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The function of a neural circuit can be determined by the following: (1) characteristics
of individual neurons composing the circuit, (2) their distinct connection structure, and
(3) their neural circuit activity. However, prior research on correlations between these
three factors revealed many limitations. In particular, profiling and modeling of the
connectivity of complex neural circuits at the cellular level are highly challenging. To
reduce the burden of the analysis, we suggest a new approach with simplification of
the neural connection in an array of honeycomb patterns on 2D, using a microcontact
printing technique. Through a series of guided neuronal growths in defined honeycomb
patterns, a simplified neuronal circuit was achieved. Our approach allowed us to obtain
the whole network connectivity at cellular resolution using a combination of stochastic
multicolor labeling via viral transfection. Therefore, we were able to identify several types
of hub neurons with distinct connectivity features. We also compared the structural
differences between different circuits using three-node motif analysis. This new model
system, iCANN, is the first experimental model of neural computation at the cellular level,
providing neuronal circuit structures for the study of the relationship between anatomical
structure and function of the neuronal network.

Keywords: network, connectome, connectivity, axon guidance, micropattern

INTRODUCTION

The brain is a highly complex, yet incredibly well-organized, network of neurons that performs
a variety of functions, from basic life support to high-order information processing. Brain
circuits perform computations through a combination of basic elements and their connections
(Silver, 2010). These neurons are the fundamental units of information processing, with various
characteristics distinguished by their neuronal types (Kepecs and Fishell, 2014; Jiang et al., 2015).
Therefore, investigating the features of individual neurons and their connectivity properties

Abbreviations: AAV, adeno-associated viruses; DIV, days in vitro; FFT, Fast Fourier Transform; HDMEA, high-density
multi-electrode array; ICM, incomplete culture media; MEA, multi-electrode array; PBS, phosphate-buffered saline; RPA,
receptive pattern area; Sema3F, Semaphorin 3F; TBS, Tris-buffered saline.
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is crucial for understanding the mechanisms underlying
neural computation. Neurons can be classified based on their
morphological, electrophysiological, and molecular features
(Pelkey et al., 2017), and different neuronal types with different
connectivity properties appear to play a role in the formation of
neural networks (Kepecs and Fishell, 2014; Jiang et al., 2015).
For example, some early generated hippocampal GABAergic
interneurons make many synaptic connections and become
hub neurons in the early postnatal stages, orchestrating very
important synchronous activity for circuit maturation (Bonifazi
et al., 2009; Picardo et al., 2011). In addition, network modules,
called motifs, appear to be established owing to the unique
connectivity of specific neurons, as suggested in many studies
(Sporns and Kotter, 2004; Womelsdorf et al., 2014; Tremblay
et al., 2016; English et al., 2017).

Identification of general rules for the establishment of
motifs is one of the goals of computational neuroscience,
thereby increasing knowledge of complex network phenomena
(Womelsdorf et al., 2014; Tremblay et al., 2016; English et al.,
2017). The development of new technologies, such as high-
resolution multi-channel in vivo recordings and connectomics
approaches, allows for ongoing large-scale brain mapping
projects for inferring monosynaptic transmission and studying
motifs in animal models (Wu et al., 2015; Gal et al., 2017; Jun
et al., 2017; Shin et al., 2021; Steinmetz et al., 2021). Owing
to large-scale funding, as well as the development of various
technical approaches, a significant amount of connectome
data across different scales and different species have been
collected and shared (Sporns et al., 2005; Helmstaedter, 2013;
Oh et al., 2014; Kunst et al., 2019; Majka et al., 2020). By
analyzing the connectome data, the structural characteristics of
the brain network have been reported (Ercsey-Ravasz et al.,
2013; Zingg et al., 2014; Theodoni et al., 2021). For example,
long-tailed distribution of cortical network, economic wiring
principles in neural networks, hierarchical structures of cortical
and thalamic modules, well-balanced spatial distribution of
excitatory and inhibitory synapses in the mammalian cortex,
and hub structure of mouse brain with voxel resolution have
been identified (Schroter et al., 2017; Harris et al., 2019; Coletta
et al., 2020; Iascone et al., 2020). In addition to structural
connectivity in neural networks, functional connectivity has also
been investigated (Alivisatos et al., 2012). A step toward finding
general rules in network structure and function, small-size motifs
(M = 3, 4) have been analyzed in structural and/or functional
connection maps (Sporns and Kotter, 2004; Gal et al., 2017; Del
Ferraro et al., 2018; Turner et al., 2020). However, obtaining the
entire connection map for integrating structural and functional
networks is a highly challenging endeavor, and revolutionized
technology is required.

The simplicity and ease of experimental manipulation made
in vitro neuronal culture make it a preferred method for studying
the network activity of neurons. Multi-electrode array (MEA)
recording systems are well suited for this goal and have been
widely used in many studies to investigate basic properties of
neuronal networks, such as synchronized activity, oscillatory
behavior of neuronal population, and learning and memory at
the network scale (Wagenaar et al., 2005; Choi et al., 2012;

Kim et al., 2014). However, for good signal detection, MEAs
require densely cultured neurons, increasing the difficulty in
analyzing the structural connections of neurons. Therefore, one
of the accessible approaches is micropatterning, which prints
patterns on a culture substrate with cell-adhesive or -repulsive
reagents. The growth of primary neurons on micropatterns can
be precisely controlled, making the neural circuits more desirable
(Boehler et al., 2012; Marconi et al., 2012). For example, we
previously reported that the microprinting of a repulsive signal,
semaphorin3F (Sema3F), could spatially confine the synaptic
area by simplifying the growth responses of axons and dendrites
(Ryu et al., 2016). More importantly, this system can easily be
combined with the MEA system to study functional network
activities (Marconi et al., 2012; Ryu et al., 2016).

In this study, we attempted to establish a new research
platform that enables comprehensive analysis of a closed neural
circuit, reconstructed with the entire synaptic connections
of individual neurons. Therefore, we optimized the culture
conditions to identify individual neurons on micropatterned
substrates using stochastic multicolor cell labeling techniques
(Chan et al., 2017). Our initial attempts demonstrated that it is
feasible to reconstruct and analyze cultured neuronal networks by
tracking all the synaptic connections between individual neurons.

MATERIALS AND METHODS

The entire process from cell culture to network analysis is shown
in Supplementary Figure 1.

Stamp Fabrication and Microcontact
Printing
A stamp mold for printing axon guidance reagents was
fabricated on a silicon wafer with standard photolithography
techniques using negative photoresist SU-8 2010 (Microchem,
United States), and molding polydimethoxysilane (PDMS) into a
stamp through curing overnight at 60oC, as previously described
(Joo et al., 2015; Ryu et al., 2016; Ryu et al., 2019) (Supplementary
Figure 2). A poly-l-lysine (1 mg/mL) coated coverslip was
required for patterning. The 10-µg/mL Semaphorin 3F (3237-
S3, R & D Systems) ink was poured onto the surface of a stamp
for 1 h at 37oC. The stamps were rinsed with distilled water and
air-dried. The ink-loaded stamp was placed on the PLL-coated
coverslips for printing and was slightly pressed using a 20-g
weight for 10 min. The printed coverslip was ready for culture
after rinsing with Dulbecco’s phosphate-buffered saline.

Primary Neuronal Culture
Hippocampi were isolated from E18 embryonic Sprague–Dawley
rats (timed-mated) and dissociated into single cells, as previously
described (Ryu et al., 2016; Ryu et al., 2019). Neural cells in MEM-
based culture media (10% FBS, 1% penicillin–streptomycin [PS],
1% N2 supplement, and 3.6 mg/mL glucose) were seeded in
culture dishes at a density of 39.5–78.9 cells/mm2. Culture media
were replaced with incomplete culture media (ICM) (2% B-
27 supplement, 0.5% L-glutamax, and 1% PS in Neurobasal
media) 3 h after plating. CultureOneTM supplement (A3320201,
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Gibco) was added to the ICM to obtain pure neuron culture
to avoid micropatterns covered by astrocytes. CultureOne
supplement drives the differentiation of neuroprogenitor cells
to neurons without side effects on neuronal morphology
(Thermofisherscientific, 2017). B-27 supplement was replaced
with B-27plus supplement (A3582801, Gibco) to improve the
survival rate of cultured neurons. Animal care and euthanasia
protocols followed the Korea University guidelines and were
approved by the Korea University Institutional Animal Care
and Use Committee.

Stochastic Multicolor Labeling,
Immunostaining, and Imaging
Recombinant adeno-associated viruses (AAVs) were generated
through transfection of HEK293T cells using polyethylenimine
(PEI) and purified using ultracentrifugation (Ti70 rotor,
Beckman) over iodixanol (D1556, Sigma-Aldrich), as described
in Challis et al. (2019). The four-vector mix of pAAV-hSyn1-tTA
(Addgene plasmid # 99119), pAAV-TRE-mRuby2 (Addgene
plasmid # 99114), pAAV-TRE-EGFP (Addgene plasmid #
89875), and pAAV-TRE-mTurquoise2 (Addgene plasmid #
99113) was packaged into the AAV-PHP.eB capsid (CLOVER,
Caltech). The pAAV-hSyn1-tTA, pAAV-TRE-mTurquoise2,
pAAV-TRE-mRuby2, pAAV-PHP.eB capsids were provided
by Viviana Gradinaru, and pAAV-TRE-EGFP was provided
by Hyungbae Kwon. Cultured neurons were transfected with
0.5–1.5 × 1013 vg/well (for 15,000 cells) at days in vitro (DIV)
3–7. Cells were fixed with 4% paraformaldehyde and 4%
sucrose in 0.1 M phosphate buffer (PBS) (pH 7.4) at DIV 21,
as previously described (Ryu et al., 2016), and were mounted
on microscope slides after immunostaining when necessary.
For immunocytochemistry, the fixed samples were incubated
with primary antibodies in blocking solution (3% bovine
serum albumin, 0.2% Triton X-100 in Tris-buffered saline
(TBS) overnight at 4oC after 30 min blocking. Samples were
washed three times with 0.05% Triton X-100 in TBS for 10 min
each under gently shaking, and then stained with appropriate
secondary antibodies for 30 min. Antibodies against GFAP
(rabbit, 1:10000, z0334, DAKO), MAP2 (chick, 1:500, AB5543,
Millipore), and Tuj1 (mouse, 1:2000, T8660, Sigma-Aldrich) were
used. The slides were imaged with a slidescanner (Axio Scan.Z1,
Zeiss) using a 10× objective lens or a confocal microscope (TCS
SP8, Leica) using a 63× objective lens for imaging synapses.

Image Processing and Data Analysis:
ImageJ, MATLAB Codes
(Image rotation) Initially, neuron images with patterns were
rotated to facilitate image processing. The rotational angle was
obtained using Fast Fourier Transform (FFT) on a pattern image.
FFT is useful for identifying repetitive patterns and determining
their alignment angle.

(Pattern detection) 2D cross correlation between the rotated
pattern image and a template pattern image was calculated.
Finally, the positions of individual patterns were obtained by
detecting circles from the 2D cross correlation image circles
and were indexed.

(Cell, dendrite, and axon segmentation) Cells, dendrites, and
axons were manually segmented using in-house GUI MATLAB
codes. During segmentation, the cell image with a pattern was
scanned through zooming and shifting of the field of view. To
discriminate individual cells by color, we adjusted color balance
between three colors: red, green blue, and brightness of the
pattern in each field of view. The positions of cellular components
of each neuron were obtained by placing the cursor on the pattern
with the desired cellular components, and on the keyboard
pressing the “c” button for cells, “d” button for dendrites, and
“a” button for axons. The pattern positions with dendrites or
axons were matched to the pattern indices. As all synapses were
formed in patterns, the positions of patterns with dendrites and
axons annotated with a cell index were sufficient for reading
synaptic connections.

(Network analysis) Based on our observations, two neurons
considered synaptically connected when the dendrites of one
cell met the axons of the other cell within the pattern. Co-
location of Synapsin and PSD95 signals was observed in most
patterns, where the axons of one neuron and the dendrites of
another neuron coexisted. A table of connected cell pairs was
imported using Cytoscape (Shannon et al., 2003) to visualize
the reconstructed networks and analyze degree, eccentricity,
and centralities. The mathematical definitions of the analytic
terms are:

In-degree of a node (kin): the number of edges to a node
from other nodes.
Out-degree of a node (kout): the number of edges from a
node to other nodes.
Density D = k/N,
where k is degree and N is number of nodes
Eccentricity e (n) = maxm∈N d(n,m),
where the distance d(m, n) between two nodes m and n
is defined as the length of the shortest directed path from
m to n.
Closeness centrality CC (n) = N∑

md(n,m)
(0 for an isolated

node),
Betweenness centrality CB (n) =

∑
s6=n6=t

σst(n)
σst

,

where s and t are nodes in the network different from n, σst is
the total number of shortest paths from s to t, and σst(n) is the
number of shortest paths from s to t passing through n.

(Three-node motif analysis) We selected triplet node sets
from the adjunct matrix and investigated which classes were
included among 13 classes of three-node motifs using in-
house MATLAB codes.

RESULTS

Micropatterning and Neuronal Growth
Patterns
Microcontact printing is a simple technique for micrometer-level
processing of the surface of a culture substrate. In this study,
the pattern of permissive PLL dots surrounded by Sema3F for
repulsive axon guidance cues was used. The Sema3F-negative
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PLL dot array patterns allow the allocation of synapses in the
dot pattern compartmentalized from long, complex growing
axons (Ryu et al., 2016). In addition, axons can grow to be
very long, but they cannot extend very far from the cell body
owing to entrapment of the PLL dots, which facilitates obtaining
simplified artificial neuronal circuits. First, we observed the
ways in which axons interacted with Sema3F-negative dot array
patterns (Supplementary Figure 3). During the maturation of
the neural circuits on micropatterns, axons grew radially from
the cell body and where the axon terminal met the interface
between Sema3F and PLL zones, it grew along the interface line
(0–120 min in Supplementary Figure 3). Axons often escaped
from the permissive to repulsive zone at the sharp angular point
of the triangle pattern (630 min in Supplementary Figure 3) and
extended into a neighboring pattern (990 min in Supplementary
Figure 3). We speculated that the shape of pattern with a
smaller angle made it easier to escape axons from the pattern.
Conversely, larger-angled patterns could better capture axons
inside the pattern than smaller-angled ones. As a results, the
distances from the cell body to the maximal extension of the axon
in hexagon (120o) and square (90o) were significantly shorter
than triangle (60o) (Supplementary Figure 4). The difference
between the square pattern and the hexagonal pattern is not very
significant, but the hexagonal pattern was empirically easier to
analyze. Based on these observations, we adopted a honeycomb
pattern to reduce the chance of maintaining axons within one
hexagonal pattern (Figures 1A,B). Maturing patterns of DIV 21
neurons in honeycomb patterns are shown in Figures 1C–E. The
rate of the cells inside the patterns was 64.3 ± 8.2% (Figure 1G).
Though both axons and dendrites remained inside hexagonal
patterns (Figures 1C–E) under our experimental conditions,
axons often migrated to other hexagonal patterns. In addition,
synapses were well established inside the permissive area, as
previously reported (Ryu et al., 2016) (Figure 1F). An axon
intruded into a receptive pattern area (RPA) of blue colored cells
(yellow arrow in Figure 1F) and formed synaptic connections
with blue cells. The co-location of synapsin (red) and PSD95
(green) signals is shown in the inset of Figure 1F. We found
that >90% of hexagonal patterns with both axons and dendrites
exhibited synapse formation, suggesting that most of the spatial
contact resulted in synapse formation. As we expected, using
hexagonal patterns, the complexity of neuronal network was
obviously reduced suitable for the further quantitative analysis
(Supplementary Figure 5).

To estimate the range of diversity of artificial neural circuits,
we quantified the occupancy of patterns by cell bodies, dendrites,
and axons from 14 different samples, cultured on hexagonal
patterns with 55-µm edge length (L) of a hexagon and a 70-
µm gap between hexagons (D). The occupancy values were
9.0–19.5% (average ± SD: 15.7 ± 3.4%) for cell bodies, 28.0–
49.0% (average ± SD: 39.6 ± 6.7%) for dendrites, and 57.4–
76.4% (average ± SD: 68.7 ± 7.3%) for axons (Figure 1H). We
counted patterns occupied by the dendrite/axon of each neuron
to assess the coverage of dendrites and axons of each neuron
(Figures 1I,J). The number of patterns occupied by the dendrites
of a cell is equivalent to the number of RPAs. This does not mean
that the number of RPAs is the capacity of synaptic connections,

but a large number (area) of RPAs provide a greater chance
of building synaptic connections. A total of 76.2% of neurons
formed one or two RPAs (Figure 1I). The cell outside pattern
tended to make a more RPA owing to its easy accessibility to
many neighboring patterns. A neuron occupied an average of
6.7 patterns with its axon. The number of patterns occupied by
axons per cell varied from 1 to 25, and neurons tended to cover
2–4 patterns; meanwhile, most neurons (80.8%) covered fewer
than 10 patterns (Figure 1J). Collaboration of axon coverage of
each cell and the distance between neighboring cells contributed
to the complexity of the circuit. The average distance from
the cell to the three closest neighboring cells was determined
(Figure 1K). The average distance of 59.5% was in the range 60–
120 µm, indicating that neurons with this patterning condition
had a high chance of reaching synaptic partners, since neurons
had neighboring cells in the nearest hexagonal patterns. The
distances from the center of a hexagon to the closest or furthest
edge of the neighboring hexagon (l1 and l2 in Figure 1B) were
117.6/212.8 µm, respectively, in this pattern condition; the edge
of the hexagon (L) was 55 µm, and the gap between hexagons (D)
was 70 µm.

Network Reconstruction by Tracing
Connectivity of Neurons
The stochastic multicolor labeling technique endows cells with a
color that is randomly composed of several colors, such as red,
green, and blue. Recently, since the introduction of Brainbow,
several improved techniques have been suggested (Livet et al.,
2007; Cai et al., 2013; Chan et al., 2017). A two-component
inducer system using the tetracycline (tet)-inducible system is
reportedly better for various color expressions (Chan et al., 2017).
In addition, the PHP.eB serotype of AAVs efficiently produced
higher CNS transduction than other serotypes in in vivo studies
(Chan et al., 2017; Dayton et al., 2018; Mathiesen et al., 2020).
This multicolor labeling system was applied to the primary
culture of pure neurons, and individual neurons were easily
discriminated from each other (see Figure 2A). However, the
fluorescence intensities in different compartments of the same
cell varied, and local aggregation of similar colors through
global optimization of fluorescence intensities often reduced
the fidelity of cell identification. To precisely mark the cell-
to-cell connectivity, we developed MATLAB codes, enabling
the manual labeling of cell bodies, dendrites, and axons by
locally adjusting the color balance and recording their pattern
position, as described in the Materials and Methods section
of this manuscript. Through post-processing, most connectivity
in the in vitro neural circuits could be interpreted at cellular
resolution. A representative network reconstructed from an
image of cultured neurons in 397 hexagonal patterns (n = 12) is
shown in Figure 2B. The color of a node indicates the in-degree
value of a node, and the size of a node reflects the out-degree value
of the node. The direction of the arrow is from the presynaptic
neurons to postsynaptic neurons. The network consisted of 15
large and small network segments and 6 isolated nodes. The
degree distribution of the six different cultures of neurons is
shown in Supplementary Figure 5.
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FIGURE 1 | Neuronal growth on micropatterns. (A) Honeycomb pattern. (B) Dimension of honeycomb pattern. L: edge length of hexagon, D: gap between
hexagonal patterns, r1: radius of a circle covering first nearest neighbors, r2: radius of a circle covering second nearest neighbors, l1: length from the center of a
hexagonal pattern to the closest edge of a nearest neighboring pattern, l2: length from the center of a hexagonal pattern to the farthest edge of a nearest
neighboring pattern. (C–E) Example image of neurons grown on honeycomb patterns (gray, edge [L]: 55 µm, gap [D]: 50 µm) for 21 days in vitro. (Scale bar:
50 µm). Dendrites stained using MAP2 and honeycomb patterns, and neuritis stained using Tuj1. (F) Representative image of a receptive field (synapse formation
zone). Red: synapsin (presynaptic) and Green: PSD95 (postsynaptic). Blue: neurons. Note that patterns are also marked with red fluorescence. Inset: enlarged image
of yellow box. (Edge [L]: 55 µm, gap [D]: 30 µm) (scale bar: 50 µm) (G) Probability of cells inside patterns. Error bars: average and SD. (N = 4811 cells from 7 culture
samples). (H) Proportion of patterns occupied by cell body, dendrite, and axon with average and SD values. (N: 9436 cells, 32916 patterns, 14 culture samples).
(I) Number of patterns occupied by dendrites of individual neurons and normalized histogram (probability). (N: 1360 cells from 2 culture samples). (J) Number of
patterns occupied by axons of individual neurons and normalized histogram (probability). (N: 314 cells from 9 culture samples). (K) Average distance from a cell to
the three closest neurons. Histogram was normalized as probability [same samples with panel (I)].

Surprisingly, the rules of connection between neurons did
not seem straightforward despite the neural circuits established
on micropatterns being very simple; indeed, there was only a
weak correlation between the number of RPAs of a cell and in-
degree values of that cell (Figure 2C), since axons from different
neurons can penetrate the same RPA, as previously mentioned.
Similarly, axon coverage of a cell did not correlate with the
out-degree value of that cell (Figure 2D). The reason appears to

be that even if axons grow long and cover a wide area, the cell
cannot synapse with other cells without any target cell in the
growth area of the axon. Cells in neighboring patterns can be
candidates for pre/post-synaptic neurons. However, the number
of cells in the nearest neighboring patterns (in a circle with
radius r1; Figure 1B) did not have a significant correlation with
the in-degree value (Figure 2E), and the number of cells in
patterns in the range of the next nearest neighboring patterns
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FIGURE 2 | Network reconstruction. (A) An example of multi-colored labeled neuron culture and reconstruction of a neuronal network. Edge (L): 55 µm. Gap (D):
30 µm. (B) A representative network of a culture neuronal circuit. Color of a node and size of a node indicate in-degree and out-degree, respectively. (C) Scatter
plots and histograms of a number of patterns occupied by dendrite of individual neurons (RPA) and their in-degree values. Black line (linear fit);
y = 0.4363 × x + 0.8179, R2

= 0.09573. (D) Scatter plots and histograms of a number of patterns covered by axons from individual neurons (axon coverage)
and out-degree values. Black line (linear fit) y = 0.1804 × x + 0.0.9031, R2

= 0.2178. (E) Scatter plots of numbers of neighboring neurons in first nearest
neighboring hexagonal patterns and in-degree values. (F) Scatter plots of numbers of neighboring neurons in first and second nearest neighboring patterns and
out-degree values. The data points were jittered in the 0.5 range to avoid overlap. (N: 434 cells from 6 culture samples).

(in a circle with radius r2; see Figure 1B) did not correlate with
the out-degree value (Figure 2F). Therefore, the formation of
synaptic connections in the micropatterns did not simply depend
on the growth range of the cells or the number of neighboring
cells (cell density).

Network Analysis
Networks of various sizes and structures were observed
under the same micropatterning conditions. To determine
the characteristics of the reconstructed network from cultured
neuronal circuits, a graph theory analysis was applied. Though

the analysis of a neuron’s wiring pattern alone cannot explain
the functional roles of the neuron, it offers the possibility of a
functional role of the neuron in the network. Therefore, it is
necessary to understand the anatomical structure of neuronal
networks in order to understand their function. The number of
nodes and edges, eccentricity, in-degree, out-degree, closeness
centrality, and betweenness centrality were analyzed in eight
different network segments from six different samples cultured
on honeycomb patterns (L = 55 µm, D = 70 µm) (Figure 3;
also shown in Figure 4). Regardless of the network sizes and
number of nodes/edges or eccentricities, the density values of
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FIGURE 3 | Network analysis. (A) Number of node (blue bars), number of edge (red bars), and network density (green line) from eight different networks shown in
this figure. Eccentricity (B), in-degree (C), out-degree (D), closeness centrality (E), betweenness centrality (F) of each node in eight networks. Black diamond
symbols indicate averages.

the networks were diverse (line graph in Figures 3A,B). The
eccentricity of a node is the distance from the node to the farthest
node, and the minimum and maximum values of eccentricity are
defined as the radius and diameter of the network, respectively.
Thus, the distribution of eccentricity provides an estimation
of the network size. The network diameters of the sample
networks ranged from 3 to 8 (Figure 3B). In/out-degree values
are important basic indicators of local centrality in a directed
network. Nodes with more than 4 or 5 in/out degrees depend
on the networks (Figures 3C,D) and are tagged by red and

green, respectively (see Figure 4). While nodes with a large
in-degree can integrate information from neighboring nodes,
nodes with a large out-degree can constitute information sources
by distributing information to neighbors. These large in/out-
degree cells are defined as local hubs, and hub cells are readily
identifiable. For example, Cell #74 in Net #2 (in-degree 5),
Cell #58 in Net #4 (in-degree 6), and Cell #67 in Net #6 (in-
degree 6) are representative examples of the local (integrator)
hub (Figure 4). Net #1-Cell #30 (out-degree 6), Net #2-Cell #95
(out-degree 5), and Net #3-Cell #18 (out-degree 5) are examples
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FIGURE 4 | Example networks. Eight different networks from six culture samples. Color of a node and size of a node indicate in-degree and out-degree, respectively.
Nodes with high in-degree, out-degree, closeness centrality, and betweenness centrality were tagged with a box of colors: red, green, yellow, and purple,
respectively. Net #2 is the same network in Figure 2B.

of the local (distributor) hub (Figure 4). To investigate global
efficiency or influence, closeness centrality and betweenness
centrality were analyzed (Figures 3E,F). For example, Cell #30
in Net #1 in Figure 4 had a high out-degree value (6) and
high closeness centrality (1). These results indicate that Cell
#30 could drive many local neighbor cells (high out-degree),
while simultaneously having easy access to other nodes (high
closeness centrality). We empirically defined cells with these
features as pacemaker, or driver, cells. Information from a source
(pacemaker) travels through the network. During information
transmission, important nodes have high betweenness centrality
or stress values. The nodes with high betweenness centrality,
tagged in purple in Figure 4, are recruited in the shortest path
lengths among the nodes, indicating that heavy information flows
through that node. Therefore, these cells may play an important
role in information transmission or serve as bottlenecks. In
Net #1, Cells #24, #44, #42, #33, and #35 also exhibited high
betweenness centrality. Among these, the route from Cell #24
to #35 appears as the main path among local networks, such

as an express highway connecting cities (Figure 4). In addition,
Cell #42 has a high out-degree value (4), and it can be regarded
as a connector hub that connects the local network modules
(Bullmore and Sporns, 2009). Therefore, information from Cell
#30 flows to Cell #15 via the connecting route, including the
Cell #42 connector hub. Cell #15 can be readout of Net #1, since
information in Net #1 gathers in Cell #15.

It is believed that structural motifs have functional significance
owing to over-representation of a certain motif in a network.
In particular, in the study of the relationship between the
structure of a neural circuit and its function (Sporns and Kotter,
2004; Tremblay et al., 2016; English et al., 2017), analysis of
structural motifs can be a useful quantitative measure. Analysis
of small motifs can quantify interactions between neighboring
nodes (Bullmore and Sporns, 2009). Interestingly, common
characteristics were found in the analysis of motif profiles
across different species/networks. For example, classes 4, 6,
and 9 of three-node motifs were frequently observed in four
different functional networks of the brain (macaque visual cortex,
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macaque cortex, fine-grained macaque cortex, and cat cortex)
(Sporns and Kotter, 2004; Gollo et al., 2014); meanwhile, class 7
was very rare across the five brain networks (C. elegans, macaque
visual cortex, macaque cortex, fine-grained macaque cortex, and
cat cortex). We analyzed size 3 motifs (M3) in our simplified
neuronal circuits and attempted to identify common features
across different neural circuits as well as circuit-dependent
characteristics. The difference in distribution of motif classes
between neural networks and random, or lattice, structures was
apparent (Sporns and Kotter, 2004). In general, classes 7–13 of
the 13 different three-node motifs occurred less frequently. In
particular, class 7 was very rare. Surprisingly, this may be an
indication of the existence of a ubiquitous wiring rule in neural
networks, avoiding the recurrent relation of the three nodes.
However, eight networks showed clear differences in the three-
node motif profiles (Figure 5B). For example, the representative
types of neural circuit structures are the feedforward motif (m3

5)
and feedback motif (m3

6) (Tremblay et al., 2016). While the
feedback structure (m3

6) was frequently observed in Nets #1, #5,
and #7, the feedforward structure (m3

5) was more dominant in
Net #6. Therefore, motif analysis can be considered a useful tool
for quantitatively measuring network structures, such as using
basis vectors in linear algebra.

DISCUSSION

By combining synapse compartmentalization through
micropatterning with stochastic multicolor labeling, we
developed a high-resolution neural circuit analysis platform.
Simplified in vitro neural circuits were built by controlling axonal
growth and the synapse formation domain with micropatterns
of the repulsive axon guidance protein Sema3F on a PLL-
coated culture substrate. Individual neurons were labeled
with different colors, enabling the interpretation of the entire
connection in the neural circuit. Neuronal networks were well
reconstructed using the connection information. Neurons with
distinctive properties were discovered using graph analysis of
neural circuits. Furthermore, our results show the potential
of the structural motif as a quantitative tool to analyze the
network structure.

The structural connectivity of a neural circuit can generate
various functional states. However, not all functional states
capable of circuit connectivity are activated. To understand the
neural computation of a neuronal circuit, we need to know
the relationship between structural connectivity and functional
connectivity. The main advantage of in vitro experiments is that
they are easier to control and relatively better for duplicating
results than in vivo studies. In vitro neuronal circuit is not same
as in vivo one, but in vitro circuits also generate diverse activities,
such as various synchronized bursting pattern dynamics or
complex oscillatory behavior (Wagenaar et al., 2006; Kim et al.,
2014; Kim et al., 2015). Those various network dynamics of
neurons were studied, using MEA in vitro recording systems,
and the studies were limited to population dynamics due to
its spatial resolution. To approach better spatial resolution or
more organized structures, simple micropatterning has combined

FIGURE 5 | Three-node motifs analysis. (A) The 13 different ways (classes) to
connect three nodes in a directed network. (B) Distribution profile of 13 motifs
from 8 networks in Figure 4.

with MEA recording systems. The topologies of cultured neurons
were controlled by micropatterning and studied differences of
them in their activities (Boehler et al., 2012; Marconi et al.,
2012). However, understanding the relationship between network
structure and its function at a single-neuron resolution has
not been reached. To overcome the limitation of recording
resolution of MEA systems, the high-density MEA (HDMEA)
was developed (Hafizovic et al., 2007). A CMOS based HDMEA
allowed subcellular recording resolution (Obien et al., 2014),
but still structural analysis of neuronal network at cellular
resolution has not been achieved (Ullo et al., 2014). As we already
demonstrated combing negative-dot array patterning and a MEA
recording system in a previous study (Ryu et al., 2016), our new
system, which analyzes a comprehensive neuronal connectome,
can be combined with a multi-channel electrophysiological
recording system, such as (HD)MEAs, for neuronal populations,
providing a new approach to understanding relationships
between neuronal structures and circuit function in the future.

In addition, there are general rules for neural circuits across
different species, different brain circuits, or even different scales.
For example, a hub structure was found at the cellular level as
well as in large-scale functional networks of the brain (Bullmore
and Sporns, 2009; Cossart, 2014; van den Heuvel and Sporns,
2019). Likewise, we found a scale-invariant characteristic in
motif analysis. As described in the results, the class 7 motif
(m3

7) of three-node motifs is a rarely preferred structure in the
cellular network of neurons (Figure 5) as well as high-order
functional networks in the brain (Gollo et al., 2014). Therefore,
in vitro experiments are typically used to determine the intrinsic
properties of (a network of) neurons, used for basic research
prior to in vivo experiments, or used as an auxiliary tool. The
system proposed here is also expected to be useful for monitoring
changes in network connectivity through electrophysiological,
chemical, or genetic treatments. A neuron can function normally
in vivo only when the location and growth patterns fit, and if
either or both are not suitable, they cannot function properly.
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Limitation of the Study
The accuracy of this new analysis system for neuronal
connections is largely dependent on the quality of microcontact
printing and multicolor cell labeling. Improvement in patterning
with microfluidics (Lee et al., 2018), for example, may improve
the quality of patterning. The acuity of tracing individual neurons
may also be improved through time-lapse imaging.

This in vitro network analysis system cannot determine the
ways in which the artificial neuronal network can mimic “real”
neural circuits. Though there exists possible differences between
the artificial neuronal circuits and brain circuits in not only
the neuronal morphology but also their electrophysiological
properties (Zhu et al., 2016), the benefits of in vitro experimental
systems are irrefutable.
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