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Abstract
Introduction: Cervical cancer has high mortality, high recurrence and poor progno-
sis. Although prognostic biomarkers such as clinicopathological features have been 
proposed, their accuracy and precision are far from satisfactory. Therefore, novel 
biomarkers are urgently needed for disease surveillance, prognosis prediction and 
treatment selection.
Materials: Differentially expressed genes (DEGs) between cervical cancer and 
normal tissues from three microarray datasets extracted from the Gene Expression 
Omnibus platform were identified and screened. Based on these DEGs, a six- gene 
prognostic signature was constructed using cervical squamous cell carcinoma and en-
docervical adenocarcinoma data from The Cancer Genome Atlas. Next, the molecular 
functions and related pathways of the six genes were investigated through gene set 
enrichment analysis and co- expression analysis. Additionally, immunophenoscore 
analysis and the QuartataWeb Server were employed to explore the therapeutic value 
of the six- gene signature.
Results: We discovered 178 overlapping DEGs in three microarray datasets and es-
tablished a six- gene (APOC1, GLTP, ISG20, SPP1, SLC24A3 and UPP1) prognos-
tic signature with stable and excellent performance in predicting overall survival in 
different subgroups. Intriguingly, the six- gene signature was closely associated with 
the immune response and tumour immune microenvironment. The six- gene signature 
might be used for predicting response to immune checkpoint inhibitors (ICIs) and the 
six genes may serve as new drug targets for cervical cancer.
Conclusion: Our study established a novel six- gene (APOC1, GLTP, ISG20, SPP1, 
SLC24A3 and UPP1) signature that was closely associated with the immune re-
sponse and tumour immune microenvironment. The six- gene signature was indica-
tive of aggressive features of cervical cancer and therefore might serve as a promising 
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1 |  INTRODUCTION

Cervical cancer ranks fourth in both incidence and mortality 
in women worldwide, with approximately 500,000 new cases 
and 250,000 deaths occurring annually.1 Despite continuous 
advancements in treatment, including surgery, radiotherapy, 
chemotherapy and targeted or immunotherapy,2- 4 the 5- year 
overall survival for cervical cancer is reported to be approx-
imately 50%~65%,5,6 with a high recurrence rate and poor 
prognosis.7 It is known that clinicopathological features, such 
as International Federation of Gynecology and Obstetrics 
stage, lymph node metastasis, lymphovascular space invasion 
(LVSI), deep stromal infiltration and parametrial involve-
ment, are traditional prognostic factors. However, these char-
acteristics are not precise enough or temporally dynamic,8 
and they can only be obtained postoperatively.

With the rapid development of molecular biology tech-
niques, cancer biomarkers for prognosis prediction are in-
creasingly emerging. In cervical cancer, although squamous 
cell carcinoma antigen (SCCA)9 has been applied in clinical 
practice, its specificity and sensitivity are far from satisfac-
tory.10 For example, SCCA also increases in other types of 
squamous cell carcinoma11– 13 and even in nontumour dis-
eases.14 In addition, it is not good for identifying and moni-
toring cervical adenocarcinoma. Therefore, the identification 
of novel biomarkers and a deeper understanding of the molec-
ular mechanisms of cervical cancer are essential for disease 
surveillance, prognosis prediction and treatment selection.

High- throughput microarray and RNA sequencing (RNA- 
seq) technologies integrated with bioinformatics analyses have 
emerged as promising tools for detecting genetic alterations in 
the processes of tumour formation, recurrence and metastasis. 
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/),15 a large database of gene chip data maintained by 
the National Center of Biotechnology and The Cancer Genome 
Atlas (TCGA, https://portal.gdc.cancer.gov/)16 offering com-
prehensive cancer genomic expression, clinicopathological 
and survival information, are two commonly used public data-
bases. In- depth exploration of such databases assists research-
ers in screening, identifying and validating cancer biomarkers, 
providing strong support for diagnosis, prognostication and in-
dividualised treatment selection for different types of tumours; 
for example, SETD7 was identified as a diagnostic biomarker 
for colorectal cancer,17 TFAP2B was identified as a prognostic 
predictor for endometrial cancer18 and phospho- STAT1 was 

identified as a biomarker for patient selection for immunother-
apy in breast cancer.19 However, to the best of our knowledge, 
previous studies on prognostic biomarkers for cervical can-
cer have been either based on individual microarray dataset 
or database,20,21 thus failed to present convincing results, or 
failed to identify the function and clinical value of the studied 
genes.22 Therefore, more comprehensive research uniting dif-
ferent data sources and delving further into gene function in 
cervical cancer is urgently needed.

In the current study, to explore potential prognostic bio-
markers for cervical cancer, we first analysed three mRNA 
microarray datasets from the GEO platform and obtained 
differentially expressed genes (DEGs) between cervical can-
cer tissues and normal tissues. Subsequently, DEGs with 
prognostic value were identified with the data from TCGA. 
Notably, we established a novel six- gene (APOC1, GLTP, 
ISG20, SPP1, SLC24A3 and UPP1) prognostic signature 
and discovered for the first time that this signature was as-
sociated not only with intrinsic aggressive features but also 
with the tumour immune microenvironment. Furthermore, 
we also investigated the therapeutic value of the six- gene 
signature and found that it could help predict the response 
to immune checkpoint inhibitors (ICIs) and that three genes 
(GLTP, ISG20 and UPP1) in the six- gene signature might 
serve as potential drug targets for cervical cancer.

2 |  MATERIALS AND METHODS

2.1 | Data collection and preprocessing

Microarray datasets (GSE7803, GSE9750, GSE13 8080 and 
GSE12 7265) were obtained from GEO (https://www.ncbi.
nlm.nih.gov/geo/).15 Detailed information is summarised in 
Table  S1. Gene probes were converted into corresponding 
gene symbols according to the annotation information on the 
platform. The Robust Multi- array Average method was used 
to normalise and log2- transform data, which were prepared 
for the next- step screening to identify DEGs. The cervical 
squamous cell carcinoma and endocervical adenocarcinoma 
(CESC) dataset of the TCGA database were downloaded 
from Xena (https://xena.ucsc.edu/) including normalised 
gene expression RNA- seq fragments per kilobase of exon 
model per million mapped fragments (FPKM) data, clinico-
pathological data and survival data.

biomarker for predicting not only overall survival but also ICI treatment effective-
ness. Moreover, three genes (UPP1, ISG20 and GLTP) within the six- gene signature 
have the potential to become novel drug targets.

K E Y W O R D S

cervical cancer, gene signature, prognosis, tumour immune microenvironment
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2.2 | DEG screening in GEO

The ‘Limma’ package of R software (version 3.6.2) was 
applied to identify DEGs in three microarray datasets 
(GSE7803, GSE9750 and GSE13 8080) on the GEO platform 
with thresholds of |log2 fold change| >1 and adjusted p value 
<0.05. Three volcano plots demonstrating the DEGs and a 
Venn diagram indicating overlapping genes were generated 
with R software.

2.3 | Construction and evaluation of the 
six- gene prognostic signature

We first applied univariate Cox regression analysis to iden-
tify DEGs with prognostic value in the TCGA CESC dataset. 
Then, a multivariate Cox regression analysis was conducted 
with the ‘step Akaike information criterion (AIC)’ method. 
Genes with statistical significance (p  <  0.05) were selected 
to establish a multiple- gene prognostic signature. The risk 
score predicting overall survival was calculated as follows: 
∑

coefficient ∗ gene expression. To assess the accuracy of the 
prognostic signature, time- dependent receiver operating char-
acteristic (ROC) curves predicting survival at different time 
points were drawn and the area under the curve (AUC) value 
was calculated in R software using the ‘survival ROC’ pack-
age. Additionally, the patients were divided into a high- risk 
group and a low- risk group according to the median risk score. 
Kaplan- Meier curves were generated and the log- rank test was 
performed between these two groups with the ‘survival’ pack-
age of R software. To examine whether the six- gene signature 
we constructed was an independent risk factor, we performed 
univariate and multivariate Cox regression analyses employing 
both the six- gene signature and clinicopathological features. A 
nomogram was used to visualise the multivariate Cox model 
and calibration curves were generated to test the concordance 
of the prediction model at 1, 3, 5 and 10 years. In addition, to 
evaluate the robustness of the six- gene prognostic signature, 
we performed an extra subgroup analysis and the results were 
presented as a forest plot. The nomogram, calibration curves 
and forest plot were generated with R software with the pack-
ages ‘survival’, ‘rms’ and ‘forestplot’, respectively.

2.4 | Gene set enrichment analysis

Gene set enrichment analysis (GSEA) is a computational 
method that determines whether a defined set of genes ex-
hibit statistical and concordant differences between two 
phenotypes. We used GSEA software23,24 (version 4.0.3) to 
explore the enrichment of hallmark gene sets in patients with 
high- risk and low- risk according to the six- gene signature. 
Furthermore, pathways related to high expression and low 

expression patterns of the six studied genes were also inves-
tigated individually.

2.5 | Analysis of the correlations between the 
prognostic genes and tumour- infiltrating 
immune cells

RNA- seq data were transformed into abundances of immune 
cells via CIBERSORT25 in R software. We analysed the cor-
relation between the six- gene signature risk score as well as 
single gene expression values and the abundances of immune 
cells. Scatter plots were generated in R software when a cor-
relation (R > 0.3 and p < 0.001) was detected. Associations 
between gene expression and important immune markers 
of a variety of immune cells, including monocytes, tumour- 
associated macrophages, M1 macrophages, M2 macrophages, 
neutrophils, natural killer cells, dendritic cells (DCs), B cells, 
T cells (general), CD8+ T cells, T helper 1 (Th1) cells, T 
helper 2 cells, follicular helper T cells, T helper 17 cells, regu-
latory T cells and exhausted T cells, were investigated with 
TIMER,26,27 a web tool providing gene co- expression results 
adjusted by tumour purity. A heatmap was then generated 
with GraphPad Prism (version 8.2.1) with colours represent-
ing Spearman's correlation coefficient (R) and ‘*’ representing 
the p value. The absolute value of the correlation coefficient 
(R) indicated the strength of the correlation: 0– 0.3, weak; 0.3– 
0.5, moderate; 0.5– 0.7 strong; and 0.7– 1, very strong.

2.6 | Immunophenoscore analysis

The immunophenoscore (IPS) was derived with machine 
learning algorithms from the representative gene expression 
in four major categories of factors related to immunogenic-
ity, including effector cells, immunosuppressive cells, major 
histocompatibility complex (MHC) molecules and immu-
nomodulators. The IPS was calculated based on the z- scores 
of gene expression using a scale ranging from 0 to 10. It has 
been validated that higher IPSs are associated with stronger 
immunogenicity, indicating a better response to ICIs.28 The 
IPSs of CESC patients were acquired from The Cancer 
Immunome Atlas (https://tcia.at/home).

2.7 | Searching the QuartataWeb Server for 
potential drugs

The QuartataWeb Server29 (http://quart ata.csb.pitt.edu.) is 
a user- friendly website designed for polypharmacological 
and chemogenomics analyses, whose original data sources 
are DrugBank30 and STITCH.31 Users can conveniently 
obtain access to information on experimentally verified 
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http://quartata.csb.pitt.edu
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protein- drug/chemical interactions and computationally pre-
dicted interactions. With the help of the QuartataWeb Server, 
we identified the potential drugs targeting the proteins en-
coded by the genes we were interested in.

2.8 | Statistical analysis

Continuous variables are described as the mean ± SE or the 
median, and categorical variables are presented as the fre-
quency (n) and proportion (%). Differences in the variables 
between groups were tested using t tests, nonparametric tests, 
chi- square tests, or ANOVA tests. All hypothetical tests were 
two- sided and a p value less than 0.05 was considered statis-
tically significant. Statistical analyses were performed with 
R software (version 3.6.2), SPSS (version 25) and GraphPad 
Prism (version 8.2.1).

3 |  RESULTS

3.1 | A total of 178 overlapping DEGs were 
identified from 3 GEO datasets of cervical 
cancer

The whole study was conducted according to the flow chart 
(Figure 1). We analysed 3 cervical cancer datasets (GSE7803, 
GSE9750 and GSE13 8080) on the GEO platform, identify-
ing 543 (293 upregulated and 250 downregulated), 1602 (396 
upregulated and 1206 downregulated) and 914 (380 upregu-
lated and 534 downregulated) DEGs, respectively. Notably, 
178 DEGs overlapped amongst the three datasets, includ-
ing 64 upregulated genes and 114 downregulated genes 
(Figure 2A– D). Whether these DEGs play significant roles in 
the development of cervical cancer and offer great prognostic 
value were the next questions we sought to answer.

F I G U R E  1  Flow chart of the current study. AIC, Akaike information criterion; CESC, Cervical squamous cell carcinoma and endocervical 
adenocarcinoma; DEG, differentially expressed genes; GEO, Gene Expression Omnibus; GSEA, Gene set enrichment analysis; ICI, immune 
checkpoint inhibitors; IPS, immunophenoscore; TCGA, the Cancer Genome Atlas

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7803
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9750
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138080
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F I G U R E  2  (A– C) Volcano plot of the differentially expressed genes (DEGs) discovered in (A) GSE7803 dataset, (B) GSE9750 dataset and (C) 
GSE13 8080 dataset. (D) One hundred and seventy- eight overlapped genes within the above three GEO datasets. (E) Kaplan– Meier curves of the six- 
gene signature low- risk group and high- risk group with significant statistical difference demonstrating that a higher risk score led to a worse prognosis. 
(F) Receiver operating characteristic (ROC) curve of the six- gene signature predicting OS at 1, 3, 5 and 10 years. GEO, Gene Expression Omnibus

p01goL-

Log2Fold Change

Venn Plot

p01goL-

Log2Fold Change

(A)

p01goL-

Log2Fold Change

(B)

(C) (D)

GSE7803

GSE9750

GSE138080

GSE7803

GSE9750

GSE138080

Up-regulated  genes

Down-regulated  genes

(E)

lavivru
S llarev

O

Time(days)

Kaplan Meier Curve (F) ROC of the six-gene signature

ytivitisne
S

1-Specificity

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7803
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9750
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138080


6886 |   QU et al.

3.2 | A promising six- gene prognostic 
signature was constructed with TCGA data.

To explore prognostic biomarkers, we performed survival 
analysis using the CESC dataset from the TCGA database, 
which includes 306 cervical cancer samples with RNA- seq 
data, survival data and clinicopathological data (Table  1). 
First, we analysed the 178 DEGs by univariate Cox regres-
sion analysis and found 36 DEGs with potential prognostic 
value. Then, multivariate Cox regression analysis was per-
formed with the ‘step AIC’ method. Of note, we found that 
six genes (APOC1, GLTP, ISG20, SPP1, SLC24A3 and 
UPP1) had remarkable statistical significance (p  <  0.05) 
which were subsequently included in the overall survival pre-
diction model (Table 2). Notably, we established a six- gene 
signature that could predict overall survival for the first time 
and the risk score was calculated as follows: 0.3322*UPP1- 
0.6835*GLTP  +  0.2347*SLC24A3+0.2777*SPP1- 
0.4078*ISG20- 0.3020*APOC1 (concordance  =  0.764, 
SE  =  0.028). Additionally, we divided 306 patients into a 
high- risk group and a low- risk group using the median risk 
score as the cut- off value. Kaplan– Meier curves and log- rank 
tests were employed to compare the overall survival between 
high- risk and low- risk patients (Figure  2E). The results 
showed that a higher risk score predicted a shorter overall 
survival. Time- dependent ROC curves for the six- gene sig-
nature were generated (Figure 2F) and the AUC values for the 
1- , 3- , 5- and 10- year survival predictions were 0.786, 0.777, 
0.808 and 0.748, respectively. Collectively, these results sug-
gested that the novel six- gene (APOC1, GLTP, ISG20, SPP1, 
SLC24A3 and UPP1) panel we constructed might serve as a 
promising prognostic biomarker.

3.3 | The six- gene signature was an 
independent prognostic factor.

To further examine whether the six- gene signature was an in-
dependent prognostic factor, we performed not only univari-
ate but also multivariate Cox regression analysis (Table 3). 
Clinical stage (stage III and IV vs. stage I and II), lymph 
node status (N1 vs. N0), lymphovascular infiltration (present 
vs. absent), metastasis (M1 vs. M0) and the six- gene signa-
ture proved to be prognostic factors according to the univari-
ate model, while the multivariate model included LVSI and 
the six- gene signature (concordance  =  0.86, SE  =  0.033), 
demonstrating that the six- gene signature could serve as an 
independent prognostic factor. Then a nomogram was con-
structed based on LVSI and the six- gene signature to pre-
dict the overall survival of cervical cancer patients and the 
calibration curves predicting 1, 3, 5, 10- year overall survival 
(OS) were illustrated (Figure 3). To evaluate the stability and 

reliability of the six- gene signature, we conducted a subgroup 
analysis (Figure  4A). A higher risk score predicted poorer 
overall survival in most subgroups, with a p value less than 
0.05. Overall, we proved that the six- gene panel can be an 
independent prognostic biomarker.

T A B L E  1  Clinicopathological features of CESC dataset in TCGA 
database

Characteristics Entire cohort N = 306

Age (years)

≤46 156 (51.0%)

>46 150 (49.0%)

Histology

SCC 254 (83.0%)

AC 47 (15.4%)

ASC 5 (1.6%)

Clinical stage

I 162 (52.9%)

II 69 (22.5%)

III 46 (15.0%)

IV 22 (7.2%)

NA 7 (2.3%)

Grade

G1 18 (5.9%)

G2 135 (44.1%)

G3 118 (38.6%)

G4 1 (0.3%)

NA 34 (11.1%)

Lymph node

N0 134 (43.8%)

N1 61 (19.9%)

NA 111 (36.3%)

LVSI

Absent 71 (23.2%)

Present 81 (26.5%)

NA 154 (50.3%)

Metastasis

M0 116 (37.9%)

M1 11 (3.6%)

NA 179 (58.5%)

Radiation

Yes 144 (47.1%)

No 56 (18.3%)

NA 106 (34.6%)

Abbreviations: CESC, cervical squamous cell carcinoma and endocervical 
adenocarcinoma; LVSI, lymphovascular space invasion; NA, not available; 
TCGA, The Cancer Genome Atlas.
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3.4 | The six- gene signature we established was 
related to aggressive features.

To further analyse whether the six- gene signature was related 
to clinicopathological features, we conducted the statistical 
analysis of the differences between the six- gene signature 
low- risk group and high- risk group (Table S2). We noticed 
that a high- risk score was linked with lymph node metasta-
sis (p = 0.022) and showed a trend for being related to the 
advanced clinical stage (p  =  0.076). In addition, we com-
pared the risk scores in different subgroups (Figure 4B,C). 
Discrepancies existed between the early- stage group and 
advanced- stage group (p  =  0.005), further confirming the 
association between the six- gene panel and clinical stage of 

cervical cancer. But risk scores had no differences between 
the N1 group and N0 group (p = 0.3253), indicating that the 
correlation between the six- gene signature and lymph node 
metastasis was not robust and convincing enough. The statis-
tical difference in Table S2 (p = 0.022) was probably due to 
the missing data. Additionally, by analysing another cervical 
cancer dataset on the GEO platform (GSE 127265), the as-
sociation between the six- gene signature risk score and more 
advanced clinical stage was confirmed (Figure S1).

In a word, a high six- gene signature risk score was 
linked to the advanced clinical stage representing the ag-
gressive features of cervical cancer. Therefore, we wondered 
how these six genes enact their ability to promote tumour 
aggressiveness.

Gene symbol Official full name HR 95% CI p value

APOC1 Apolipoprotein C1 0.739 0.615– 0.889 0.001

GLTP Glycolipid transfer protein 0.505 0.385– 0.662 <0.001

ISG20 Interferon stimulated 
exonuclease gene 20

0.665 0.495– 0.895 0.007

SLC24A3 Solute carrier family 
24 member 3

1.265 1.038– 1.541 0.020

SPP1 Secreted phosphoprotein 1 1.320 1.140– 1.528 <0.001

UPP1 Uridine phosphorylase 1 1.394 1.124– 1.729 0.003

T A B L E  2  Hazard ratios of each gene in 
the six- gene signature

T A B L E  3  Univariate and multivariate Cox model predicting overall survival

Characteristics Patients

Univariate Cox model Multivariate Cox model

HR 95% CI p value HR 95% CI p value

Age 306 1.016 0.999– 1.034 0.062

Histology 306

SCC/AC and ASC 1.027 0.539– 1.955 0.936

Clinical stage 299

III and IV/I and II 2.369 1.457– 3.854 <0.001

Grade 272

3 and 4/1 and 2 0.8894 0.527– 1.502 0.661

Lymph node 195

N1/N0 2.844 1.446– 5.593 0.002

LVSI 152

Present/Absent 10.460 2.466– 44.360 0.001 12.228 2.875– 51.9995 0.0007

Metastasis 127

M1/M0 3.555 1.187– 10.640 0.023

Radiation 200

No/Yes 0.918 0.415– 2.032 0.833

Six- gene signature 306 2.718 2.081– 3.550 <0.001 2.454 1.561– 3.858 0.0001

Abbreviation: LVSI, lymphovascular space invasion.
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F I G U R E  3  (A) Nomogram combining the six- gene signature and LVSI predicting OS for 1, 3, 5 and 10 years. (B– E) Calibration curves of the 
multivariate Cox model predicting OS (D) at 1 year, (E) at 3 years, (F) at 5 years and (G) at 10 years. LVSI, lymphovascular space invasion
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3.5 | The six- gene signature was found to be 
closely associated with immune- related pathways.

Subsequently, we deeply examined the gene functions and 
pathways related to the signature with GSEA (Figure  5). 
We found that epithelial- mesenchymal transition, TGF- 
beta pathway and hypoxia were enriched in the high- risk 
group, while oxidative phosphorylation, interferon- alpha 
response and interferon- gamma response were enriched 
in the low- risk group. These results indicated that the 
poor prognosis of the high- risk score group was related 

to the activation of common carcinogenesis pathways; in 
contrast, the better prognosis of the low- risk score group 
was linked to a positive immune response. Additionally, 
we also studied the functional pathways correlated with 
the six genes individually. Interestingly, APOC1, ISG20, 
SPP1 and UPP1 were found to be closely connected with 
the immune response and inflammation- related pathways. 
Collectively, these results implied that the six genes might 
regulate the immune microenvironment or mediate im-
mune reactions, thus influencing tumour aggressiveness 
and disease prognosis.

F I G U R E  4  (A) Forest Plot 
illustrating the hazard ratios of the six- gene 
signature for overall survival in different 
clinicopathological subgroups. (B) Box plot 
of the six- gene expression between earlier 
clinical stage and advanced clinical stage. 
(C) Box plot of the six- gene expression 
between LNM- N0 group and LNM- N1 
group
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3.6 | The six- gene signature was correlated 
with the tumour immune microenvironment.

To further confirm whether the six- gene signature was indic-
ative of the immune microenvironment, we explored the as-
sociation between the six- gene signature and tumour immune 
microenvironment in terms of various tumour- infiltrating im-
mune cells (Table 4) through CIBERSORT and correlation 
analysis. We observed that the six- gene risk score was posi-
tively correlated with the abundances of resting CD4+ mem-
ory T cells, M0 macrophages and activated mast cells but 
negatively associated with the abundances of CD8+ T cells 
and resting mast cells. We also investigated the correlations 
between the six genes and the abundances of immune cells 
individually (Figure S2). Notably, we found that APOC1 had 
strong links with M2 macrophages, activated DCs, CD4+ 
resting memory T cells and CD8+ T cells. To further test 
whether the six genes potentially regulated immune cells, 
we conducted co- expression analysis between the six genes 
and immune markers demonstrating the state and function of 

immune cells (Figure 6). We discovered that APOC1 had a 
strong correlation with immune markers pf monocytes, M2 
macrophages, DCs and T cells, especially exhausted T cells. 
Of note, APOC1 had the strongest association (R = 0.744) 
with HAVCR2 (also named TIM- 3), a marker of exhausted T 
cells. Additionally, ISG20 exhibited a similar expression pat-
tern as APOC1, while SPP1 was positively associated with 
M2 macrophages. Overall, we confirmed that the novel six- 
gene signature we established was closely associated with the 
tumour immune microenvironment.

3.7 | The six- gene signature exhibited 
potential therapeutic value

We sought to determine whether the six- gene signature could 
provide therapeutic value. First, we used the IPS to predict 
ICI effectiveness within patients classified as high- risk and 
low- risk according to the six- gene signature (Figure 7A– D). 
The low- risk group exhibited higher IPSs, as well as higher 

F I G U R E  5  GSEA Enrichment plots indicating the top three related pathways of the six- gene prognostic signature and the six studied genes 
including APOC1, GLTP, ISG20, SLC24A3, SPP1 and UPP1. GSEA, gene set enrichment analysis

High-risk Low-risk

APOC1 GLTP

ISG20 SLC24A3

SPP1 UPP1
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IPS- CTLA4 and IPS- PD1/PDL1/PDL2+CTLA4 scores, than 
the high- risk group, representing higher immunogenicity, 
thus predicting a better response to ICIs including CTLA4 
blockade and PDL1 blockade. In summary, the six- gene sig-
nature might assist in predicting ICI treatment effectiveness. 
Second, we searched the QuartataWeb Server for potential 
drugs targeting the proteins encoded by the six prognostic 
genes. We identified 1, 5 and 2 known small molecule drugs 
targeting ISG20, GLTP and UPP1, respectively (Table S3). 
Notably, fostamatinib and phenethyl isothiocyanate targeted 
both UPP1 and ISG20, and lactose interacted with ISG20 and 
GLTP (Figure 7E). Overall, the six- gene signature exhibited 
an appreciable therapeutic value in predicting ICI treatment 
effectiveness and highlighting potential drug targets (GLTP, 
UPP1 and ISG20).

4 |  DISCUSSION

Despite the rapid development of molecular biology and se-
quencing technologies, previous studies exploring novel bio-
markers32– 34 in cervical cancer were mostly based on a single 
microarray dataset or database with limited validity20,21 or 

lacked a clear description of molecular function.22 In the pre-
sent study, by comprehensively integrating three GEO data-
sets and CESC data from the TCGA database, we established 
a novel six- gene (APOC1, ISG20, SPP1, UPP1, GLTP and 
SLC24A3) prognostic signature. The six- gene signature was 
related to the clinical stage and proved to be an independent 
prognostic factor for cervical cancer with stable performance 
in different subgroups. Subsequently, a strong link between 
tumour immune environment and the six genes had been dis-
covered. Intriguingly, the six- gene risk score was positively 
correlated with the abundances of resting CD4+ T cells and 
activated mast cells but negatively correlated with the abun-
dances of CD8+ T cells, activated CD4+ T cells and resting 
mast cells. That is, a lower risk score represented higher 
abundances of CD8+ T cells and activated CD4+ T cells, 
which have been widely reported to be effector cells35– 38 
in the tumour microenvironment generally leading to a bet-
ter prognosis. In addition, significant associations between 
vessel density and mast cell abundance have been found in 
cervical carcinoma,39,40 providing an explanation for the link 
between high six- gene risk score and poor prognosis: high 
activated mast cell abundance and increased angiogenesis. 
To determine the therapeutic value of the six- gene signature, 

Immune cell Correlation p Value Significance

B cells naive −0.162 0.005 **

B cells memory −0.037 0.523

Plasma cells −0.118 0.043 *

T cells CD8 −0.352 0.000 ***

T cells CD4 naive NA NA NA

T cells CD4 memory resting 0.343 0.000 ***

T cells CD4 memory activated −0.239 0.000 ***

T cells follicular helper −0.098 0.094

T cells regulatory (Tregs) −0.158 0.006 **

T cells gamma delta −0.062 0.289

NK cells resting 0.106 0.070

NK cells activated −0.052 0.371

Monocytes 0.068 0.244

Macrophages M0 0.346 0.000 ***

Macrophages M1 −0.100 0.089

Macrophages M2 −0.032 0.581

Dendritic cells resting −0.097 0.095

Dendritic cells activated 0.023 0.688

Mast cells resting −0.328 0.000 ***

Mast cells activated 0.396 0.000 ***

Eosinophils 0.072 0.215

Neutrophils 0.228 0.000 ***

*p < 0.05; **p < 0.01; ***p < 0.001.
The absolute value of the correlation was more than 0.3 and p value was less than 0.001 in the rows with bold 
texts implying a relatively robust relation with statistical significance (in bold).

T A B L E  4  Correlations between the six- 
gene signature and 22 types of immune cells
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we performed IPS analysis and concluded that a lower six- 
gene risk score predicted a better response to ICIs than a 
higher six- gene risk score. Additionally, we identified drugs 
targeting GLTP, UPP1 and ISG20, offering new directions 
for drug development.

Gene functions and mechanisms are of vital importance 
in determining clinical value and applications. Hence, we 
placed much emphasis on investigating how the six genes 

from our signature function and what pathways they mediate 
(Table S4). In the field of cervical cancer, a previous study 
found that SPP1 was upregulated in cancer tissues compared 
with normal tissues.41 Experiments proved that inhibiting 
SPP1 could inhibit proliferation, induce apoptosis and im-
prove the chemosensitivity of cervical cancer cells. In addi-
tion, ISG20 was also reported to be differentially expressed in 
cervical cancer tissues.42 However, the other four genes within 

F I G U R E  6  Heatmap of the six prognostic genes expression correlated with immune markers colours representing the correlation coefficients 
(R) and ‘*’standing for p value. ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05. The correlations were adjusted by tumour purity
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the signature have rarely been studied in cervical cancer. In 
our current study, through GSEA, we found that protective 
genes for overall survival, especially APOC1 and ISG20, had 
positive correlations with immune- related pathways, includ-
ing the interferon- alpha pathway, interferon- gamma pathway 
and complement pathway, implying that an effective immune 
response might lead to good prognosis. Moreover, the risk 
genes predicting poor survival, particularly SPP1 and UPP1, 
were linked with common carcinogenesis pathways as well 
as immune- related pathways such as the inflammatory re-
sponse and TNF signalling via NFKB. In summary, our study 
discovered that the six prognostic genes, especially APOC1, 
ISG20, SPP1 and UPP1, had the potential to regulate immune 
response thus contributing to cervical cancer aggressiveness. 
These findings greatly expanded our understanding of the 
function of these genes in cervical cancer.

We also studied whether the expression of the six prog-
nostic genes reflected the immune microenvironment or im-
mune response. Through co- expression analyses, we verified 
that APOC1, ISG20 and SPP1 had notably strong correla-
tions with tumour- infiltrating immune cells, highlighting 
new directions for further research. (1) APOC1, as a pro-
tective factor for overall survival, was found to be closely 
related to the abundances of multiple tumour- infiltrating 
immune cells, such as M2 macrophages, activated DCs and 
CD8+ T cells. Correspondingly, APOC1 had strong asso-
ciations with 18 immune markers. Of note, APOC1 had an 
extremely strong relationship with HAVCR2 (also named 
TIM- 3), a marker of exhausted T cells. In addition, APOC1 
was positively correlated with the abundance of M2 macro-
phages but negatively correlated with PTGS2, a marker of 
M1 macrophages, indicating a potential association with 

F I G U R E  7  (A) IPS, (B) IPS- CTLA4, (C) IPS- PD1/PDL1/PDL2 and (D) IPS- PD1 PD1/PDL1/PDL2+CTLA4 in the six- gene signature 
high- risk group and low- risk group. (E) The known (grey thick lines) and predicted (red thin lines) drugs targeting UPP1, ISG20 and GLTP. IPS, 
immunophenoscore
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macrophage polarisation, which is critical in the antitumour 
response.43,44 Hence, we suggested that APOC1 might affect 
tumour malignancy and cancer prognosis by regulating T cell 
exhaustion and macrophage polarisation. (2) Additionally, 
we observed that ISG20, as a protective gene for survival, 
was correlated with T cells and DCs. As ISG20 participates 
in the antiviral response, we hypothesised that ISG20 might 
participate in the anti- HPV immune response by activating T 
cells or DCs and thus influence the overall survival of cervi-
cal cancer patients. (3) Moreover, we discovered that SPP1 
expression was positively correlated with the abundance of 
M2 macrophages as well as the expression of correspond-
ing immune markers (CD163 and VSIG4). M2 macrophages 
exert anti- inflammatory and pro- tumour effects, promoting 
the progression and metastasis of a variety of tumours, such 
as breast cancer and gastric cancer.45,46 Therefore, we hy-
pothesised that SPP1 might contribute to tumour aggressive-
ness and influence cervical cancer prognosis by regulating 
M2 macrophages, but this hypothesis requires further inves-
tigation and validation.

The present study had several limitations. First, extra 
clinical cohorts with large- scale samples were not recruited 
to accomplish validation of the newly constructed six- gene 
signature. Second, the value of the six- gene signature in im-
munotherapy prediction was not shown in clinical cohorts. 
Finally, experiments to verify the hypothesis we proposed 
regarding the function and mechanisms of the six prognostic 
genes, as well as the predicted drug- protein interactions, were 
not performed yet. In the future, clinical validation and exper-
iments would be conducted to verify our current conclusions.

In conclusion, our current study represented the first at-
tempt to construct a novel six- gene (APOC1, GLTP, ISG20, 
SPP1, SLC24A3 and UPP1) signature that comprehensively 
integrated GEO and TCGA data. With a deeper investigation 
of the gene functions and pathways, we found that the six- 
gene signature was closely associated with the immune re-
sponse and tumour immune microenvironment. The six- gene 
signature was indicative of aggressive features of cervical 
cancer and could serve as a promising biomarker for pre-
dicting not only overall survival but also ICI treatment effec-
tiveness. Moreover, three genes (UPP1, ISG20 and GLTP) 
within the signature have the potential to become novel drug 
targets.
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