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Background: The use of pharmacogenomics data is increasing in clinical practice. 
However, it is unknown if pharmacogenomics data can be used more broadly to predict 
outcomes like hospitalization or emergency department (ED) visit. We aim to determine the 
association between selected pharmacogenomics phenotypes and hospital utilization out-
comes (hospitalization and ED visits).
Methods: This cohort study utilized 10,078 patients from the Mayo Clinic Biobank in the 
RIGHT protocol with sequence and interpreted phenotypes for 10 selected pharmacogenes 
including CYP2D6, CYP2C9, CYP2C19, CYP3A5, HLA B 5701, HLA B 5702, HLA B 5801, 
TPMT, SLCO1B1, and DPYD. The primary outcome was hospitalization with ED visits as 
a secondary outcome. We used Cox proportional hazards model to test the association 
between each pharmacogenomics phenotype and the risk of the outcomes.
Results: During the follow-up period (median [in years] = 7.3), 13% (n=1354) and 8% 
(n=813) of the subjects experienced hospitalization and ED visits, respectively. Compared to 
subjects who did not experience hospitalization, hospitalized patients were older (median age 
[in years]: 67 vs 65), poorer self-rated health (15% vs 4.7% for fair/poor), and higher disease 
burden (median number of chronic conditions: 7 vs 4) at baseline. There was no association 
of hospitalization with any of the pharmacogenomics phenotypes. The pharmacogenomics 
phenotypes were not associated with disease burden, a well-established risk factor for 
hospital utilization outcomes. Similar findings were observed for patients with ED visits 
during the follow-up period.
Conclusion: We found no association of 10 well-established pharmacogenomics phenotypes 
with either hospitalization or ED visits in this relatively large biobank population and outside 
the context of specific drug use related to these genes. Traditional risk factors for hospita-
lization like age and self-rated health were much more likely to predict hospitalization and/or 
ED visits than this pharmacogenomics information.
Keywords: pharmacogenomics, emergency department, hospitalization

Introduction
Healthcare organizations utilize risk stratification as an important tool for managing 
population health.2,3 In the ambulatory practice, clinicians determine high-risk 
patients by their age4 as a primary predictor of risk for hospitalization. Risk 
prediction instruments utilize other risk factors for hospitalization including comor-
bid health conditions,5–7 and self-reported physical health.4,8 Other important risk 
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factors for health outcomes include socioeconomic status9 

and previous hospital utilization.5 Following the determi-
nation of high-risk status, healthcare organizations might 
provide different levels of care to best suit the risk strati-
fication of the patient.10 While the traditional methods of 
risk stratification for hospital use are effective,11 further 
refinement of risk would improve our ability to better 
identify patients at high risk. Pharmacogenomics is one 
potential clinical factor that may help predict adverse 
health outcomes given the association between medication 
and adverse events like emergency department visits.12 To 
date, personalized medicine using genomic information 
has not been used in risk-stratification tools for health 
outcomes including hospitalization.

While pharmacogenomics has not been specifically 
evaluated for healthcare utilization, the use or misuse of 
medications can certainly place patients at risk for hospi-
talization or ED use. Polypharmacy may place patients at 
risk for adverse health outcomes like 30-day hospital 
readmission13 or hospitalization in patients receiving 
home care.14 Patients experience an increased risk of ED 
visits when they take pain medications, diabetic medica-
tions, or anticoagulants.15 The American Geriatrics 
Society published guidelines on medications that are 
potentially hazardous for older adults.16 Providers recog-
nize common inappropriate medications like anticholiner-
gic medications, opioid pain medications, sedative/ 
hypnotic medications among other medications.16

The metabolism of medications could potentially affect 
efficacy and toxicity17 and may impact the majority of 
patients. A recent study tested only five 
pharmacogenomics (PGx) and yet found that 99% of 
patients had one or more actionable results.18 In our pre-
vious study of 1013 patients with pharmacogenomics for 
CYP2D6, we found 8% of patients possessed a poor meta-
bolizer phenotype and 8% had ultra-rapid metabolizer 
phenotypes.19 In further work in this same population, 
we showed that the extremes of metabolism phenotype 
(poor or ultra-rapid) were associated with a higher risk 
of hospitalization.20 However, this has not been shown in 
all studies that have examined pharmacogenomics pheno-
types and hospitalization. In a study of 729 patients with 
pre-emptive VKORC1 and CYP2C9 PGx genes, pharma-
cogenomics-guided warfarin dosing did not lead to 
a reduction in hospitalization or mortality.21 In addition, 
the identification of new alleles in pharmacogenes plus 
improved variant functional characterization has led to 
new variant classifications.22,23 In this study, we undertook 

a larger examination of the association of pharmacoge-
nomics phenotype agnostic of specific medication usage 
and the utilization outcomes of hospitalization and ED 
visits using the most recent variant classifications. 
Further, we explored the association between pharmaco-
genomics and disease burden because as many as 50% of 
patients react inadequately to prescribed drugs24 which can 
lead to poorly treated health conditions.

Methods and Materials
Study Subjects
This is a retrospective cohort study. All participants in this 
study were enrolled in the RIGHT expansion study as 
described previously by Bielinski et al.1 Briefly, adult 
subjects were selected from the Mayo Clinic Biobank 
(MCB)25 for use of the Mayo Clinic for their healthcare 
and offered the opportunity to receive pharmacogenomic 
testing plus deposition of key results in the Mayo Clinic 
electronic health record (EHR). A total of 18,199 adult 
subjects were invited and 10,085 enrolled. Subjects who 
had subsequently withdrawn consent from the MCB or the 
RIGHT 10K study were excluded, leaving 10,078 in these 
analyses. The majority of RIGHT 10K participants lived 
within the Rochester Epidemiology Project (REP) catch-
ment area where we can access comprehensive electronic 
health records (EHRs) information including hospitaliza-
tion and ED visit information.26 The Mayo Clinic IRB and 
the Olmsted Medical Center IRB reviewed and approved 
the study protocol. The study was conducted in accordance 
with the Declaration of Helsinki. The study was also 
reviewed and approved by the Mayo Clinic Biobank 
access committee and the RIGHT access committee.

Outcomes
We searched the EHR systems of Mayo Clinic and 
Olmsted Medical Center to ascertain hospitalization and/ 
or ED visits. Follow-up time began on the date of consent 
to the Mayo Clinic Biobank (April 2009 through 
April 2017). Follow-up time ended when participants 
exited the study which was either the date when PGx 
gene information was available in participants’ EHR or 
the date of death date, whichever came first. The median 
time for the patients to exit the study was 7.3 years to 
study exit. Index date was defined as the first date (or the 
first date if multiple outcomes occurred) associated with 
ICD 9 or 10 codes for each outcome. Hospitalization 
included a stay that was overnight and excluded outpatient 
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hospital services (ie, colonoscopy and outpatient surgery). 
We used the REP data linkage system to identify partici-
pants with each outcome. The medical cause for readmis-
sion was identified using ICD9 and ICD 10 codes and was 
mapped to Phecodes.27,28

Predictors
We obtained sociodemographic characteristics from the 
EHR which included age, sex, and race (white race versus 
non-white race) and the MCB questionnaire for educa-
tional level and self-rated perceived general health. 
Educational level was reported as high school or less, 
some college or 4-year college degree, advanced degree, 
or missing. We reported the classification of patients’ self- 
reported perceived general health as excellent/very good, 
good, fair/poor, or missing. We obtained chronic condition 
information at the time of the biobank consent using the 
Department of Health and Human Services guidelines for 
determining chronic conditions29 which utilized previously 
methodologies and added them to define disease burden.30 

The conditions were derived from ICD 9 or 10 billing 
codes for all participants.31 The team quantified socioeco-
nomic status using the HOUSES index which uses housing 
characteristics.32 We placed the HOUSES index scores 
into quartiles for comparison consistent with our previous 
work with higher quartiles with higher socioeconomic 
status.9

For pharmacogenomics phenotypes, we utilized the 
records of those patients with PGx data within the bio-
bank. The PGx phenotype was obtained from PGx sequen-
cing data from the RIGHT protocol. These PGx genes 
were selected based upon the best clinical practice advi-
sories and decision support for clinicians. We reported all 
phenotypes in Supplementary Table 3; however, because 
of the small numbers of phenotypes and outcomes, we 
categorized phenotypes into normal, abnormally fast, or 
abnormally slow. For DPYD, we reported as normal, inter-
mediate or poor. For HLA, we reported present or absent.

Statistical Analyses
Socio-demographic data were summarized as counts and 
percentages or medians and 25–75%tile as appropriate, 
stratified by status of each outcome. Differences in risk 
of hospitalization from PGx phenotypes were assessed by 
modeling time from biobank consent to hospitalization 
predicted by PGx phenotypes using Cox proportional 
hazards models. We analyzed the primary endpoint of 
hospitalization using Likelihood ratio tests based on 

comparing Cox models with and without the individual 
PGx phenotype predictors. We also tested whether PGx 
phenotype is associated with disease burden and/or sex, 
known risk factors for risk of hospitalization outcomes, by 
using Kruskal–Wallis test and Chi-square test, respec-
tively. In a similar fashion, we used Cox proportional 
hazard model for ED visit outcome.

Results
Of 10,078 patients, the average age of the patients at the 
MCB enrollment was 66 years with (IQR: 54 to 74; Table 
1). Consistent with prior literature, patients who were 
hospitalized compared to non-hospitalized, were older 
(median 67 years versus 65 in non-hospitalized, p value 
<0.001) and were more likely to have high school or less 
education (22% versus 13%, p value <0.001). Female 
gender was also less likely to be hospitalized compared 
to males (OR 0.76 (95% CI: 0.68,0.84)). Patients of white 
race were also less likely to be hospitalized compared to 
non-white race (OR 0.73 (95% CI 0.56,0.96)). The rate of 
hospitalization and ED visit at 5 years were 9.3% and 
5.4%, respectively. The hospitalized patients were more 

Table 1 Characteristics of Study Subjects Included in the Study

Overall Cohort (n=10,078)

Age (in year),

Median (25th–75th %tile) 66 (54, 74)
Female gender, N (%) 6145 (61%)

White race, N (%) 9482 (94%)

Education level, N (%)

High school or less 1386 (14%)

Some college/4-year degree 5903 (60%)
Advanced degree 2606 (26%)

Missing 183

Perceived general health, N (%)

Excellent/very good 6583 (66%)

Good 2837 (28%)
Fair/poor 611 (6.1%)

Missing 47

Disease burden,

Median (25th – 75th %tile) 5 (3, 7)

HOUSES (in quartiles)*

Q1 (the lowest) 759 (13%)

Q2 1452 (24%)
Q3 1705 (29%)

Q4 (the highest) 2042 (29%)

Missing 4120

Note: *HOUSES: an individual-level housing-based socioeconomic status measure.

Pharmacogenomics and Personalized Medicine 2021:14                                                                submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                         
231

Dovepress                                                                                                                                                       Takahashi et al

https://www.dovepress.com/get_supplementary_file.php?f=281645.docx
http://www.dovepress.com
http://www.dovepress.com


likely to report poor/fair health (15%) compared to non- 
hospitalized patients (5%) (p value<0.001). Those hospi-
talized tended to have lower socioeconomic status measure 
by HOUSES (18% vs 12% for the lowest quartile in the 
local population, p value <0.001), which is similar to the 
trend associated with education level. (Table 2) When 
looking at ED visit as the primary outcome, we found 
similar associations between ED visit and age, sex, race, 
educational level, self-rated health and socioeconomic sta-
tus (Table 3).

We did not find any association between the phenotype 
of 10 PGx genes and hospitalization. We have reported all 
of the phenotypes for the 10 pharmacogenomics genes in 
Supplementary Table 1. In comparing the phenotypes of 
frequencies of CYP 2D6 to other world populations, they 
appear similar.33 There was very little variation in pheno-
type between those with hospitalization and those without 
hospitalization (Table 4). Specifically, in CYP 2D6 those 
with a fast phenotype had 2.6% hospitalization compared 
with 2.0% in those without hospitalization (p 0.40). For 

our second outcome, we found that there was no associa-
tion between ED visits and pharmacogenomic phenotype 
(Table 5). Of the pharmacogenomic phenotypes, dihydro-
pyrimidine dehydrogenase (DPYD) had a trending p value 
of p=0.06. We report no difference in pharmacogenomics 
phenotype by sex or disease burden (Supplementary Table 
2), which justifies the rationale for not adjusting for these 
variables when testing the association between PGx phe-
notype and the outcomes. For the primary diagnosis for 
admission, we found osteoarthritis and major depression as 
the top two reasons for admission (Supplementary 
Table 1).

Discussion
In this study of 10,078 patients, we did not find 
a relationship between PGx phenotype and hospitalization 
and ED visits. In particular, we did not find a relationship 
between the common PGx genes of CYP 2D6, CYP 2C19 
and CYP 3A4 and hospitalization and ED visits. This is 
a novel finding as this type of study has not been 

Table 2 Association Between Subject Characteristics and Risk of Hospitalization Status During Follow-Up Period

Hospitalization Association Results

Yes (n=1354) No (n=8724) HR (95% CI)

Age (in year),

Median (25th–75th %tile) 72 (61, 77) 65 (53, 74) 1.02 (1.02, 1.03)
Female gender, N (%) 744 (55%) 5401 (62%) 0.76 (0.68, 0.84)

White race, N (%) 1253 (93%) 8229 (94%) 0.69 (0.56, 0.84)

Education level, N (%)

High school or less 291 (22%) 1095 (13%) Ref

Some college/4-year degree 733 (56%) 5170 (60%) 0.58 (0.50, 0.66)
Advanced degree 296 (22%) 2310 (27%) 0.52 (0.45, 0.62)

Missing 34 149

Perceived general health, N (%)

Excellent/very good 628 (47%) 5955 (69%) Ref

Good 516 (38%) 2321 (27%) 2.11 (1.88, 2.37)
Fair/poor 200 (15%) 411 (4.7%) 4.71 (4.02, 5.53)

Missing 10 37

Disease burden,

Median (25th – 75th %tile) 7 (5, 9) 4 (2, 6) 1.31 (1.29, 1.34)

HOUSES (in quartiles)*

Q1 (the lowest) 147 (18%) 612 (12%) Ref

Q2 221 (27%) 1231 (24%) 0.73 (0.59, 0.90)
Q3 242 (29%) 1461 (28%) 0.69 (0.56, 0.85)

Q4 (the highest) 210 (26%) 1832 (36%) 0.50 (0.40, 0.61)

Missing 534 3588

Notes: *HOUSES: an individual-level housing-based socioeconomic status measure. A total of 5958 study subjects had an available HOUSES scores (Note: 48 subjects, 8 and 
40 with and without hospitalization, are missing information for “association results” due to no possible censoring date).
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performed previously and provides some initial evidence 
on the utility of PGx phenotype to predict hospitalization 
or ED visit. These results reinforce that traditional risk 
factors for hospital readmission like age, sex, race, comor-
bid health burden,34 previous utilization,34,35 and 
education36 are stronger predictors of hospitalization. Our 
previous work also shows the importance of these tradi-
tional risk factors.5,11,37 PGx phenotype as currently 
defined does not help predict hospitalization or ED visit.

In our previous study, our data indicated that 8% of the 
cohort had ultra-rapid phenotypes for CYP 2D6 and that 
this phenotype was associated with hospitalization 
outcomes.20 In contrast, in the current study, we found 
only 2.1% of patients had ultra-rapid phenotype. The differ-
ences most likely reflect re-evaluation of the activity of the 
*2A allele that occurred in the interim period by the labora-
tory that conducted the phenotyping assays, suggesting that 
our previously reported finding was a chance finding.38 The 
continual improvement of pharmacogenomic assays is cri-
tically important as we work to improve the understanding 

of pharmacogenes, especially CYP2D6. The metabolism 
phenotype for CYP 2D6 has numerous clinical implications 
including antipsychotic medications,39 antidepressants40 

and pain medication like oxycodone or codeine.41 In fact, 
CYP 2D6 is known to affect the metabolism of approxi-
mately 25% of the known drugs.42

Clinical medicine is just starting to understand perso-
nalized medicine and PGx. There have been some com-
mon uses of PGx for individual medications and PGx 
phenotypes. Clopidogrel and CYP 2C19 is one such com-
mon example as clopidogrel is a prodrug and is commonly 
used as an anti-platelet medication to prevent stent re- 
thrombosis.43 In a meta-analysis of studies of clopidogrel 
and CYP 2C19, there were worse health outcomes with 
reduced function phenotypes with hazard ratios of 1.55; 
95% CI, 1.11–2.17; P = 0.01 for patients with one reduced 
function allele compared to normal types for cardiovascu-
lar death, stroke or myocardial infarction.44 In a study of 
patients starting medications for mood disorders, pre- 
emptive PGx testing resulted in lower costs and 

Table 3 Association Between Subject Characteristics and Risk of Emergency Department (ED) Status During Follow-Up Period

ED Visit Association Results

Yes (n=813) No (n=9265) HR (95% CI)

Age (in year),

Median (25th–75th %tile) 72 (62, 78) 66 (53, 74) 1.03 (1.03, 1.04)
Female gender, N (%) 439 (54%) 5706 (62%) 0.73 (0.64, 0.84)

White race, N (%) 755 (93%) 8727 (94%) 0.73 (0.56, 0.96)

Education level, N (%)

High school or less 198 (25%) 1188 (13%) Ref

Some college/4-year degree 428 (54%) 5475 (60%) 0.49 (0.42, 0.58)
Advanced degree 164 (21%) 2442 (27%) 0.43 (0.35, 0.53)

Missing 23 160

Perceived general health, N (%)

Excellent/very good 371 (46%) 6212 (67%) Ref

Good 312 (39%) 2525 (27%) 2.13 (1.83, 2.47)
Fair/poor 123 (15%) 488 (5.3%) 4.66 (3.80, 5.72)

Missing 7 40

Disease burden,

Median (25th – 75th %tile) 8 (6, 10) 5 (2, 7) 1.36 (1.33, 1.39)

HOUSES (in quartiles)*

Q1 (the lowest) 113 (20%) 646 (12%) Ref
Q2 160 (28%) 1292 (24%) 0.69 (0.54, 0.87)

Q3 158 (27%) 1545 (29%) 0.59 (0.46, 0.75)

Q4 (the highest) 144 (25%) 1898 (35%) 0.44 (0.35, 0.57)
Missing 238 3884

Notes: *HOUSES: an individual-level housing-based socioeconomic status measure. A total of 5958 study subjects had an available HOUSES scores (Note: 48 subjects, 3 and 
45 with and without ED visits, are missing information for “association results” due to no possible censoring date).
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utilization.45 In another observational study, investigators 
found lower hospital length of stay in patients receiving 
pharmacogenomics testing compared to no testing in 
depressed patients.46

The strengths of this study included a comprehensive 
list of outcomes (hospitalization and ED visit) from the 
REP data system and catchment area.47 It included the 
pharmacogenomics information which was unique and 

integrated into the medical record.48 The limitations 
included the potential for missing outcomes or predictors 
if the patient sought care outside the REP catchment area; 
however, this is minimized because the largest health 
systems are included for the outcomes. In this cohort 
study, there may be unrecognized confounders that can 
influence hospitalization or ED visits. The study does not 
report drug-gene pairs, and we cannot assume that 

Table 4 Univariate Association Between 10 Selected Pharmacogenomic Phenotypes and Risk of Hospitalization. Note 48 Subjects (8 
with Hospitalization; 40 without Hospitalization) Had No Information on Pharmacogenomics Phenotypes

Hospitalization During Follow-Up Period Association Results

Yes (n=1354) No (n=8724) HR (95% CI) P-value

CYP2C9, N (%)
Normal 1311 (97.4%) 8465 (97.5%) Reference 0.84
Slow 35 (2.6%) 219 (2.5%) 1.03 (0.74, 1.45)

CYP2C19, N (%)

Normal 894 (66.4%) 5659 (65.2%) Reference 0.04
Fast 406 (30.2%) 2814 (32.4%) 0.91 (0.81, 1.03)

Slow 46 (3.4%) 211 (2.4%) 1.32 (0.98, 1.78)

CYP2D6, N (%)

Normal 1111 (82.5%) 7173 (82.6%) Reference 0.34
Fast 35 (2.6%) 174 (2.0%) 1.28 (0.92, 1.8)

Slow 200 (14.9%) 1337 (15.4%) 0.97 (0.84, 1.13)

CYP3A5, N (%)

Normal 181 (13.4%) 1221 (14.1%) Reference 0.65
Slow 1165 (86.6%) 7463 (85.9%) 1.04 (0.89, 1.21)

DPYD, N (%)

Normal 1246 (92.0%) 8164 (93.6%) Reference 0.09
Intermediate 108 (8.0%) 557 (6.4%) 1.24 (1.02, 1.51)

Poor 0 (0.0%) 2 (0.0%) 0 (0, Inf)

HLA-B-1502, N (%)

Absent 1262 (93.8%) 8174 (94.1%) Reference 0.61
Present 84 (6.2%) 510 (5.9%) 1.06 (0.85, 1.32)

HLA-B-5701, N (%)

Absent 1268 (94.2%) 8138 (93.7%) Reference 0.57
Present 78 (5.8%) 546 (6.3%) 0.94 (0.75, 1.18)

HLA-B-5801, N (%)

Absent 1329 (98.9%) 8563 (98.6%) Reference 0.66
Present 17 (1.3%) 121 (1.4%) 0.9 (0.56, 1.45)

SLCO1B1, N (%)

Normal 831 (61.7%) 5452 (62.8%) Reference 0.61
Fast 22 (1.6%) 117 (1.3%) 1.22 (0.8, 1.86)
Slow 493 (36.6%) 3115 (35.9%) 1.03 (0.92, 1.15)

TPMT, N (%)
Normal 1344 (99.9%) 8654 (99.7%) Reference 0.14
Slow 2 (0.1%) 30 (0.3%) 0.41 (0.1, 1.63)
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hospitalization or ED visits were associated with 
a complication of medication or of a problem that PGx 
can solve. We also accept that the population of the cohort 
is largely white1 which may generalize to the upper 
Midwest of the United States but not to other regions of 
the world.49 Additionally, we acknowledge that we may 
lack statistical power as some PGx phenotypes had rela-
tively small sample sizes in abnormal categories. 

However, the observed effect size was in general small 
in the majority of the PGx phenotypes.

Conclusion
We found no association between pharmacogenomics phe-
notype and hospitalization or ED visit in patients who had 
pharmacogenomics testing. This lack of association adds 
to our knowledge about the effect of individualized 

Table 5 Association Between 10 Selected Pharmacogenomic Phenotypes and Risk of Emergency Department (ED) Visits. Note 48 
Subjects (3 with ED Visits; 45 without ED Visits) Had No Information on Pharmacogenomics Phenotypes

ED Visit During Follow-Up Period Association Results

Yes (n=813) No (n=9265) HR (95% CI) P-value

CYP2C9, N (%)
Normal 789 (97.4%) 8987 (97.5%) Reference 0.98
Slow 21 (2.6%) 233 (2.5%) 1.01 (0.65, 1.55)

CYP2C19, N (%)

Normal 533 (65.8%) 6020 (65.3%) Reference 0.67
Fast 253 (31.2%) 2967 (32.2%) 0.96 (0.83, 1.11)

Slow 24 (3.0%) 233 (2.5%) 1.14 (0.76, 1.72)

CYP2D6, N (%)

Normal 656 (81.0%) 7628 (82.7%) Reference 0.44
Fast 20 (2.5%) 189 (2.0%) 1.22 (0.78, 1.9)

Slow 134 (16.5%) 1403 (15.2%) 1.1 (0.91, 1.33)

CYP3A5, N (%)

Normal 116 (14.3%) 1286 (13.9%) Reference 0.73
Slow 694 (85.7%) 7934 (86.1%) 0.97 (0.79, 1.18)

DPYD, N (%)

Normal 761 (93.6%) 8649 (93.4%) Reference 0.82
Intermediate 52 (6.4%) 613 (6.6%) 0.96 (0.72, 1.27)

Poor 0 (0.0%) 2 (0.0%) 0 (0, Inf)

HLA-B-1502, N (%)

Absent 761 (94.0%) 8675 (94.1%) Reference 0.86
Present 49 (6.0%) 545 (5.9%) 1.03 (0.77, 1.37)

HLA-B-5701, N (%)

Absent 772 (95.3%) 8634 (93.6%) Reference 0.07
Present 38 (4.7%) 586 (6.4%) 0.75 (0.54, 1.04)

HLA-B-5801, N (%)

Absent 800 (98.8%) 9092 (98.6%) Reference 0.64
Present 10 (1.2%) 128 (1.4%) 0.86 (0.46, 1.61)

SLCO1B1, N (%)

Normal 488 (60.2%) 5795 (62.9%) Reference 0.11
Fast 17 (2.1%) 122 (1.3%) 1.65 (1.01, 2.67)
Slow 305 (37.7%) 3303 (35.8%) 1.08 (0.94, 1.25)

TPMT, N (%)
Normal 808 (99.8%) 9190 (99.7%) Reference 0.58
Slow 2 (0.2%) 30 (0.3%) 0.69 (0.17, 2.78)
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medicine and risk stratification for hospitalization and ED 
visit. Traditional risk factors for hospitalization including 
age, comorbid health concerns and previous 
hospitalization4,5 will still be standard methods to help 
predict future hospitalization. Pharmacogenomics will 
continue to play instrumental roles in preventing adverse 
drug reactions in high-risk patient populations.17
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