carrier wavelength and can reach the centimeter range. However, the carrier phase
measurement includes unknown integer ambiguity: the distance between the user and the
BS in terms of carrier wavelength can be divided into an integral part of the wavelength
plus a fractional function. During the initialization of positioning, the phase measurement
is in the range [0, 2π], so only fractional multiples of the distance can be measured, which
causes the problem of integer ambiguity. Once this problem is solved, the carrier phase
positioning can meet the requirements of high accuracy.

Inspired by reference [19], the positioning accuracy might be significantly improved if
the carrier phase technology can be extended in the indoor location system. Compared with
GNSS positioning, wireless networks can work in challenging scenarios and have more
flexible carrier frequency configurations, fewer error sources, and more minor path losses.
These characteristics constitute the advantages of supporting carrier phase technology in
wireless networks. However, despite these advantages, there are many challenges while
applying carrier phase positioning in wireless networks: Multipath and NLOS propagation
in the indoor environment, fast resolution of integer ambiguities in wireless networks, etc.

In summary, this paper proposes a carrier phase-ranging scheme based on the OFDM
system. Under the premise of high accuracy ranging, this paper focuses on two aspects:
carrier phase measurement in a multipath environment and how to solve the integer
ambiguity quickly and accurately. First, we model the carrier phase measurement in
a multipath environment and analyze the integer ambiguity generation. Second, we
propose an extended Kalman filter (EKF) for solving the integer ambiguity. The EKF-based
algorithm can solve the position of the terminal while solving the integer ambiguity. Further,
we describe how to utilize the EKF to mitigate the errors caused by NLOS propagation.
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The overall structure of this study contains five chapters. Section 2 describes the model
for studying TOA and phase estimation in OFDM systems. In Section 3, we propose an
EKF that combines carrier phase and TOA measurements to enhance positioning accuracy
and reduce the impact of NLOS error on mobile positioning. Numerical simulation results
are presented in Section 4 to prove the effectiveness of the new methods. In Section 5, we
summarize conclusions drawn from this paper.

In this paper, vectors and matrices are denoted by boldface lower-case letters and
boldface upper-case letters. The superscript [.]T denotes the transpose. The superscript
[.]ij and the subscript [.]ab represent, respectively, the single-difference (SD) between the
transmitters and between the receivers.

2. Ranging System

Consider OFDM transmission with N subcarriers, subcarrier spacing ∆ fSCS and sam-
pling interval TS = 1/(N∆ fSCS). OFDM transmission is block oriented. Assume N
quadrature-amplitude modulation (QAM) symbols Xm

k , k ∈ {1, . . . , N} are grouped into a

vector Xm =
[
Xm

1 , . . . , Xm
N
]T and transmitted in the m-th OFDM symbol in a slot. A unitary

inverse discrete-time Fourier transform (IDFT) on Xm gives a continuous time representa-
tion of the complex envelope of an OFDM symbol of duration T = NTs = 1/∆ fSCS (note:
here T does not include cyclic prefix).

xm(t) =
1√
N

N

∑
k=1

Xm
k ej2π(k−1)t/T ; 0 ≤ t ≤ T, (1)

the time-domain signal xm(t) is up-converted to the carrier frequency fc for transmission.

sm(t) = xm(t)ej2π fct

=
1√
N

N

∑
k=1

Xm
k e j2π((k−1)/T+ fc)t; 0 ≤ t ≤ T.

(2)

Assume the channel is the quasi-static channel, i.e., the channel does not change during
the transmission of one OFDM symbol, the quasi-static channel can then be described

by a time discrete CIR h =
[

h0(t), h1(t), . . . , hLp−1(t)
]T

, multipath channel model can be
expressed as:

h(t, τ) =
Lp

∑
l=1

hl(t)δ(t− τl(t))+hd(t, τ), (3)

Lp is the total number of paths which include one LOS path and Lp − 1 NOLS paths, hl(t)
is the gain for the l-th path, δ(t− τl(t)) is the Dirac delta function, τl(t) is the TOA of the
l-th path, hd(t, τ) are the diffuse multipath components (DMC) [23], which represent the
non-discrete part of the channel. The received signal after passing through the multipath
channel can be expressed as:

ym(t) = sm(t)⊗ h(t, τ) + wm
n =

∫ ∞

−∞
sm(ξ)h(t− ξ, τ)dξ + wm, (4)

wm is the color noise consisting of wm
n and sm(t)⊗ hd(t, τ), where wm

n ∼ N
(
0, σ2) is the

complex additive noise with zero mean and σ2 variance. If the received signal contains
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color noise, it is necessary to consider the use of whitening filters to convert the color noise
to white noise [24]. Furthermore, the received m-th OFDM symbol can be expressed by:

ym(t) =
1√
N

N

∑
k=1

Xm
k

[ Lp

∑
l=1

hl(t)e
−j2π( fc+

k−1
T )τl(t)

]
ej2π( fc+

k−1
T )t + wm

=
1√
N

N

∑
k=1

Xm
k

[ Lp

∑
l=1

hl(t)e
−j2π( fc+

k−1
T )τl(t) + wm

k

]
ej2π( fc+

k−1
T )t

. (5)

After down-conversion and removal of the samples of the received signal which
belong to the cyclic prefix, the received signal ym(t) is converted into a discrete time
domain signal ym[n]:

ym[n] =
1√
N

N

∑
k=1

Xm
k

[ Lp

∑
l=1

hl [nTs]e−j2π( fc+
k−1

T )τl [nTs ] + wm
k

]
ej2π

n(k−1)
N . (6)

2.1. Conventional Cross-Correlation TOA Estimator

Signal arrival time needs to be obtained from reference signals. In Long Term Evolu-
tion (LTE) Release 9, positioning reference signals (PRS) were used to improve TOA-based
positioning. PRS are pseudo-random sequences with good autocorrelation. With the help
of the autocorrelation characteristics of the PRS sequence, it is easier to find the direct path
in the environment of multipath transmission. The cross-correlation expression is:

Rxy =
N

∑
n=1

xm[n− τ]ym[n]

= h1[nTs]e−j2π fcτ1[nTs ]Rxx
m [τ − τ1[nTs]] +

L

∑
i=2

hi[nTs]e−j2π fcτi [nTs ]Rxx
m [τ − τi[nTs]]

+ Rxw
m [τ], τ ∈ [1, ...N];

(7)

where (.) denotes the complex conjugate function, x[n]is the replica of the transmitted PRS.
Furthermore, based on the autocorrelation of the PRS series, we have:

Rxx
m [τ] =

N

∑
n=1

xm[n− τ]xm[n] = δ[τ]

Rxw
m [τ] =

N

∑
n=1

xm[n− τ]wm[n] ≈ 0

. (8)

where wm[n] is the downsampled additive noise. From Equation (7), it can be seen that
the magnitude of the correlation function is affected by the carrier phase 2π fcτi[nTs]. To
exclude this effect, we use |Rxy[τ]| instead of Rxy[τ] for TOA estimation. Taking the
threshold method as an example, TOA is determined by estimating the time delay of the
first (earliest) peak in the magnitude of the normalized cross-correlation function above a
certain threshold [4].

τ̂ = arg min
τ

{
|Rxy[τ]|

max
{∣∣Rxy

∣∣} ≥ ζ

}
, (9)

here, ζ is the preset threshold. Correlation profile-based methods can estimate the propaga-
tion delay of the first path in a multipath environment. Still, due to the limited sampling
rate of the system, the measurement accuracy of this method is low. Rewriting τ̂ to Ti

r and
introducing terminal r and the BS i, then the estimated TOA can be modeled as [25]:

Ti
r = (di

r + wi
r,T)/c. (10)
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• Ti
r (known) is the TOA measurement from terminal r to BS i (unit:s).

• c is the speed of radio waves in vacuum, 299,792,458 (unit: m/s).

• di
r =

√
(xi − x)2 + (yi − y)2 (unknown) is the geometric distance between the anten-

nas of transmitter i and receiver r (unit: m).
• (xi, yi) (known) is the two-dimensional vector giving the coordinates of BS i.
• (x, y) (unknown) is the location of the terminal to be solved.

• wi
r,T ∼ N

(
0, σ2

r,i

)
(unknown) is a random Gaussian variable accounting for the

residual estimation error (unit: m).

2.2. High-Precision TOA Estimation Scheme Based on Carrier Phase

From Equation (5), combine the known PRS signal, the frequency domain channel
response is written as:

Hm(k) =
Lp

∑
l=1

hl [nTs]e−j2π k−1
N τ̇l−jφl + wm

k , (11)

where τ̇l = N∆ fSCSτl [nTs] is the transmission delay in units of sampling interval.
φl = 2π fcτl [nTs] is the phase shift caused by free-space propagation.

As can be seen from Equation (11), the distance between the BS and the terminal
is reflected in each subcarrier phase. However, due to the signal aliasing of multiple
transmission paths, it is difficult to directly estimate phase information of the first path
from the unprocessed subcarrier phase. Therefore, we convert the frequency domain
channel response to the time domain for further analysis. Furthermore, when the distance
(in units of sampling interval) is not an integer multiple of the sampling interval, the time
domain channel response is subject to energy leakage [26]:

hm
n =

sin(πτ̇l)√
N sin

(
π
N (τ̇l − n)

) ∑
Lp

hl [nTs]e−j π
N (n+(N−1)τ̇l)−jφl . (12)

Much of the literature [27,28] describes using Equation (7) or (9) to find the integer
multiple sampling points closest to the transmission delay, denoted as [τ̇1], and [.] is a
rounding function. The time domain signal is processed to eliminate the effects of multipath
effects. The window can be expressed as: for n ∈ [[τ̇1]− W

2 , [τ̇1] +
W
2 ], h̃m

n = hm
n , else h̃m

n = 0.
Furthermore, W is the length of the window.

We use the tapped delay line model to characterize the frequency-selective channel,
and each tap represents a different channel delay in units of the sampling interval of the
receiver. Figure 1 shows a schematic of the window at W = 0. Based on the correlation
of the transmit sequence, the terminal can determine the arrival delay of the direct path.
The manipulation of the power delay profile further eliminates the effects of multipath.
Additionally, it is worth noting that actual distance to the BS in this example is 12.4
sampling intervals. Due to the limitation of the system sampling rate, the TOA obtained
by the cross-correlation algorithm is 12 sampling intervals, which generates a significant
measurement error. Furthermore, as shown in the figure, the distance is a non-integer
multiple of the sampling interval resulting in leakage between taps.
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Figure 1. Power delay profile.

For the convenience of analysis, we consider W = 0 and the window can be expressed as:{
h̃m

n = h1[nTs ] sin(πτ̇1)√
N sin( π

N (τ̇1−n))
e−j π

N (n+(N−1)τ̇1)−jφ1 , n = [τ̇1]

h̃m
n = 0, n ∈ N|τ̇1

, (13)

here, N|τ̇1
= {1, 2, [τ̇1]− 1, [τ̇1] + 1, · · · , N}. The frequency domain channel response after

the window function can be written as:

Hm
k =

h1[nTs] sin(πτ̇1)e−j π
N ([τ̇1]+(N−1)τ̇1)−jφ1−j2π

[τ̇1 ]
N k

√
N sin

(
π
N (τ̇1 − [τ̇1])

) . (14)

The time-domain window eliminates the effect of multipath on the carrier phase, but
introduces additional problems at the same time.

(1) The phase difference between sub-carriers e−j2π
[τ̇1 ]
N can no longer accurately reflect

the distance. The system resolution also limits the time delay measured through the
subcarrier phase due to the effect of the time domain window.

(2) The time-domain window processing introduces some phase noise. For example,
e−j π

N ([τ̇1]+(N−1)τ̇1). Furthermore, the sign of sin(πτ̇1)

sin( π
N (τ̇1−[τ̇1]))

will also affect the phase of

sub-carriers.
It can be proved that the subcarrier phase of k = N/2 can effectively reflect the

distance information from the terminal to the BS. Furthermore, the channel frequency
response of subcarrier k = N/2 can be approximated as:

Hm
k=N/2 =

h1[nTs] sin(πτ̇1)√
N sin

(
π
N (τ̇1 − n)

)e−jπτ̇1−jφ1 + wm
N/2, (15)

the proof is given in the Appendix A. Therefore the phase at k = N/2 can be written as:

φ̂ = −angle
(

e−jπτ̇−jφ1−ŵP
)

; 0 ≤ φ̂ ≤ 2π, (16)

here, ŵP is the phase noise caused by wm
N/2. Due to the trigonometric function properties,

the part beyond 2π cannot be found when solving for the phase; thus, the integer ambiguity
arises. Considering the phase shifts experienced in the channel, e.g., phase noise, base on
τ̇1 = N∆ fSCSτ1[nTs] and φ1 = 2π fcτ1[nTs], the phase-based ranging can be written as:

φ̂ + 2πNI = πN∆ fSCSτ1[nTs] + 2π fcτ1[nTs] + ŵP, (17)
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here, NI is the unknown integer ambiguity. Divide Equation (17) by 2π and simplify
the equation:

φ =
N
2

∆ fSCSτ1[nTs] + fcτ1[nTs]− NI + wP

=
d
λ
− NI + wP,

(18)

here, φ = φ̂
2π is the normalized phase measurement, wP = ŵP

2π is the normalized phase
noise, d = cτ1[nTs] is the geometric distance between the antennas of transmitter and
receiver, λ = c

fc+
N
2 ∆ fSCS

is the equivalent wavelength. Further, introducing terminal r and

the BS i, we have:

φi
r =

di
r

λ
− Ni

r + wi
r,P. (19)

• φi
r (known) is the carrier phase measurement (unit: carrier circle).

• λ (known) is the wavelength calculated from c, fc, N, and ∆ fSCS, (unit: m).
• Ni

r (unknown) is the integer ambiguity (unit: carrier circle).

• wi
r,P ∼ N

(
0, σ̃2

r,i

)
(unknown) is the residual estimation error (unit: carrier circle).

The time delay from the user to the BS can be deduced by measuring the phase of the N/2
subcarrier. Equation (16) shows that the system sampling rate does not limit the carrier
phase measurement, and thus the accuracy of the carrier phase-based ranging technique
is high. Furthermore, we use the phase-lock-loop (PLL) [29] to measure the carrier phase.
At the initial locking moment of the PLL, the carrier phase measurement is between [0, 1].
After that, the change of user position will be reflected in the measured phase (continuous
phase tracking allows carrier phase more than 1 or less than 0), thus ensuring that the
integer ambiguity is constant during the user positioning. However, since the integer
ambiguity is unknown, the carrier phase measurements are challenging to be used directly
for user location solutions. Therefore, we propose a location algorithm combining carrier
phase and TOA measurements in the following.

3. Positioning Algorithm

The ambiguity resolution is one of the primary problems in carrier phase mea-
surement. In this section, we propose an EFK algorithm based on TOA and carrier
phase measurements. This algorithm can estimate the position while estimating the
integer ambiguity.

3.1. TOA and Carrier Phase Measurements

According to Equations (10) and (19), further considering the non-ideal factors such
as clock error and NLOS error, the TOA measurements and carrier phase between the i-th
BS and user equipment (UE) r at a specific epoch can be written as:

Ti
r = (di

r + mi
r + wi

r,T)/c + δti − δtr

φi
r =

di
r+c(δti−δtr)+mi

r
λ − Ni

r + wi
r,P

, (20)

• δti (unknown) is the clock error of the transmitter i (unit: s).
• δtr (unknown) is the clock error of the receiver r (unit: s).
• mi

r (unknown) represents the channel bias introduced by NLOS reflections (unit: m).

The SD of the TOA and carrier phase measurements from the receiver r by measuring the
signals from two transmitters i and j can be expressed as:

Tij
r = (dij

r + mij
r + wij

r,T)/c + δtij

φ
ij
r = dij

r +cδtij+mij
r

λ − Nij
r + wij

r,P

, (21)
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where the double superscript “ij” indicates the differential operation between transmitters
i and j, i.e., sij

r = si
r − sj

r; s ∈ {T, φ, d, δt, N, m, w}. According to Equations (10) and (19),
the measurement noise wij

r,T and wij
r,P are still independent Gaussian noise with following

distributions, i.e.,

E
[
wij

r,T , wkj
r,T

]
=

{
σ2

r,i + σ2
r,j; i = k

σ2
r,j; i 6= k

. (22)

The SD operation of Equation (21) removes the measurement errors common to the
receiver, e.g., the receiver clock offset δtr. Furthermore, the double-difference (DD) TOA
and carrier phase measurements from two transmitters i and j, and two receivers r and u
can be expressed as:

Tij
ru = (dij

ru + mij
ru + wij

ru,T)/c

φ
ij
ru = dij

ru+mij
ru

λ − Nij
ru + wij

ru,P

, (23)

where the double superscript “ij” indicates the differential operation between transmitters
i and j, and double subscript “ru” indicates the differential operation between receivers r
and u, sij

ru = sij
r − sij

u =
(

si
r − sj

r

)
−
(

si
u − sj

u

)
; s ∈ {T, φ, d, δt, N, m, w}. DD measurement

noise wij
ru,T and wij

ru,P are no longer independent Gaussian noise. Assume the transmitter j
is selected as the reference, we have:

E
[
wij

ru,T , wkj
ru,T

]
=

{
σ2

r,j + σ2
u,j; i 6= k

σ2
r,i + σ2

u,i + σ2
r,j + σ2

u,j; i = k
. (24)

DD operation removes the measurement biases related to the transmitters and the
receivers, such as the transmitter clock offsets and receivers clock offsets. We introduce the
concept of reference device, where it is assumed that u is the reference device and that the
location of terminal u is known. It can be seen by Equation (23) that the introduction of the
reference device helps to eliminate the clock error. We can construct the SD measurements
from the DD measurements, which are not impacted by the receiver and the transmitter
clock biases. Given that dij

u can be obtained from the known locations of the reference
device u and the BSs, we can construct the SD measurements T̂ij

r and Φij
r :

T̂ij
r , cTij

ru + dij
u = dij

r + mij
ru + wij

ru,T

Φij
r , φ

ij
ru +

dij
u

λ = dij
r +mij

ru
λ − Nij

ru + wij
ru,P

, (25)

Equation (25) shows the T̂ij
r and Φij

r are not impacted by the receiver and the transmitter
clock biases. It is worth noting that the reference device can be either a UE with a known
exact location or a BS. For some positioning scenarios, the deployment of additional
hardware can cause a significant overhead; therefore, 3GPP has agreed on selecting the
reference device, i.e., the device with the known location can be a UE and/or a BS (also
known as evolved gNB) [30].

3.2. Extended Kalman Filter

For an EKF design, one needs first to define the unknown EKF states. An EKF for
carrier phase positioning may include the following EKF states:

• UE position. EKF for positioning needs to include the states associated with the
unknown UE position. The EKF may use the 2D (or 3D) UE position coordinates
directly as the EKF states. For example, in the following discussion of the EKF design,
we assume the EKF states include a 2D position.

• UE velocity. With the consideration of UE mobility, the EKF states may also include
the UE velocity. The number of states for UE velocity is generally the same as the
number of states for UE position.
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• Integer ambiguities. The premise of using the carrier phase for location is to solve
integer ambiguities. According to Equation (25), it is necessary to solve the DD integer
ambiguities while solving the user position.

Let the position of the UE at epoch k be s(k). In the absence of other information,
assume that the velocity of UE keeps constant, the position at the next epoch can be
expressed as s(k+ 1) = s(k) + vT. Furthermore, in the case of no cycle slip, the ambiguities
remain consistent in each epoch. Assume the system states include 2D position, 2D
velocity, and the DD integer ambiguities are obtained from m cells, and the system can be
represented as: 

x(k + 1) = x(k) + vx(k)T

vx(k + 1) = vx(k)

y(k + 1) = y(k) + vy(k)T

vy(k + 1) = vy(k)

Nij
ru(k + 1) = Nij

ru(k)

(26)

Assume the j-th cell is selected as the reference cell. The EKF state vector x can be
expressed as follows:

x , [s, v, N]T

=
[

x, y, vx, vy, N1j
ru, . . . , N(j−1)j

ru , N(j+1)j
ru , . . . , Nmj

ru

]T , (27)

where s = (x, y) models the UE position; v = (vx, vy) is the UE velocity, and

N = [N1j
ru, . . . , N(j−1)j

ru , N(j+1)j
ru , . . . , Nmj

ru ] includes the DD integer ambiguities. Based on
the selected EKF states, the state transition equation of the discrete EKF for carrier phase
positioning can be written as:

x(k + 1) = F(k)x(k) + Wx(k). (28)

The one-step state transition matrix is as follows:

F =

 I(2× 2) F12 0
0 I(2× 2) 0
0 0 I(m− 1×m− 1)

, (29)

where F12 =

[
∆T 0
0 ∆T

]
, E[Wx] = 0, and Q = E

[
WxWT

x
]

=

diag(Qr; Qv; 0(m− 1×m− 1)), Qr = diag
{

σ2
x , σ2

y

}
, Qv = diag

{
σ2

vx , σ2
vy

}
, I represents

an identity matrix, and 0 represents a zero matrix. ∆T is the time interval of the state
transition of the Kalman filter. σ2

x , σ2
y and σ2

vx , σ2
vy represent the uncertainty in the prediction

of the UE position and velocity.
The measurement equations of the discrete EKF as:

Z(k + 1) = h(x(k + 1)) + WZ(k + 1) (30)

Z(k + 1) =
[

T
Θ

]
, T(k + 1) =



T̂1j
r (k + 1)

...
T̂(j−1)j

r (k + 1)
T̂(j+1)j

r (k + 1)
...

T̂mj
r (k + 1)


(31)
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Θ(k + 1) =



Φ1j
r (k + 1)

...
Φ(j−1)j

r (k + 1)
Φ(j+1)j

r (k + 1)
...

Φmj
r (k + 1)


(32)

Wz(k + 1) =
[

WT(k + 1)
WP(k + 1)

]
, E[Wz] = 0

R = E
[
WzWT

z
]
=

[
RT 0
0 RP

] (33)

Z(k + 1) is the SD measurement vector, WZ(k + 1) is the measurement noises, RT and
RP represent, respectively, the convince matrix of the measurement noises WT and WP.
RT is non-diagonal matrixes due to DD operation on the measurements as shown in
Equation (24). RP can be obtained similarly.

h(x(k + 1))is a nonlinear function that describes the relationship between the state
vector and the measurement vector:

h(x(k + 1)) =
[

h(x(k + 1))T
h(x(k + 1))P

]

h(x(k + 1))T =



h1j
T

...
h(j−1)j

T

h(j+1)j
T

...
hmj

T


, h(x(k + 1))P =



h1j
P

...
h(j−1)j

P

h(j+1)j
P

...
hmj

P


hij

T = hi
T − hj

T ; (i = 1, . . . , m; i 6= j)

hij
P = hi

P − hj
P; (i = 1, . . . , m; i 6= j)

hi
T =

√
(x(k + 1|k)− xi)

2 + (y(k + 1|k)− yi)
2; (i = 1, . . . , m)

hi
P =

√
(x(k+1|k)−xi)

2+(y(k+1|k)−yi)
2

λ − Ni
ru; (i = 1, . . . , m)

(34)

There is a need to linearize the measurement Equation (30) around the estimated UE
location to use the EKF algorithm. The Jacobian matrix H can be obtained as:

H(x(k + 1|k)) = ∂h
∂x
|x(k+1|k) =

[
∂hT
∂x |x(k+1|k)

∂hP
∂x |x(k+1|k)

]
(35)

∂hT
∂x |x(k+1|k) =



∂h1j
T

∂x |x(k+1|k)
∂h1j

T
∂y |y(k+1|k)

...
...

∂h(j−1)j
T
∂x |x(k+1|k)

∂h(j−1)j
T
∂y |y(k+1|k) 0(m− 1× 2) 0(m− 1×m− 1)

∂h(j+1)j
T
∂x |x(k+1|k)

∂h(j+1)j
T
∂y |y(k+1|k)

...
...

∂hmj
T

∂x |x(k+1|k)
∂hmj

T
∂y |y(k+1|k)


(36)
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∂hP
∂x |x(k+1|k) =



∂h1j
P

∂x |x(k+1|k)
∂h1j

P
∂y |y(k+1|k)

...
...

∂h(j−1)j
P
∂x |x(k+1|k)

∂h(j−1)j
P
∂y |y(k+1|k) 0(m− 1× 2) −I(m− 1×m− 1)

∂h(j+1)j
P
∂x |x(k+1|k)

∂h(j+1)j
P
∂y |y(k+1|k)

...
...

∂hmj
P

∂x |x(k+1|k)
∂hmj

P
∂y |y(k+1|k)


(37)

∂hij
T

∂x |x(k+1|k) =
∂hi

T
∂x |x(k+1|k) −

∂hj
T

∂x |x(k+1|k); (i = 1, . . . , m; i 6= j)

∂hij
P

∂x |x(k+1|k) =
∂hi

P
∂x |x(k+1|k) −

∂hj
P

∂x |x(k+1|k); (i = 1, . . . , m; i 6= j)

∂hi
T

∂x |x(k+1|k) = λ
∂hi

P
∂x |x(k+1|k) =

x(k+1|k)−xi√
(x(k+1|k)−xi)

2+(y(k+1|k)−yi)
2

∂hi
T

∂y |y(k+1|k) = λ
∂hi

P
∂y |y(k+1|k) =

y(k+1|k)−yi√
(x(k+1|k)−xi)

2+(y(k+1|k)−yi)
2

∂hij
P

∂Nij
ru

= −1

(38)

Given the state and measurement equations in previous sections, the EKF algorithm
can be applied to calculate the estimate of x(k + 1) based on the SD measurements. EKF
algorithm [31,32] includes the following time-update and measurement update equations.
Furthermore, the time-update equation are:

x(k + 1|k) = F(k)x(k|k);
P(k + 1|k) = F(k)P(k|k)FT(k) + Q(k);

(39)

where x(k|k) and P(k|k) are, respectively, the estimated state vector and its covariance
matrix at the epoch t = tk. x(k + 1|k) and P(k + 1|k) represent, respectively, the predicted
state vector and its covariance matrix at the epoch t = tk+1, based on x(k|k) and P(k|k).
The matrixes F(k) and Q(k) are defined in Equation (29). Furthermore, the measurement
update equation are:

K(k + 1) = P(k + 1|k)H(x(k + 1|k))
[
H(x(k + 1|k))P(k + 1|k)HT(x(k + 1|k)) + R(k)

]−1;
x(k + 1|k + 1) = x(k + 1|k) + K(k + 1)[Z(k + 1)− h(x(k + 1|k))];
P(k + 1|k + 1) = [I−K(k + 1)H(x(k + 1|k))]P(k + 1|k);

(40)

H(x(k + 1|k)) is the Jacobian matrix given by Equation (35), the measurement equation
h(x(k + 1|k)) is defined in Equation (34), and calculated based on the predicted position
(x(k + 1|k), y(k + 1|k)) at time t = tk+1.

3.2.1. NLOS Error Recognition and Elimination Based on EKF

Equation (25) shows that DD operation may not cancel out the impact of the NLOS.
Furthermore, we propose an EKF-based scheme for NLOS error identification and elimination.

T̂ij
r , cTij

ru + dij
u = dij

r + mij
ru + wij

ru,T

Φij
r , φ

ij
ru +

dij
u

λ = dij
r +mij

ru
λ − Nij

ru + wij
ru,P

. (41)

According to the state and measurement equations at t = tk, EKF can predict the SD
measurements at t = tk+1. Because the NLOS error reaches several meters, if there is NLOS
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propagation at t = tk+1, the SD measurements will deviate greatly from the predicted value
of EKF. NLOS error can be identified and corrected according to the deviation:

if
∣∣∣T̂ij

r − hij
T

∣∣∣ > Λ

then T̂ij
r = hij

T , Φij
r = hij

P

. (42)

The threshold setting depends on the maximum DD measurement noise. For the deviation
greater than Λ, the NLOS error needs to be updated. The predicted measurements of EKF
are used to improve the positioning accuracy.

3.2.2. EKF Initialization

x(0) =
[

x(0), y(0), vx(0), vy(0), N1j
ru(0), . . . , Nmj

ru (0)
]T

. (43)

For the first step of the EKF (t = 0), the estimated initial UE position (x(0), y(0)) is obtained
from the time difference of arrival (TDOA) or other approaches [33]. The initial estimates
of (vx(0), vy(0)) can be set to 0. The initial ambiguities N1j

ru(0), N2j
ru(0), . . . , Nmj

r (0) can be
simply determined based on the initial UE position and known positions of cell, i.e.,

Ni
r(0) =

√
(x(0)−xi)

2+(y(0)−yi)
2

λ − φi
r(0);

Nij
r = Ni

r − N j
r ;

Nij
ru = Nij

r − Nij
u ;

(44)

here, Nij
u is the SD integer ambiguity of the reference device. The initial covariance matrix

P0 can be set as the diagonal matrix as follows:

P(0) = diag
{

Px(0), Py(0), Pvx (0), Pvy (0), PN(0)
}

;

PN(0) =
{

PN1j (0), . . . , PN(j−1)j
(0), PN(j+1)j

(0), . . . , PNmj (0)
}

;
(45)

where Px(0), Py(0) can be set based on the assumed maximum positioning error of the
TDOA. Pvx (0), Pvy(0) can be set based on the expected maximum velocity of the UE;
PN1j(0), . . . , PNmj(0) are set based on the maximum assumed DD measurement error.

3.2.3. Interaction with the Ambiguity Resolution Block

The EKF estimated float DD carrier-phase ambiguities would be sent to ambiguity
resolution block to get integer DD carrier-phase ambiguities to improve positioning ac-
curacy. For this purpose, after each EKF step k, the float solution of the DD carrier-phase
ambiguities N̂(k | k) and the corresponding to covariance matrix PN(k) are provided to
the ambiguity resolution block for searching the DD integer ambiguities N(k | k). To fix
integer ambiguities, we use MLAMBDA, a modified LAMBDA method for integer least
squares ambiguity determination [34,35].

DD integer ambiguities N(k | k) can be used to update N̂(k | k). However, the EKF
performance may be degraded if unreliable N(k | k) is used to update N̂(k | k). Thus,
before using N(k | k) to update N̂(k | k), there is a need to test the reliability of the DD
integer ambiguities N(k | k).

The following approach is used to test the reliability of DD integer ambiguities
N(k | k).

• Initialization: Set a predefined threshold for the ratio test: ε > 0, e.g., ε = 0.5. Set a
predefined maximum count nmax, e.g., nmax = 5. Set counter n(0) = 0.

• Step 1: For each epoch k, requesting the MLAMBDA to output two sets of the DD
integer ambiguities. With the request, MLAMDA will return one group of the best
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estimates and one group of the second-best of the DD integer ambiguities and together
with the corresponding residuals, say r1(k) and r2(k).

• Step 2: Calculate the ratio of r1(k)/r2(k), and compared it with a predefined threshold
ε. The smaller r1(k)/r2(k) indicates that the best DD integer ambiguities estimates and
the second-best estimates are close. If r1(k)/r2(k) < ε, the counter n(k) is increased
by 1, i.e., n(k) = n(k− 1) + 1. Otherwise, set n(k) = 0.

• Step 3: If n(k) > nmax, declared that the N(k | k) is reliable DD integer ambiguity
resolution. Once reliable DD integer ambiguity resolution N(k | k) is obtained, it can
be used to update the EKF.

3.2.4. Interaction with the Pre-Processing Measurement Block

Before each EKF operation, the EKF needs to adjust the state variables and covariance
matrices based on TOA and carrier phase measurements.

If at time t = tk, it is detected that there is a cycle slip for the phase measurements
from i-th cell, the corresponding state, and covariance of the cell need to be reset. Nij

ru

can be reset based on the TDOA measurement T̂ij
r and the SD carrier phase measurement

Φij
r . The diagonal element P(k|k) corresponding to Nij

ru will be set based on the maximum
assumed integer ambiguities measurement error.

Suppose at time t = tk, the measurements associated with an existing i-th cell are no
longer available. In that case, the corresponding state Nij

ru needs to be removed from EKF,
and so the elements of covariance matrix P(k|k) related the Nij

ru. The dimension of the EKF
will be reduced correspondingly.

If t = tk, the measurements associated with a new cell are available, the EKF will
add a new state of integer ambiguity for that cell. The corresponding state of the cell is
calculated based on the TDOA measurement T̂ij

r and the SD carrier phase measurement Φij
r .

The diagonal element of P(k|k) corresponding to Nij
ru will be set based on the maximum

assumed integer ambiguities measurement error.
Figure 2 shows the signal processing diagram for the real-time kinematic positioning

based on TOA and carrier phase measurements.

Figure 2. Flowchart of TOA/Carrier Phase combined Real-Time Kinematic.

4. Numerical Results

In this paper, MATLAB is used to verify the algorithm. Furthermore, one PRS sub-
frame is used in each PRS positioning occasion. Perfect muting is assumed in the simulation.
The positioning scene is shown in Figure 3, where six BSs are regularly distributed in the
building, and the reference device is located in the center of the scene. In the simulation,
it is assumed that there is a synchronization error in Network. Therefore, there are time-
varying synchronization errors at the BS side and the terminal side. The detailed simulation
parameters are listed in Table 1. For other parameters including the number of multipath
in the indoor scenarios, the criteria for generating LOS/NLOS, and the path loss, please
refer to [36].
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Figure 3. Terminal positioning environment.

In the simulation, moving speed of the terminal is 1 m/s, and the position solution
interval is 0.1 s. The terminal moves according to a specific track in which the length is
60 m, and the number of sampling epoch is 600. High accuracy localization using the
carrier phase requires a fast and accurate solution of the integer ambiguity. Therefore, we
use the following perspectives to evaluate the effectiveness of the algorithm:

• The accuracy and convergence speed of the integer ambiguity.
• The terminal that can judge whether the solved integer ambiguity is reliable or not.
• The real-time positioning accuracy of the terminal position.
• The cumulative distribution curve of positioning error.

Equation (25) shows that the SD carrier phase measurement Φij
r contains the DD

integer ambiguity Nij
ru. Therefore, we use the DD integer ambiguity for performance

comparison. Define the integer ambiguity estimation error as:

eN = |Nij
ru,ture − Nij

ru| (46)

Figure 4 illustrates the four DD integer ambiguity estimation errors. When eN = 0, it
represents that the estimated integer ambiguity is the same as the actual ambiguity. Fur-
thermore, the first BS is used as the reference BS in our experiment. All integer ambiguity
errors were significant at epoch 0 due to the sizeable initial position estimation error. In
the 92nd epoch, BS21, BS41, and BS51 all estimate the integer ambiguity correctly and
remain unchanged in the subsequent epochs; BS31 always has an error of 1 circle during
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the experiment. The mistake of BS31 did not affect the localization accuracy because the
other integer ambiguities were correctly estimated.

Table 1. System Parameters.

Parameters Values

Channel model 5G New Radio (NR) channel model (Indoor-Mixed
office[36]).

Carrier frequency 3.5 GHz

Carrier wavelength 0.085 m

Inter-site distance 20 m

Room size 40 m × 20 m

Subcarrier spacing 15 KHz

Reference signal New Radio PRS Structure from [37].

Reference Signal Transmis-
sion Bandwidth

50 MHz

Number of BSs 6

UE-antennas 4

Number of subcarriers 3240

FFT Length 4096 for 50 MHz

Sampling rate 61.44 MHz for 50 MHz

Number of occasions used
per positioning estimate

1

Interference modelling Perfect muting

Clock error between BSs Gaussian distribution with a mean of 25 ns and a variance
of 10 ns.

Clock error of the terminal Gaussian distribution with a mean of 50 ns and a variance
of 15 ns.

Delay spread Exponential distribution with a mean of 22 ns.

Total transmission power 24 dBm

Maximum directional gain
of an antenna element

5 dBi

UE speed 1 m/s

Position solution interval 0.1 s

NLOS error identification
threshold

Λ = 3

Ratio test threshold ε = 0.5

LOS generation probability Table 7.4.2-1 in the literature [36].

Fading model Large scale fading: Table 7.4.1-1 in the literature [36]; Fast
fading: Section 7.5 of [36].

Channel independence The channel model of the reference device and the channel
model of the user terminal are independent of each other.
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Figure 4. Schematic diagram of DD integer ambiguity convergence.

Figure 5 shows the ratio test was used to check whether the DD integer ambiguities
output by the EKF are reliable at the current epoch. The dashed line represents the preset
threshold ε = 0.5. After the 113th epoch, the reliability rates are all below the threshold.
Therefore the algorithm determines that the obtained integer ambiguities are reliable after
the 113th epoch. Combined with Figure 4, it can be seen that it is valid to use the ratio test
to determine whether the DD integer ambiguities converge to the actual value.

Figure 5. Test of the reliability of DD integer ambiguities.

We evaluate the performance of the ‘TOA+CP EKF’ based differential positioning
method as in Figure 6. In addition, we also list two other cases for comparison, wherein
‘GMM EKF’ [31] is a method to perform positioning solution by TDOA measurement,
which eliminates the NLOS error by model NLOS propagation as Gaussian mixture model;
‘EKF’ [32] represents a commonly used EKF location algorithm based on TDOA measure-
ment. To eliminate the effect of clock errors, all three algorithms mentioned above use
TDOA obtained from Equation (25) instead of TOA for positioning, and the algorithm
proposed in this paper also requires SD carrier phase measurements.
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Figures 6 and 7 show the performance of the three algorithms during mobile localiza-
tion. Since all three algorithms use differential measurements for position solving, it can be
seen from the results that the time-varying synchronization errors do not affect the posi-
tioning accuracy. At the initial epoch, the accurate integer ambiguity has not been solved,
so the carrier phase measurement is difficult to determine the initial position. Therefore,
initial positions of all three algorithms are calculated from the Chan algorithm [33] using
TDOA measurements. It can be seen from Figures 6 and 7 that in the first few epochs, the
positioning error of ‘TOA+CP EKF’ is significant, which is caused by the inaccurate integer
ambiguity. In subsequent periods, as the algorithm correctly fix the integer ambiguity, the
positioning error gradually decreases. Furthermore, the carrier phase measurement is not
limited by the system sampling rate, which, combined with the correct integer ambiguity,
makes the carrier phase algorithm suitable for scenarios with high accuracy requirements.
Comparatively, both ‘GMM EKF’ and ‘EKF’ use only TDOA for user position tracking,
which leads to lower positioning accuracy.

Figure 6. Statistic of mobile positioning error.

Figure 7. Localization performance of EKF.
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The cumulative density function (CDF) curves of horizontal positioning errors are
used as performance metrics in positioning evaluations. Define the positioning error as:

epos =

√
(x̂− xture)

2 + (ŷ− yture)
2 (47)

The CDFs for the localization error from both methods are shown in Figure 8. The ‘TOA+CP
EKF’ method has the best performance, with 90% of the horizontal positioning errors within
0.27 m. Therefore, the carrier phase-based localization technique can meet the high accuracy
localization requirements. The ‘GMM EKF’ method has the middle performance due to the
algorithm using TDOA for user location tracking and NLOS elimination. Since the system
sampling rate limits the TDOA measurement resolution, the positioning accuracy is low.
‘EKF’ method has the worst performance because it only uses the TDOA and has limited
effectiveness in eliminating NLOS error.

Figure 8. The CDF of horizontal localization error.

We simulated the localization accuracy of this algorithm with the different number
of BSs. In our experiments, as shown in Figure 9, we set the length of the indoor sce-
nario to 100 m and the width to 20 m. Furthermore, the coordinates of the six BSs are
[0, 0], [40, 0], [100, 0], [0, 20], [40, 20], [100, 20], respectively. The coordinate of the reference
UE is [50, 10]. The actual distance between the user and the BS determines the probability
of LOS. Thus, the expansion of the simulation environment decreases the LOS probability
and equivalently simulates the case of increasing obstacles.



Sensors 2021, 21, 6731 19 of 22

Figure 9. Layout of Indoor - Mixed office scenario.

When five BSs are used in the experiment, the BS located at [40, 0] is removed. When
four BSs are involved in localization, the two BSs located at [40, 0], [40, 20] are removed.
From Figure 10, it can be seen that the localization accuracy of the algorithm proposed
in this paper decreases as the number of BSs decreases. The decrease in the number of
available BSs leads to a more extended solution period for the integer ambiguity and thus
decreases the localization accuracy. In addition, compared with Figure 8, the decrease
in LOS probability does not cause severe degradation of the localization accuracy, so the
NLOS error suppression scheme proposed in this paper is effective.

Figure 10. The CDF of horizontal localization error with differfent number of BSs.

5. Conclusions

The main research direction of this paper is to apply carrier phase technology in
OFDM systems to improve ranging and positioning accuracy. Compared with single-point
positioning using only TOA measurement, carrier phase information is more accurate
than TOA measurement, and it is a possible choice for indoor high-precision positioning.
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This paper intends to solve two problems of indoor carrier phase positioning: 1. Phase
measurements in a multipath environment. 2. Fast and precise integer ambiguity resolu-
tion in real-time positioning scenarios. First, this paper analyzed the effect of multipath
propagation on phase measurement in detail, and proposed a correlation profile-based
carrier phase measurement method. Second, this paper presents an EKF algorithm to
estimate the integer ambiguity by the SD carrier and TDOA measurements. In addition
to the integer ambiguity estimation, the algorithm also considers the effect brought by
NLOS error. Experiments show that the algorithm proposed in this paper can quickly
find the integer ambiguity and virtually eliminate the NLOS error, thus improving the
positioning accuracy.
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Appendix A

For interference e−j π
N ([τ̇1]+(N−1)τ̇1) in Equation (14), the following approximation can

be made. Since [τ̇1] ≈ τ̇1 ± 0.5, and ±0.5
N � 1, So we have e−j π

N ([τ̇1]+(N−1)τ̇1) ≈ e−jπτ̇1 . Thus,
the phase of Hm

k can be expressed as: −πτ̇1 − φ1 − 2πk [τ̇1]
N , if sin(πτ̇1)

sin( π
N (τ̇1−[τ̇1])

≥ 0

−πτ̇1 − φ1 − 2πk [τ̇1]
N − π, if sin(πτ̇1)

sin( π
N (τ̇1−[τ̇1])

< 0
. (A1)

Take [τ̇] = 2ñ as an example, and ñ is an arbitrary natural number. For specific analysis,it
can be divided into two cases, 2ñ− 0.5 ≤ τ̇ ≤ 2ñ, and 2ñ ≤ τ̇ ≤ 2ñ + 0.5.

(1) For 2ñ− 0.5 ≤ τ̇ ≤ 2ñ, we have:
sin(πτ̇) < 0, and τ̇ − [τ̇] < 0, sin

(
π
N (τ̇1 − [τ̇1])

)
≤ 0, so sin(πτ̇1)

sin( π
N (τ̇1−[τ̇1]))

≥ 0.

(2) For 2ñ ≤ τ̇ ≤ 2ñ + 0.5, we have:
sin(πτ̇) > 0, and τ̇ − [τ̇] > 0, sin

(
π
N (τ̇1 − [τ̇1]) ≥ 0 so sin(πτ̇1)

sin( π
N (τ̇1−[τ̇1]))

≥ 0.

We know that sin(πτ̇1)

sin( π
N (τ̇1−[τ̇1]))

≥ 0 when [τ̇] = 2ñ. Similarly, we can conclude that when

[τ̇] = 2ñ + 1, sin(πτ̇1)

sin( π
N (τ̇1−[τ̇1]))

≤ 0. So (A1) can be simplified to:

{
−πτ̇1 − φ1 − 2πk [τ̇1]

N , if [τ̇1] = 2ñ
−πτ̇1 − φ1 − 2πk [τ̇1]

N − π, if [τ̇1] = 2ñ + 1
, (A2)
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when k = N/2, (A2) can be written as:{
−πτ̇1 − φ1 − π[τ̇1], if [τ̇1] = 2ñ
−πτ̇1 − φ1 − π[τ̇1]− π, if [τ̇1] = 2ñ + 1

. (A3)

Thus, at k = N/2, the phase processed by the window function is −πτ̇1 − φ1, regardless of
whether [τ̇1] is odd or even. The proof is completed.
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