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Abstract Behavior and physiology are essential readouts in many studies but have not benefited 
from the high-dimensional data revolution that has transformed molecular and cellular phenotyping. 
To address this, we developed an approach that combines commercially available automated pheno-
typing hardware with a systems biology analysis pipeline to generate a high-dimensional readout 
of mouse behavior/physiology, as well as intuitive and health-relevant summary statistics (resilience 
and biological age). We used this platform to longitudinally evaluate aging in hundreds of outbred 
mice across an age range from 3 months to 3.4 years. In contrast to the assumption that aging can 
only be measured at the limits of animal ability via challenge-based tasks, we observed widespread 
physiological and behavioral aging starting in early life. Using network connectivity analysis, we 
found that organism-level resilience exhibited an accelerating decline with age that was distinct from 
the trajectory of individual phenotypes. We developed a method, Combined Aging and Survival 
Prediction of Aging Rate (CASPAR), for jointly predicting chronological age and survival time and 
showed that the resulting model is able to predict both variables simultaneously, a behavior that 
is not captured by separate age and mortality prediction models. This study provides a uniquely 
high-resolution view of physiological aging in mice and demonstrates that systems-level analysis of 
physiology provides insights not captured by individual phenotypes. The approach described here 
allows aging, and other processes that affect behavior and physiology, to be studied with improved 
throughput, resolution, and phenotypic scope.

Editor's evaluation
Chen et al., develop a comprehensive platform to score aging-dependent changes in mouse phys-
iology and behavior using a multi-dimensional longitudinal phenotyping approach. Their thorough 
data collection and analysis reveals a diversity of trajectories in aging-related physiological and 
behavioral changes and helps disentangle biological aging from chronological aging, providing a 
pioneering reference for future studies aimed at large-scale aging multi-dimensional phenotyping.

Introduction
The laboratory mouse is commonly used to study aging and test putative aging interventions (Ackert-
Bicknell et  al., 2015; Yuan et  al., 2011). While many studies have used lifespan extension as an 
endpoint, lifespan in mice is not necessarily the best criterion for assessing the efficacy of aging 
interventions or for evaluating their potential translation to humans; measuring health is an important 
additional source of information (Hansen and Kennedy, 2016; Fischer et al., 2016). Health is a multi-
parameter, organism-level state, and as multiple aspects of health decline with age, a sophisticated 
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assessment of aging and putative aging interventions should evaluate as many organism-level aspects 
of health as possible (Freund, 2019).

Recognizing this, the field has developed assays to evaluate different aspects of animal behavior, 
physiology, and function. Particular emphasis has been given to assays designed to measure cognitive, 
metabolic, and neuromuscular metrics, as well as body size and composition (Huffman et al., 2016; 
Bellantuono et al., 2020; Sukoff Rizzo et al., 2018; Richardson et al., 2016). However, many of 
these assays are labor- and time-intensive, thus the number that any one study can include is limited. 
Further, these assays often utilize a challenge, for example, performance on a difficult task, and due to 
the stress this places on the animals as well as changes in performance due to training, challenge-based 
assays have limited repeatability, reducing their utility for longitudinal analysis (Huffman et al., 2016). 
Additionally, investigators must pay attention to several confounding variables and potential artifacts 
such as motivation to execute the task, order of assays, and time allowed for recovery between assays 
(Crabbe et al., 1999; Chesler et al., 2002b; McIlwain et al., 2001). Lastly, many assays are highly 
operator-dependent, adversely impacting reproducibility (Brown et al., 2018; Voelkl et al., 2020). 
Thus, although the use of multiple challenge-based assays provides insight into fitness and health, this 
phenotyping strategy has serious limitations.

To develop an alternative approach, we utilized commercially available, automated monitoring 
cages that simultaneously and continuously record physiological and behavioral parameters (voluntary 
animal position, respiration, weight, food and water intake, and wheel activity) (Brown et al., 2018). 
This type of hardware is not new, but the data from these systems has been underutilized. Each of the 
sensors in the cage provides dense time series data, with time windows ranging from <1 s (photo-
beam breaks) to 3 min (gas measurements). The most common analytical approach is to average this 
data into 12 hr time bins, that is, dark and light phase. Although useful for detecting large effects, 
more granular analyses provide more information. We hypothesized that, by generating hundreds 
of features from these raw data streams, insights into behavior and physiology could be uncovered 
via tools such as network modeling, which have previously been restricted to lower levels of biolog-
ical organization. Additionally, because these measurements are acquired non-invasively during the 
course of daily living, observation can be continued for multiple days and repeated multiple times 
throughout an animal’s life. Observation across multiple days provides important information about 
circadian stability and captures animal behavior during both the light and dark phases; this is difficult 
to accomplish using any other method (Brown et  al., 2018). Repeated, longitudinal phenotyping 
provides major advantages for aging studies by allowing for baseline normalization (which increases 
statistical power), direct measurement of rates of change, predictive modeling of future outcomes, and 
parsing of survivorship bias (Bellantuono et al., 2020; Zhang and Pincus, 2016). Further, automated 
phenotyping removes confounders such as operator-induced variability, increasing data robustness 
(Chesler et al., 2002a). Lastly, the system can be readily scaled without compromising data continuity 
and without the need for training highly specialized staff.

We used this platform to assess aging in the diversity outbred (DO) population, a heterogeneous 
stock derived from the intercrossing of eight inbred founder strains, in which each mouse is geneti-
cally unique (Churchill et al., 2012). Widespread reliance on a small number of inbred mouse strains 
for preclinical studies raises questions about generalizability. Phenotype and intervention response 
are highly dependent on genetic background, meaning that the findings in one mouse strain may 
not generalize to other mouse strains, let alone to humans (Voelkl et al., 2020; Sittig et al., 2016; 
Mandillo et al., 2008; Kafkafi et al., 2018; Tuttle et al., 2018). This is a concern across many disease 
areas, including aging (Liao et al., 2010). In recent years, mouse resources with high genetic diversity 
and phenotypic variation have become available, and this diversity provides important advantages. 
First, it allows for genetic analysis of phenotypes, which can be used to validate phenotypic data 
based on measurable heritability, to better understand the correlation between traits, and, with suffi-
cient sample size, to genetically map traits (Svenson et al., 2012; Churchill et al., 2012). Second, 
genetic diversity introduces inter-individual variation, which is useful when building networks based on 
phenotypic correlations. Third, and perhaps most importantly, genetic diversity introduces deliberate 
biological variation in order to increase the external validity of study findings (Voelkl et al., 2020).

We generated ~60 years of data across 415 female DO mice, from an age range of 6 weeks to 
40.5 months (3.4 years). We utilized a staggered enrollment design in which mice were enrolled at 
different ages, between 3 and 24 months, to ensure that the dataset contains hundreds of runs for all 
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age groups up to 30+ months of age, providing consistent statistical power across an average mouse 
lifespan. To our knowledge, this represents the highest-resolution assessment of murine physiological 
aging to date: we examined animals monthly, whereas previous assessments of physiological aging 
sampled animals in ≥6-month intervals (Ladiges et al., 2017; Fischer et al., 2016; Petr et al., 2021). 
High-resolution phenotyping was manageable because our passive monitoring platform required 
only 20 hr of hands-on time per week from a single operator; as we and others have experienced, 
challenge-based phenotyping pipelines require so much hands-on time and often place such stress on 
the animals that they cannot be repeated frequently.

The platform detected hundreds of aging-related changes starting early in life, demonstrating 
that this passive monitoring approach has the sensitivity to quantify aging even in a highly variable 
strain background. Network analysis demonstrated that different behavioral and physiological clus-
ters exhibited distinct aging dynamics. By employing analytical methods to measure overall network 
connectivity, we quantified resilience, an emergent property, and found that it exhibited an accel-
erating decline that was distinct from any individual phenotype. Finally, we develop a new method 
for determining biological age: a Combined Age and Survival Prediction of Aging Rate (CASPAR) 
model that is trained to simultaneously predict both chronological age and survival time. In summary, 
we demonstrate that automated phenotyping of murine behavior and physiology, when combined 
with high-dimensional analytics, identifies aspects of aging and resilience that have not been previ-
ously described and provides important advantages over existing approaches in terms of throughput, 
temporal resolution, and physiological scope. Our study builds upon pre-existing literature from other 
model organisms, particularly nematodes, demonstrating that passive, automated monitoring can 
be used to quantify multi-dimensional, organism-level aging (Zhang et al., 2016; Le et al., 2020; 
Martineau et al., 2020). This combined hardware/software platform can be replicated in any vivarium 
and used for in-depth characterization of behavior and physiology as well as intervention testing.

Results
Many assessments of aging utilize a challenge, for example, a maze for cognitive function or a rotating 
rod for coordination, on the premise that measuring the limits of an animal’s ability is the optimal 
way to detect aging-related changes (Bellantuono et al., 2020). We hypothesized that aging-related 
changes could also be detected without an overt challenge, by employing sufficiently sensitive and 
temporally dense measurements during the course of normal daily living, a concept analogous to 
measuring one’s breathing rate after a brisk walk instead of after sprinting 100 m. To test this idea, we 
constructed a system of 64 semi-automated phenotyping cages that continuously measured multiple 
aspects of mouse physiology and behavior (Figure 1A). Cages record oxygen and carbon dioxide 
concentration, water vapor, weight of food and water hoppers, mouse body mass (when inside the 
sleeping chamber), running wheel rotations, and mouse position via a three-dimensional array of 
infrared beams. Gas measurements are acquired every 3 min because the time constant of the cage 
(rate at which air is replaced) only allows for meaningful changes in gas concentrations every ~3 min. 
Other measurements are acquired every second. Because food and water are readily available, mice 
can be monitored continuously, without disruption, for up to weeks at a time. We chose to monitor 
each mouse for 1 week per month (Figure 1B), as we reasoned that (1) a 7-day run would provide 
enough data for a robust and stable estimation of physiological/behavioral status and (2) monthly 
rotations would be sufficiently granular to capture the pace of aging in mice. This schedule allowed 
us to regularly monitor fourfold as many animals as we had cages, that is, 256. We placed the same 
animal in different cages for different runs, to mitigate any cage-specific measurement effects.

We initially enrolled 256 female DO mice (Churchill et al., 2012) split among four age groups (n = 
64 at 7, 14, 21, and 25 months), and we enrolled younger (~3 months) animals in semi-regular waves 
as the older cohorts expired. Enrolling animals at different ages ensured that different ages were 
similarly represented and mitigated the loss of power that occurs with time due to mortality. Enrolling 
animals at different calendar dates ensured that age and calendar date were not perfectly correlated, 
attenuating the effect of any unknown, but potentially confounding, environmental effects such as 
seasonal changes or temperature drift over time. We utilized DO mice in order to avoid strain-specific 
results that would be less likely to generalize; however, as a practical necessity, we only examined 
female mice in this study. In total, we enrolled 415 animals, with an age distribution that provided 
large numbers of animals at both young and old ages (Figure 1—figure supplement 1A). The study 
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Figure 1. Study design. (A) Pictures of automated cage phenotyping system. (B) Rotation schedule for each animal; each animal was monitored 1 week 
per month. (C) Survival of cohort. Vertical lines indicate censorship (still alive) at end of study. (D) Top: age range over which data was collected for each 
animal; each row represents one animal. Bottom: number of runs collected at each month of age. (E) Number of 7-day runs collected for each 3-month 
age bin. Most downstream analysis was performed using these bins.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Study design.
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was run for approximately 1.5 years, during which 212 mice died (51%) and 203 mice were censored 
at the end of the study (49%). This design is similar to human longitudinal studies in which subjects 
are enrolled at different ages and at different dates, but followed for similar lengths of time, leading 
to left-truncated and right-censored data. Accounting for truncation and censoring, DO mice had a 
median lifespan of 25 months (~2 years) and a maximal lifespan of 41 months (~3.4 years) (Figure 1C, 
Figure 1—figure supplement 1B). In total, after quality control filtering, we obtained data for 3143 
7-day runs, that is, ~60 years of dense time series data, from an age range of 6 weeks to 40.5 months 
(3.4 years), with virtually all ages containing data from multiple cohorts (Figure 1D). For analysis of 
aging in the following sections, we grouped runs into 3-month age bins, providing a large number of 
runs (>200) in most bins (Figure 1E). Even with this staggered enrollment design, animals older than 
33 months were rare; so for the oldest animals, we combined all runs for animals 33–41 months, for a 
total of 87 runs in the oldest age bin.

Because of their genetic diversity, DO mice are generally more variable than inbred strains. Indeed, 
we found a broad body mass distribution in this cohort, ranging from 15 to 60 g (Figure 1—figure 
supplement 1C). Given this heterogeneity, we sought evidence that the phenotyping cages, which 
were optimized for less diverse strains, were functioning properly and capturing physiologically mean-
ingful information. In a large, multi-location analysis of indirect calorimetry data, the most consistent 
relationship was a positive correlation between body mass and energy expenditure (Corrigan et al., 
2020). This positive relationship has been proposed as one indication of the technical success of an 
experiment (Tschöp et al., 2011). We compared body mass to energy expenditure (kcal/hr) in this 
dataset and saw a highly significant correlation (Figure 1—figure supplement 1D). As we already had 
body mass information, we were primarily interested in changes to energy expenditure and related 
parameters that were body mass independent, therefore for all gas-derived measurements except 
RQ (VO2, VCO2, VH2O, and energy expenditure), because it is a ratio, we normalized for body mass 
via linear regression. This removed the positive correlation with body mass (Figure 1—figure supple-
ment 1E). This normalization had the potential to induce spurious correlations between gas-derived 
measurements, so we compared the correlation coefficients between these measurements before 
and after body weight correction (Figure 1—figure supplement 1F). As expected, there was some 
correlation between most gas measurements prior to correction. This correlation increased slightly, 
but not appreciably, upon body mass correction (up to a 0.04 increase in R). We believe that the 
benefit of focusing on body mass-independent information outweighs the slight increase in correla-
tion between gas measurements that we observed, so we chose to use body mass-corrected gas 
measurements for all subsequent analysis steps.

Automated phenotyping identifies robust physiological changes at 
each stage of life
We developed a data processing pipeline that provides aggregated, quality-controlled data at 
various levels of resolution (Figure 2A). Initially, data are processed into 14 ‘base features’ in 3 min 
bins: BodyMass (weight), Food (food intake), Water (water intake), WheelMeters (distance traveled 
on wheel), PedMeters (distance traveled in cage), AllMeters (PedMeters + fine motor movements), 
XBreak (number of photobeam breaks in the X axis), YBreak (number of photobeam breaks in the Y 
axis), ZBreak (number of photobeam breaks in the vertical axis), VO2 (oxygen consumption), VCO2 
(carbon dioxide production), energy expenditure (kcal/hr), RQ (respiratory quotient − VCO2/VO2), 
VH2O (water vapor). After quality control, each run was split into 24 hr windows and those windows 
were averaged to generate the average 24 hr trace for each feature for each run. We then grouped 
runs into the 3-month age bins described above and examined the 14 base features for signs of aging-
related change (Figure 2—figure supplement 1A). As expected, animals exhibited circadian patterns 
of behavior and physiology, with increased activity during the dark phase. Clear aging-related change 
were observed for most of the 14 base features, starting from the youngest ages we examined. One 
of the most striking changes we observed was a concave body mass trajectory: animals gained weight 
until 21–24 months of age, then progressively lost weight (Figure 2B). Other striking changes included 
a significant decline in wheel running, food intake, water intake, and a decline in mass-adjusted energy 
expenditure and rate of whole-body water loss (VH2O) (Figure 2B). Consistent with these observa-
tions, it has been previously reported that body weight declines in older mice despite a decrease in 
energy expenditure (Petr et al., 2021). Not all base features declined with age – ambulatory activity 
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Figure 2. Automated phenotyping identifies physiological changes at each stage of life. (A) Diagram of data processing pipeline. Three-min raw data 
from each run are fed through a quality control pipeline to remove data from broken and/or miscalibrated sensors. Data is then analyzed by a robust 
hidden Markov model (HMM) to assign each 3 min window to one of six states. Gas measurements are then adjusted for body mass. Data are then 
aggregated in a variety of ways for feature extraction: by time window (1 or 4 hr windows), by periods of behavior (e.g., number of sleeping periods), as 
a ratio of values from before and after a light transition (e.g., RQ pre-lights on/RQ post-lights on), and by state (e.g., VCO2 while running). Finally, data 
are used for modeling and analysis. (B) Effect of age on six of the base features of the phenotyping cages. Data were averaged for each run and then 
averaged across runs within each age bin. (C) Average percent time spent in each state for young (3–6 months) and old (30–33 months) animals, split 
by dark/light phase. (D) Average occupancy of each HMM state at each hour of the day. Timepoints represent the preceding hour, for example, the 7 
pm timepoint includes data from 6 to 7 pm. (E) Effect of age on average duration and daily number of sleeping periods. (F) Effect of age on average 
duration and daily number of feeding periods. (G) Heatmap of aging trajectories. Rows are features (n = 309), columns are monthly age bins. Each 
feature was normalized and scaled across age bins from lowest value (0) to highest value (1). (H) Examples of four features that decrease with age, with 
different ages of onset. All error bars are SEM.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Automated phenotyping identifies robust physiological changes at each stage of life.

Figure supplement 2. Effect of age on state-conditioned features.

Figure supplement 3. Genetic analysis of features.
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(PedMeters, AllMeters, and YBreaks) tended to increase with age (Figure 2—figure supplement 1A). 
None of these changes mirrored the concave trajectory of body mass, demonstrating that multiple 
aging-related changes to physiology and behavior are not driven solely by weight changes.

Aging-related changes could arise from altered behavior and/or physiology. For example, reduced 
distance run on the wheel could arise from reduced running speed or reduced time spent running, 
which might arise from different underlying mechanisms. To quantify behavior, we fit a robust hidden 
Markov model (HMM) that uses base features of the phenotyping cages, excluding body mass, to 
classify each 3 min time window into one of six states. A mouse can perform many different behav-
iors in 3  min, meaning that each ‘state’ is a combination of individual behaviors. Each state was 
characterized by a distinct combination of base features (Figure  2—figure supplement 1B), and 
we named the states Sleep, Rest, Eat, Eat&Drink, Run, and Active based on our qualitative interpre-
tation of those patterns. Active, Eat, and Eat&Drink in particular are mixed states, characterized by 
different combinations of eating, drinking, movement around the cage, and running on the wheel. As 
measured by energy expenditure, Sleep, Rest, and Eat are lower activity states, whereas Eat&Drink, 
Run, and Active are higher activity states. As expected, mice organized their behavior around the light 
cycle, with sharp transitions at lights on/off. They spent the vast majority of the light phase in lower 
activity states, whereas high activity state occupancy increased in the dark phase (Figure 2—figure 
supplement 1C). There were differences in overall state occupancy between young (3–6 months) and 
old (30–33 months) mice; compared to young mice, old mice spent more time in low activity states 
(Figure 2C). This was true during both light and dark phases, though it was particularly obvious during 
the dark phase, where old mice spent far less time Running or Active than young mice and more time 
in the other four, lower activity, states.

Circadian averages are a coarse description of animal behavior, and the temporal resolution of the 
data allows for more thorough examination. At the hourly (Figure 2D) and 4-hr level (Figure 2—figure 
supplement 1D), we observed a number of interesting patterns of mouse behavior. Animals exhibited 
a sharp increase in activity when the lights turned off, reaching their highest activity in the early part 
of the dark phase, about 2 hr after lights off. During this time, young animals spent nearly 70% of their 
time Running or Active. Older animals also exhibited their highest activity during this time, but their 
peak activity was much lower than young mice, and their transition to high activity when the lights 
initially turned off was slower. Running and Active then generally declined in frequency throughout 
the rest of the dark phase. Mid-level activity states, that is, Eat and Eat&Drink, exhibited a different 
pattern: animals spent most of their time in these states near the light/dark transitions. At the end 
of the dark phase, in particular, this corresponded to a large increase in food and water intake (see 
Figure 2—figure supplement 1A), likely indicating that the animals were ‘stocking up’ before the low-
activity light phase. Prior to this large increase in food and water intake, animals reached a dark phase 
minimum for food/water intake and a maximum for Sleep and Rest, that is, they took a nap. Napping 
behavior exhibited different aging dynamics than the decline in high activity noted above; whereas 
Run and Active declined until ~24 months of age, napping increased in frequency until ~18 months 
and then stabilized (see Rest during dark phase time windows, Figure 2—figure supplement 1D).

We also saw evidence of circadian phase shifts with age, though not in the manner we expected. 
We assumed older animals would show less entrainment to the light cycle as they aged, indicative of 
circadian deregulation. However, we found that old animals were actually more entrained to the light 
cycle than young animals: young animals reached their peak Eat and Eat&Drink occupancy 1 hr after 
the lights turned on, during what is generally considered the low activity, ‘sleep’ phase of the circa-
dian cycle (Figure 2D). In contrast, older animals reached their peak Eat and Eat&Drink occupancy 
in the hour prior to lights on, then quickly transitioned to Sleep and Rest once the lights turned on. 
The reason for this is unclear – it may be that young mice organize their circadian behavior around 
wheel running instead of eating, that is, they spend so much of the dark phase running that eating 
necessarily occurs during the light phase (Edgar and Dement, 1991; Yamanaka et al., 2013; Yasu-
moto et al., 2015). As wheel running declines with age, there is more time during the dark phase for 
eating, so peak Eat&Drink occupancy shifts (Valentinuzzi et al., 1997). Whatever the causal chain, 
this increased entrainment of feeding behavior to the light cycle with age represents an aging-related 
circadian shift that, to our knowledge, has not been previously described.

Irrespective of age, all mice reached a peak Sleep occupancy of ~50% in the middle of the light 
phase, and overall sleep duration did not change with age (Supplementary file 1). However, the 
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temporal granularity of the data allowed for an assessment of sleep fragmentation, that is, the 
duration of continuous periods of sleep, for which we did observed an aging effect. In young mice, 
periods of continuous sleep averaged 1.1 hr in duration; this declined quickly with age, plateauing 
at ~0.6 hr by 9–12 months of age, representing a 30 min reduction in the duration of an average sleep 
period (Figure 2E). At the same time, number of sleeping periods increased with age, representing 
increased sleep fragmentation. Increased behavioral fragmentation was not observed for all states: in 
contrast, the average duration of feeding periods increased with age while number of feeding periods 
decreased (Figure 2F), representing a consolidation of feeding behavior. Increased food spilling has 
been reported in aging mice (Starr and Saito, 2012); this may result in old mice requiring more 
time than young mice to ingest an equal quantity of food and may explain the extended duration of 
feeding periods with age.

The above analyses showed that murine aging is characterized by marked changes in behavioral 
patterns. The aging-related changes in base features noted above (Figure 2—figure supplement 
1A) are thus affected by changes in both behavior and underlying physiology. To decouple these 
contributions, we computed averages of each of the 14 base features conditioned on the HMM state 
and compared how these changed with age (Figure 2—figure supplement 2A). We included two 
additional features – WheelSpeed and PedSpeed – which are the speed of wheel running and pedes-
trian locomotion, respectively, for a total of 16 base features. Needless to say, these two rate metrics 
are the most physiologically informative when the animal is actively running or walking, and the plots 
show that calculated running and walking speed during other states (e.g., Sleep) is under-estimated 
because the animal spends considerable time not running or walking during these states.

Examining energy expenditure while mice were resting demonstrated that the decline in overall 
mass-adjusted energy expenditure was, at least partly, a decline in resting metabolic rate – mice 
exhibited a decline in low-activity-state (Rest and Sleep) energy expenditure with age (Figure 2—
figure supplement 2B). Energy expenditure during high activity states (Run and Active) was also 
decreased, indicating reduced activity intensity. Consistent with this, animals ran more slowly as they 
aged throughout most of life (Figure 2—figure supplement 2C). Animals also exhibited a aging-
related decline in mass-adjusted VH2O, that is, whole-body water loss rate, during all states, including 
Rest and Sleep (Figure 2—figure supplement 2D), suggesting that this is a consequence of altered 
internal physiology rather than altered behavior. Interestingly, the decline in water loss rate precedes 
the decline in overall water intake (see Figure 2A), so reduced water intake does not explain this 
effect; it may instead represent aging-related changes in body composition, as lean and fat mass 
retain different amounts of water (Vu et al., 2017).

Many other features changed with age as well, so in order to obtain a holistic view of aging patterns, 
we generated 309 features from the raw data using a number of different approaches, including those 
mentioned above: (1) the per-run average of each of the 16 base features noted above + average 
occupancy of the 6 HMM states (‍16 + 6 = 22‍ features), (2) the 16 base features conditioned on each 
state (‍16 × 6 = 96‍ features), (3) average values of the 16 base features and 6 HMM states during each 
of six 4-hr time bins (‍[(16 + 6)] × 6 = 132‍ features), (4) the ratio of values from before and after a light 
transition for each of the 16 base features and 6 HMM states (‍(16 + 6) × 2 = 44‍ features), and (5) 
period number, average and maximum period length, average and maximum time interval between 
periods for eating, sleeping, and high-activity (‍5 × 3 = 15‍ features) (see Figure 2A, green box). We 
chose these different aggregation approaches because we reasoned they had the highest chance of 
capturing unique aspects of physiology, though additional features may be informative. For example, 
the length of sleeping periods might show a different aging pattern than overall sleep amount, and 
the ratio of pedestrian locomotion before and after a light transition might provide different physio-
logical information than pedestrian locomotion at a particular time of day.

After multiple hypothesis correction, 244 features (79%) significantly changed with age (Supple-
mentary file 1). Features exhibited a variety of trajectories and ages of onset (Figure 2G), many of 
which were distinct from the base features, demonstrating that feature engineering uncovered addi-
tional physiological information. We chose a selection of three such features to highlight the different 
ages of onset we observe (Figure 2H). This diversity of aging patterns shows that (1) passive pheno-
typing has the sensitivity to detect aging across the entire lifespan and (2) physiological aging is more 
complex than simple linear trajectories and thus both dense time sampling and multi-dimensional 
phenotyping are needed to accurately capture the many different domains of physiological aging.

https://doi.org/10.7554/eLife.72664
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Physiological features are influenced by genetics
Each animal in the DO population is genetically unique, allowing for estimation of the heritability and 
genetic architecture of traits. This analysis serves as a test of the biological validity of the different 
aggregation approaches noted above, because only approaches that capture real biological signal 
should exhibit significant heritability. The number of mice in this study is underpowered for estima-
tion of low heritabilities (<10%) and for genetic mapping (Gatti et al., 2014), so we chose to focus 
on genome-wide measures of heritability and genetic correlations, rather than mapping individual 
loci for each trait. We genotyped all mice in the study, determined the kinship matrix, and calculated 
the heritability of each of of the ~300 features mentioned above, using all age groups (Figure 2—
figure supplement 3A), excluding period features because these were not calculated across all base 
features. As expected due to low power, many traits exhibited heritabilities that were indistinguish-
able from zero. Also as expected, body mass exhibited high heritability (~30%); body mass in DO mice 
has previously been shown to be highly heritable (Wright et al., 2020) and is largely invariant to state 
or time of day, hence high heritability across aggregation methods. Importantly, at least some features 
derived from each of the aggregation approaches showed significant heritability, and in many cases 
these state- or time-conditioned base features showed higher heritability than the same base feature 
averaged across the entire run (the ‘overall’ feature). For example, heritability of X and Y breaks during 
the Eat&Drink state was higher than overall X and Y breaks. This suggests that the different aggrega-
tion approaches capture biological information that is distinct from overall averages.

After removing all body mass-derived features except for overall body mass in order to avoid 
redundancy, 33 features exhibited significant nonzero heritability (Figure 2—figure supplement 3B). 
The four most heritable features, with heritabilities >30%, involved pedestrian locomotion (AllMeters, 
PedMeters, PedSpeed, Xbreaks, or YBreaks). In total, 17/33 (52%) of significantly heritable features 
involved pedestrian locomotion, suggesting that animal movement is an aspect of behavior with a 
strong genetic component. In addition, we detected significant heritability for several HMM states 
during different times of day (e.g., Eat&Drink, Run, and Rest), demonstrating that this approach to 
cataloging mouse behavior captures genetically influenced biological processes. Interestingly, aside 
from several energy expenditure-based features, the body mass-conditioned gas measurements 
mostly lacked significant heritability (or at least, the heritability was below our ability to detect), 
suggesting that respiration, once accounting for body mass, is mostly influenced by environment 
rather than genetics.

In order to measure the degree to which genetic variants had similar effects on multiple features, 
we calculated the genetic and phenotypic correlations for the 33 features with significant heritability 
(Figure 2—figure supplement 3C). Genetic correlation measures the similarity of the genetic effects 
between two traits, for example, a genetic correlation equal to 1 means that every variant that affects 
the first trait has a proportional effect on the second trait. We observed a large number of positive and 
negative genetic correlations; in fact, the genetic correlations were, on average, stronger than pheno-
typic correlations (median genetic correlation = 0.22, median phenotypic correlation = 0.16), which 
is reasonable if the different environmental contributions to a pair of phenotypes are mostly uncor-
related noise. We applied unsupervised hierarchical clustering to identify clusters of features based 
on their genetic correlation. A few examples serve to illustrate the information in this plot, starting 
with the most trivial: variants that increased Rest frequency during a particular time window (late-dark) 
decreased the time spent in other states in that same window (not surprising, since state occupancy 
is a zero sum game). Slightly less obviously, Running and energy expenditure features form a cluster; 
variants that increase Running time increase energy expenditure. Variants that increased pedestrian 
locomotion in one state or time window tended to increase pedestrian locomotion in other states and 
time windows and formed several large clusters, suggesting the genetic contribution to pedestrian 
locomotion affects an overall propensity to move around, rather than influencing movement during 
any particular time of day. The features most genetically correlated to BodyMass were Eat&Drink 
occupancy during the late-light phase and X/Y Breaks during the Eat&Drink state, providing quanti-
tative evidence that genetic variants which alter the timing and pattern of eating and drinking have a 
significant effect on body mass.

It was visually apparent that the genetic and phenotypic correlations for these 33 features exhib-
ited a similar pattern, and to quantify this, we compared the genetic and phenotypic correlations for 
all pairs of these 33 features on a scatterplot and calculated the correlation between the two analyses 

https://doi.org/10.7554/eLife.72664
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(Figure 2—figure supplement 3D). Genetic and phenotypic correlations were highly correlated across 
features (‍R2 = 0.9‍, ‍p = 3.12 × 10−196

‍), suggesting that, for many trait pairs, the phenotypic correlation 
is due to shared genetics. Further, the high degree of similarity between genetic and phenotypic 
correlations suggest that, in future studies, additional genetic mapping power could be attained by 
analyzing phenotypes jointly.

Quantifying relationships between physiological and behavioral 
features demonstrates a decline in resilience with age
Thus far we had examined how individual features change with age, but because the interplay between 
physiological domains is hypothesized to be a primary determinant of system resilience (Cohen, 2016), 
we were also interested in the connectivity between these features and how that connectivity changes 
with age. The strong genetic and phenotypic correlations noted above motivated us to explore this 
in more detail. A unique feature of this dataset is that all features were measured simultaneously 
in all runs, which allowed us to quantify the covariance between features, that is, how each feature 
is correlated with every other feature across runs. More precisely, we fit a graphical model (a semi-
parametric Gaussian copula model) using sparse precision matrix estimation methods and visualized 
the model as a force-directed network (Figure 3A). We determined the number of clusters and clus-
tering of features via consensus clustering, which resulted in 22 clusters. Some of these clusters were 
defined by the physical sensor used to generate the data, for example, VH2O and CO2 production, 
but most were comprised of features from multiple sensors. For example, beam break features did not 
form a single cluster, nor did all food, water, or gas features. Instead, clusters were defined by combi-
nations of behaviors and aggregation methods: cluster 16 represents overall metabolic rate; cluster 12 
represents food and water intake in a specific time window (the light phase); and cluster 13 represents 
the ratio of activity before/after a light transition, etc. (Supplementary file 2). Ratio-based features, 
state-conditioned features, and time-of-day conditioned features often clustered separately from one 
another; this demonstrates that different data aggregation approaches convey different information. 
Furthermore, this suggests that nodes within a cluster share similar physiological underpinnings rather 
than simply similar sensor hardware.

Some clusters were tightly integrated with other clusters, whereas others exhibited sparse connec-
tivity, demonstrating their independence from other physiological domains. To better visualize this, 
we generated a chord diagram in which each cluster is placed around a circle, with chords demon-
strating connectivity between nodes from different clusters (Figure 3B). The radius of each cluster arc 
is proportional to its overall connectivity to other clusters, thus larger clusters indicate more connec-
tions (not the number of nodes in the cluster). One of the most well-defined and least-connected 
clusters was body mass, as demonstrated by its small arc radius: all body mass metrics formed a tight 
cluster that was largely independent of other clusters. The tight clustering between mass metrics 
arises because body mass is mostly invariant with respect to behavior and time of day, so different 
body mass features from the same run are highly correlated to one another. The independence from 
other clusters arises partly because, as noted above, gas-derived measurements other than RQ (VO2, 
VCO2, kcal/hr, VH2O) were adjusted for body mass. However, body mass was also largely independent 
of features that were not mass-adjusted, such as wheel, photobeam, food, and water features. The 
low connectivity of body mass to other phenotype clusters demonstrates that variance in body mass 
does not drive all, or even most, of the variance in other features in this dataset. This conclusion is 
further supported by the observation that body mass exhibits a clear concave trajectory with age, 
whereas most other features do not. In contrast, metabolic rate and high activity pattern were the 
most densely connected clusters, indicating that these physiological characteristics impact (or are 
impacted by) many other physiological domains.

We next sought to understand whether network connectivity changed with age, as a readout of 
system resilience. Resilience refers to the ability of a system to maintain function in the face of change. 
This is a broad concept that is unlikely to be fully captured by a single number, and multiple approaches 
to measuring organism-level resilience have been proposed (Huffman et al., 2016). Here, we propose 
a metric that is based on the relationship between physiological features. In a resilient system, a 
small disruption in one physiological domain will have limited system-wide effect, whereas in a less 
resilient system, the same perturbation will affect more of the network. Thus, in less resilient systems, 
individual subsystems (nodes) are sensitive to the fluctuations of other subsystems, leading to a rising 

https://doi.org/10.7554/eLife.72664
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correlation between subsystems (Scheffer et al., 2018). For a graphical network in which correla-
tion between nodes is visualized by edge weight, this manifests as increased network connectivity. 
Conversely, in a resilient system, because a small disruption in one node only affects a small number 
of other nodes, the average correlation between nodes is low, leading to lower network connec-
tivity. Keeping node positions constant, we calculated network edges for each age bin (Figure 3C, 
Figure 3—figure supplement 1A). Visual inspection of these per-age networks from 3 to 6 months 
to 33+ months suggested increasing connectivity with time, suggesting decreasing system resilience.

Inter-cluster connectivity for each cluster vs age33+ months3-6 months

A

F

Phenotypic network, all ages

D Resilience
(negative multivariate MI)

Inter-cluster resilience
(negative multivariate MI)

C

E

B Inter-cluster connectivity, all ages

Figure 3. Quantifying relationships between physiological and behavioral features demonstrates a decline in resilience with age. (A) Force-directed 
network diagram of all features across all runs. Nodes represent individual per-run features, edges reflect the regularized covariance between two 
features (effectively, the correlation between two features after accounting for all other features). Increased edge thickness indicates increased 
covariance. Colors represent predicted clusters. (B) Chord diagram of connectivity between clusters across all runs. Colors are as in (A). (C) Network 
connectivity at young and old age. Edges calculated for each age bin independently, with position of nodes held constant. (D) Effect of age on 
resilience, that is, the negative multivariate mutual information (MI) of the age-specific graphical model. A lower value indicates stronger connection 
between features and a lower diversity of states occupied by animals within that age bin. (E) Effect of age on inter-cluster resilience. Resilience 
calculated from age-specific sub-networks built from exemplar features, one from each cluster. (F) Effect of age on inter-cluster connectivity. Connectivity 
value represents the sum of all edges connecting cluster nodes to nodes in other clusters, that is, the same metric as in (B), plotted across age groups.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Physiological and behavioral network models.

https://doi.org/10.7554/eLife.72664
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To quantify network connectivity directly, we calculated the copula entropy/negative multivariate 
mutual information (MI) (Singh and Póczos, 2017) of the graphical model for each age bin. Multivar-
iate MI is a measurement of how much information can be determined about the network as a whole 
from a subset of nodes. In one extreme case where all nodes are perfectly correlated (low resilience), 
knowing the value of a single node allows one to perfectly predict the value of all other nodes. Such 
a system has zero degrees of freedom and thus high MI. In the other extreme, nodes are completely 
independent (high resilience), provide no information about one another, and all must be measured 
to achieve a full description of the system – low MI. Thus, the negative of MI directly corresponds to 
a more rigid network and is a quantitative measurement of system resilience. Resilience (negative MI) 
exhibited a striking decrease with age, with an accelerating rate of decline; this pattern qualitatively 
reflects the accelerating failure rate associated with aging better than the semi-linear or early-life 
dropoff we observed with many individual parameters in this study (Figure 3D). Thus, resilience may 
be more accurate representations of physiological aging than are individual features.

To better understand what network-level changes were driving this decline in resilience with age, 
we examined both inter-cluster connectivity as well as intra-cluster connectivity, that is, we examined 
the relationship between physiological domains as well as the relationship between related features 
within physiological domains. To quantify inter-cluster connectivity, we represented each cluster by the 
exemplar feature that most reflected the behavior of that cluster (as measured by median consensus 
with other features in the same cluster). We then re-built networks using only those exemplars and 
calculated resilience. Like overall resilience, inter-cluster resilience exhibited a striking decrease with 
age (Figure 3E), suggesting the connectivity between subsystems increases with age. This effect was 
not merely driven by a few outlying clusters; increased connectivity with age was observed for the 
majority of clusters (Figure 3F). We also examined intra-cluster resilience, by measuring the negative 
MI between nodes within each cluster (Figure 3—figure supplement 1B). Most clusters showed a 
decline in resilience with age (increasing connectivity), but trajectories varied: some clusters exhibited 
a nearly linear decline in resilience, whereas others exhibited a late-life acceleration, perhaps indi-
cating that certain domains of physiology are more prone to a loss of resilience with age than others.

Age and time to death can be simultaneously predicted from 
physiological data
An increasingly common approach when dealing with multi-dimensional aging data is to train models 
that predict relevant endpoints (so-called aging ‘clocks’). This approach was popularized using DNA 
methylation data (Horvath, 2013), and more recent reports use other data modalities including phys-
iological measurements (Schultz et al., 2020). These studies have developed models that predict 
either chronological age or mortality risk separately, but these separate approaches are limited 
because neither chronological age nor mortality risk fully encapsulates an individual’s multi-system, 
aging-related health status, that is, biological age.

To address this, we developed an aging rate regression model in which biological age is deter-
mined from a combination of chronological age and health status (in this case, time to death, though 
other health proxies such as a frailty score could be used). The model includes a hyperparameter that 
allows for tuning of the relative weighting of chronological age and time to death, allowing us to 
generate models with different behaviors. More specifically, this hyperparameter (denoted ‍σβ‍) quan-
tifies our belief that different individuals age at different rates. If a ground truth measurement of indi-
vidual aging rates existed, this hyperparameter could be measured empirically. Unfortunately, there 
remains no agreed-upon definition of biological age and no such ground truth is available. Therefore, 
here we explore model behavior under several different values of ‍σβ‍. A low value of ‍σβ‍ causes the 
model to assume that all individuals age at similar rates, meaning that the biological age of individuals 
of the same chronological age should be similar. In this case, model training heavily weighs chronolog-
ical age, and the resulting model approximates a standard age clock model. Conversely, a high value 
of ‍σβ‍ causes the model to assume that individuals can age at different rates, and thus model training 
disregards chronological age, instead emphasizing health status (time to death), and the resultant 
model approximates a standard accelerated failure time model. Neither chronological age nor time to 
death are perfect representations of aging rate, and they are not particularly well correlated with one 
another (Figure 4—figure supplement 1A), thus optimizing the prediction of one necessarily reduces 
performance for the other, resulting in a tunable tension in model behavior and the ability to explore 
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intermediate states that may avoid overfitting to either of these imperfect biological age surrogates. 
Because this framework utilizes both chronological age and survival time as outcome variables, we 
name this approach the “Combined Age and Survival Prediction of Aging Rate”, or CASPAR.

To understand how this trade-off behavior between chronological age and time to death manifests, 
and to determine if there is an acceptable middle ground, we trained models using different values 
of ‍σβ‍. For each model, we trained on the same 15 different random splits of the data and report the 
average performance of the model on the held-out mice. In each split, we allocated 90% of mice to 
training and 10% of mice to testing, with full animal holdouts (i.e., all runs of the same animal were 
either entirely in the training set or entirely in the test set). Note that because the model utilizes time 
to death, we only included the mice that died during the course of the study, approximately half the 
mice in the overall dataset. Leveraging the longitudinal nature of our dataset to improve the robust-
ness of the model to run-specific effects, during model training we assume that the aging rate of an 
animal is constant over time, that is, that the observed aging rate of the same animal at different ages 
is modeled by a latent common aging rate plus a standard normal noise term.

At the lowest values of ‍σβ‍ we tested (e.g., ‍σβ = 0.1‍, heavy weighting of chronological age), when 
assessed against the test sets, the model’s scores were highly correlated to chronological age, with 
a mean correlation across the 15 data splits of 0.77 (Figure 4A). However, as expected, this model 
performed poorly on time to death prediction, with a mean correlation between model scores 
and time to death of 0.33 (11% variance explained). Not surprisingly, in this case the model barely 
performs better than true chronological age, which explains about 8% of the variance in time to 
death (‍p < 1e − 4‍) (Figure  4—figure supplement 1A). This behavior represented one extreme of 
model performance, as the correlations for age and time to death were stable for all values of ‍σβ ≤ 1‍ 
(Figure 4B).

In contrast, at the highest value of ‍σβ‍ (e.g., ‍σβ = 100‍, heavy weighting of time to death), the model’s 
scores were better correlated to actual time to death with a mean correlation of 0.47 (Figure 4A). As 
expected, correlation with the chronological age was lower in this model, dropping to a correlation 
of 0.58. This behavior represented the other extreme of model performance, as the correlations for 
age and time to death were stable for all values of ‍σβ ≥ 30‍ (Figure 4B). All 15 training/test splits of 
the data led to similar model performance, demonstrating that model performance is robust to the 
specific animals allocated to the training and test sets (Figure 4B).

Interestingly, the trade-off between age and time to death prediction was not linear – interme-
diate values of ‍σβ‍ improved prediction in one dimension without an equivalent loss of performance 
in the other dimension (Figure 4A). To better visualize this, we chose three values of ‍σβ‍ to repre-
sent three different regimes of the CASPAR model: the chronological age model (‍σβ = 0.1‍), the time 
to death model (‍σβ = 100‍), and the hybrid model, which represents a roughly equivalent trade-off 
between age and time to death (‍σβ = 3‍). For each model class, we plotted actual age and actual 
time to death versus predicted age for each run in the test set, for each of the 15 models trained on 
different data splits (Figure 4C). As noted earlier, the chronological age model predicted age quite 
well (‍R2 = 0.60‍, ‍p < 1e − 4‍) but did not predict time to death much better than chronological age 
itself (‍R2 = 0.11‍, ‍p = 0.001‍), whereas the time to death model predicted time to death relatively well 
(‍R2 = 0.22‍, ‍p < 1e − 4‍) but chronological age relatively poorly (‍R2 = 0.34‍, ‍p < 1e − 4‍). Interestingly, the 
hybrid model performed relatively well on both tasks, predicting chronological age with an ‍R2 = 0.50‍ 
(‍p < 1e − 4‍) and predicting time to death with an ‍R2 = 0.20‍ (‍p < 1e − 4‍), which was substantially better 
than the true chronological age of the animal and nearly as good as the time to death model itself. 
This balanced prediction of both dimensions suggests that the hybrid model may represent a qual-
itatively different approach to quantifying health-relevant biological age than either age or survival 
prediction alone.

We examined the models to understand which features were most informative. For all three model 
classes (age, time to death, and hybrid), the top 20 most informative features came from multiple clus-
ters and sensors (gas, photobeams, wheel, body mass) and aggregation methods (state-conditioned, 
time of day, lights on/off ratio) (Figure 4—figure supplement 1B, Figure 4—figure supplement 1C). 
No single cluster or sensor dominated, demonstrating the importance of a high-dimensional feature 
set. The features that informed each of the model classes were partially overlapping (Figure 4D). 
Of the top 20 features from each model, 7 were shared across all three (Figure 4—figure supple-
ment 1C). Perhaps unsurprisingly, these include major aspects of physiology – overall size (BodyMass), 
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activity (wheel running and pedestrian locomotion), and a surrogate of basal metabolic rate (VCO2 
while Sleeping). Outside of this overlap, quite a few features were distinct to either the age model or 
time to death model. Features more associated with time to death than with age (‘TTD and Hybrid 
only’ and ‘TTD only’) include measures of activity (wheel, food, and water intake) during the light 
phase or low activity states, perhaps indicating that a breakdown in circadian stability is an indicator 
of impending demise. Conversely, features more associated with age than time to death (‘Age only’) 
include the extent of activity during the dark phase, perhaps indicating that the best predictor of 
chronological age is a decline in high intensity activity. Limited overlap between age and mortality 
prediction models has been reported elsewhere using different measures of physiological age (Schultz 
et al., 2020), thus this may represent a more general truth about organism-level aging: aging-related 

A C

B

D

Figure 4. Age and time to death can be simultaneously predicted from physiological data. (A) Correlation coefficient of CASPAR biological age 
predictions (test set) with time to death (y-axis) and chronological age (x-axis) for different values of ‍σβ‍, ranging from 0.1 to 100. Circled points represent 

‍σβ‍ values chosen for panels C and D. Correlation coefficients for each value of ‍σβ‍ represents the average of 15 models trained against independent 
training/test data splits. (B) Correlation coefficient of biological age predictions (test set) with chronological age (top) and time to death (bottom) versus 

‍σβ‍ values. Error bars are SEM from the 15 models trained against independent training/test splits. (C) Scatterplots of predicted biological age versus 
chronological age (top) and time to death (bottom) for three different model classes (three different values of ‍σβ‍: 0.1, 3, 100). Points represent individual 
runs; all runs from each of the 15 independent test sets are shown. Lines represent linear regression for each of the 15 independent test sets. ‍R2‍ values 
are averages across the 15 test sets and p-values are ‍2×‍ of the median across the 15 test sets. (D) Venn diagram of the overlap between the top 20 most 
informative features for each of the three model classes noted above (age model, time to death model, hybrid model).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Age and time to death prediction.
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changes in physiological function, though of clear health relevance to the individual, are only partially 
related to mortality risk, demonstrating the need for a thoughtful balance between these conceptu-
alizations of biological age.

Discussion
Assessments of behavior and physiology are essential aspects of many preclinical studies. However, 
while technological advances such as sequencing have allowed researchers to explore molecular and 
cellular phenotypes in high-dimensional space via systems-level analyses, organism-level phenotyping 
has not benefited from a similar advance. To remedy this, we combined automated phenotyping 
cages with a sophisticated analysis pipeline to create a a platform for high-dimensional assessment 
of physiology and behavior in mice. This platform could be utilized to study multiple organism-level 
processes and diseases, for example, cognitive and mood disorders, neuromuscular deficits, or meta-
bolic disease. We chose to focus on aging because (1) there is increasing interest in therapeutically 
modulating aging, (2) aging affects multiple physiological domains, so we expected broad and clear 
effects, and (3) current approaches to quantifying organism-level aging are extremely labor- and time-
intensive (Bellantuono et al., 2020; Sukoff Rizzo et al., 2018). We were able to measure over 200 
aging phenotypes across 22 physiological clusters, as well as network effects and related emergent 
phenomena (resilience) that are difficult to quantify via other methods, in >400 outbred mice. Data 
generation required ~20 hr of hands-on operator time per week for 1.5 years, that is, 0.75 FTE-years 
total. This study advances the state of the art for healthspan assessment in terms of throughput, reso-
lution, and physiological scope.

At the outset of this study, it was not clear that monitoring of mice in a normal living environ-
ment would provide sufficient sensitivity to detect age-related changes. The rationale behind utilizing 
challenge-based assays is that animals must be pushed to the limit of their abilities in order to quan-
tify functional decline (Sukoff Rizzo et al., 2018; Bellantuono et al., 2020). Although some aspects 
of aging undoubtedly require such assays, we found that our data show a plethora of aging-related 
changes in all age groups, including prior to 6 months of age, demonstrating that automated pheno-
typing of voluntary activity can detect even early aging-related changes. Mice reach sexual maturity 
at ~6 weeks of age, but are arguably still undergoing developmental changes for weeks or months 
after that. This shifts the question from when we can detect aging-related changes to when we should. 
Deciding whether aging-related changes in animals younger than 6 months of age represents aging, 
development, or a combination of the two is a complex issue that cannot be definitively resolved here. 
However, we did notice that phenotypes exhibited a diversity of trajectories across life – unchanged, 
parabolic, linear, logarithmic, and nearly exponential – and we propose that phenotypes which change 
monotonically, particularly when the trajectory is linear, can be considered part of aging even when 
that change begins early. For example, wheel running declines near-monotonically with age starting 
at 3 months; it seems reasonable to propose that this is an aspect of aging that begins quite early. 
Changes that are non-monotonic, for example, body weight, are more difficult to interpret through 
this lens.

One difficulty that arises when interpreting automated phenotyping data is distinguishing changes 
in physiology from changes in behavior. Although this is a somewhat arbitrary distinction, it is mean-
ingful – a decline in overall energy expenditure because an animal runs less is different from a decline 
in energy expenditure due to reduced basal metabolic rate. To address this, we developed a robust 
HMM to assign a behavioral state to each 3 min time bin. We were then able to examine features 
conditioned on the state of the animal, for example, VO2 while running. This turned out to be an 
informative approach, as state-conditioned features arising from the same sensor often clustered 
separately from one another, indicating that they contained complementary physiological informa-
tion (e.g., pedestrian locomotion while eating versus while resting). More qualitatively, it allowed 
us to assess specific aspects of physiology that have long been considered the domain of special-
ized procedures. For example, energy expenditure while sleeping provides a reasonable surrogate of 
resting metabolic rate whereas VO2 while running provides a reasonable surrogate of maximal oxygen 
consumption, both of which decline with age. We propose that behavioral inference based on auto-
mated phenotyping data is a useful technique that can be applied in a number of preclinical contexts.

A powerful use of multi-dimensional data is the application of network analysis to better under-
stand the wiring of the system. We built a network of physiological and behavioral phenotypes using 
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sparse precision matrix estimation methods; in other words, we determined every pairwise correlation 
between features after accounting for all other features. In this context, two features connected by 
a strong edge (high covariance) are more likely to be mechanistically connected than two features 
with a weaker edge, and thus features that form a cluster are likely driven by the same mechanism(s), 
whereas features from a different cluster are likely driven by distinct mechanism(s). Aging involves 
a multitude of detrimental changes to health and well-being, but it is unknown how many distinct 
causal mechanisms drive these changes (Freund, 2019). Analyzing aging as a phenotypic network 
informs how many clusters exist, therefore how many independent mechanisms likely exist. The 
concept is analogous to identifying clusters of coordinately expressed genes; with sufficient data, one 
can conclude that coordinately expressed genes are regulated by a similar transcriptional program, 
and the number of gene clusters provides a reasonable estimate of the number of transcriptional 
programs. In this study, we identified 22 distinct organism-level clusters, though this number will 
undoubtedly be refined as additional studies are incorporated into the network analysis framework.

Network modeling also allows for quantification of overall network connectivity, which serves as 
a useful proxy for resilience. We uncovered striking changes with age in this dimension: more than 
virtually any individual feature, resilience smoothly and monotonically declined with age. The decline 
in resilience accelerated with age, decreasing more rapidly in old animals than in young animals, a 
pattern that is qualitatively consistent with the accelerating decline in health and corresponding expo-
nential increase in mortality with age. This emergent property of the system was only detectable by 
analyzing the relationship between phenotypes, rather than the individual values of the phenotypes 
themselves – an analytical approach that is infeasible for data from challenge-based assays. Increasing 
network connectivity indicates that, with age, runs increasingly resemble one another, that is, old 
animals occupy a lower diversity of phenotypic states than younger animals. A similar phenomenon 
has been reported for human frailty – inter-individual variation in frailty scores decreases with age 
(Rockwood et al., 2004). It may be that individual animals become more physiologically inflexible 
with age; alternatively, this observation may be a consequence of survival bias, as DO mice reach 50% 
mortality by ~2 years of age, and only a small percentage of animals survive to >30 months. This latter 
explanation would imply that there are a limited number of viable aging trajectories, and animals that 
do not follow those trajectories die early, removing their contribution to phenotypic diversity. Longi-
tudinal assessment of resilience in individuals would help address this question, and future work could 
develop measurements of individual animal resilience, rather than the population-level resilience we 
have calculated here. In particular, the second-by-second and minute-by-minute data streams from 
phenotyping cages could be used to examine how similar an animal is to itself at a later time. This 
‘temporal autocorrelation’ analysis is only possible with time series data and has been proposed as a 
useful measure of individual resilience (Scheffer et al., 2018).

High-dimensional data is information-rich but also difficult to interpret. As such, there is value in 
developing summary statistics that capture meaningful aspects of the data. In the case of aging, this 
leads to the concept of biological age – a single number that is meant to reflect the aging-related 
health status of an animal better than does its chronological age. An increasingly popular method 
to quantify biological age from multi-dimensional data is to train a model to predict chronological 
age, then treat the error in that model (i.e., the difference between actual age and predicted age) as 
biologically meaningful. In many cases, this so-called ‘delta age’ correlates to meaningful outcomes, 
such as survival. Despite its popularity, the conceptual foundation of this approach is questionable. 
Consider that the computational goal of an age prediction model is to predict chronological age 
perfectly, but perfect performance would destroy the utility of the model. A model that predicts all 
70-year-old people, healthy or unhealthy, to be exactly 70 provides no information other than chrono-
logical age itself; ‍R2‍ = 1 is not useful. However, although it is clear that perfect performance is not 
desirable, it is unclear how much error is optimal; that is, it is unclear whether the error should be 1%, 
5%, 20%, or more. Further, the desire for error is not explicitly stated during model training – algo-
rithms push toward perfect performance whenever possible and do not aim to capture any other type 
of information. At some point, improved age prediction begins to ignore the biological information 
we care about, but we do not know when that point is reached because we have not defined a ‘ground 
truth’ measurement of the variable we actually care about, that is, biological age. In short, if you don’t 
know what you want, you’re unlikely to get it. The non-circular approach is to define a measurement 
of biological age that is independent of the training data and use that as the outcome variable when 
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training models. However, because we don’t fully understand aging, and because health is a difficult 
concept to define, let alone measure, it is difficult to confidently create such a ‘ground truth’ biological 
age metric.

A common alternative is to use lifespan, or survival time, as the outcome variable. Survival time is 
objectively measurable and fulfills the criteria of being independent of the training data, but it is still 
not exactly what we care about from an aging perspective: not all individuals with equal remaining 
lifespan are equally healthy or equally ‘aged’. Lifespan is influenced by a large number of external 
factors, and mortality risk is often dominated by particular pathologies (e.g., cancer, in the case of 
many mouse strains). An anti-cancer drug or any other single-cause-of-death modulator does not 
meet most people’s criteria of an aging intervention, but would be viewed as such if survival time were 
the single outcome variable assessed.

As neither chronological age prediction nor survival time prediction is an optimal method to eval-
uate biological age, we developed a compromise: CASPAR, which incorporates both chronological 
age and survival time prediction. CASPAR explicitly captures two key notions: (1) biological age 
should be correlated to chronological age and (2) deviations of biological age from chronological 
age should be informative of some proxy of health status (e.g., time to death). These two assump-
tions are often used as secondary validation metrics for mortality-only or age-only models, respec-
tively: biological age predictions from mortality-trained models are tested for their correlation with 
chronological age, and biological age predictions from chronological-age models are tested for their 
ability to predict mortality. However, our approach explicitly quantifies these assumptions, allowing 
for smooth interpolation between chronological age regression and survival regression. We trained 
multiple models, varying the relative importance of age versus survival time prediction, and evaluated 
their performance on held-out animals. Age prediction was always more accurate than survival time 
prediction, but this is not surprising – the former is an exercise in estimating a concurrent variable 
(chronological age), whereas the latter predicts a future outcome that is dependent on a number of 
stochastic external influences that have not yet occurred and may have no relationship to an animal’s 
current state. One extreme, the ‘chronological age model’, predicted chronological age well but had 
poor survival time prediction. Conversely, the ‘time to death’ model predicted survival time well, 
but showed substantially reduced age prediction performance. Therefore, both age and mortality 
information are present in the data, but the feature weighting that predicts them is largely distinct. A 
similar dichotomy between age and survival time prediction has been reported in other physiological 
datasets (Schultz et al., 2020; Fischer et al., 2016; Levine et al., 2018). Thus, considerable thought 
must go into model design, as different outcome variables are likely to emphasize different aspects 
of biology. We also demonstrate the existence of a hybrid model that gives some weight to both 
age and survival time prediction. This hybrid model predicted survival time nearly as well as a stan-
dard survival model, but gained substantial improvement in chronological age prediction. Notably, 
predicted biological age from the hybrid model was more strongly correlated to time to death than 
chronological age itself. It is beyond the scope of this manuscript to dictate exactly where the age 
versus survival prediction trade-off should lie, but we hypothesize that such hybrid models are likely 
to be more valuable and aging-relevant than either extreme.

The CASPAR approach also allowed us to take advantage of longitudinal measurements of the 
same mouse. Versions of the model in which we assumed that aging rates are relatively constant 
throughout life, thus allowing us to use multiple runs of the same animal to estimate a single age 
rate for that animal, performed significantly better than models without this additional constraint on 
held-out validation splits.

The model framework we have developed, with the ability to tune the relative weighting of age and 
survival time, can be applied more broadly. First, the underlying data does not need to be physiolog-
ical. A similar approach can be used with any other high-dimensional, per-individual dataset, including 
methylation data, transcriptomic data, and blood biomarkers. For the purposes of preclinical inter-
vention testing, we favor physiological data because it is, almost by definition, health-relevant. Our 
models relied on features like body mass, running speed, energy expenditure, and sleeping behavior 
– this is intuitively sensible and provides confidence that the resulting model truly reflects animal func-
tion. In contrast, although molecular data is often easier to acquire and contains more features, there 
is limited prior information on each individual feature, meaning that molecular data-based models are 
more difficult to interpret and sanity check. A second way to broaden the application of this modeling 
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framework is by using an outcome variable other than death. This may be particularly useful in human 
datasets, where follow-up mortality data is often limited. Age could be combined with a moribidity 
endpoint, or a pre-determined ‘health score’, and these outcome variables could be used to train the 
model. This may allow biological age assessment in cohorts with limited follow-up time.

Our study has several important limitations. First, it is not a fully longitudinal design. Mice were 
enrolled starting at different ages and followed for a fixed length of time (~1.5 years), thus our data 
are both left-truncated and right-censored. Having full lifespan curves for all animals would provide 
additional insight. Human clinical trial data has a similar left-censored, right-truncated data structure, 
so our ability to quantify health-relevant aging changes despite incomplete life histories bodes well 
for translationally relevant intervention testing using this platform. Second, the cohort was entirely 
female. This was a practical necessity; due to their aggressive tendencies, DO males are generally 
singly housed at all times, leading to unsustainable financial and vivarium space requirements. Never-
theless, a mixed dataset would be preferable, not only in terms of sex, but also in terms of strain and 
environmental variables, because mixed datasets increase the generalizability of conclusions (Voelkl 
et al., 2020, Webster and Rutz, 2020). It is quite likely that the specific physiological changes that 
develop with age will differ in male mice, in other strains, and in animals housed under different condi-
tions; however, we suspect that broad patterns such as reduced wheel running, metabolic activity, 
and resilience, will generalize. In this manuscript, we have primarily focused on the analytical method-
ology and tools we developed to understand and summarize the physiological changes we observed 
because we believe those will be more generalizable, and thus useful, to the field than the particular 
set of physiological changes that we identify.

Additionally, although the automated monitoring cages we used provided a tremendous amount 
of data, they are blind to many health-relevant phenotypes such as body posture and coat condition. 
Additional high content, automated phenotyping modalities, such as video monitoring paired with 
machine vision feature extraction, would increase the value of this platform. Fourth, our most granular 
analyses used 3 min time windows. However, for many of the cage sensors, the data are acquired 
every second. This provides the opportunity for more sophisticated time series analyses that track 
individual behaviors and rapid fluctuations in physiology.

Changes with age occur at all levels of biological organization (molecules, cells, tissues, etc.). We 
chose to focus on physiology and behavior because changes to this level of biological organization are 
most proximal to changes in health and quality of life. We created a platform that can measure physi-
ological and behavioral aging at any stage of life in outbred mice using automated phenotyping. This 
system provides a number of advances that allow organism-level aging to be studied with improved 
throughput, resolution, and physiological scope while reducing the activation energy that comes with 
highly specialized assay procedures. We encourage more widespread adoption of automated pheno-
typing and high-dimensional analysis in order to study aging and putative aging interventions.

Materials and methods
Animals
All experiments were conducted according to protocols approved by the Calico Institutional Animal 
Care and Use Committee, protocol numbers C-1-2015 and C-1-2017. Female DO mice were obtained 
from the Jackson Laboratory (Bar Harbor, ME), and housed at Calico in ventilated caging with a 12 hr 
light cycle and ad libitum access to food and water. Mice were group housed when not being moni-
tored in phenotyping cages. As mice died over the course the experiment, new mice were enrolled 
to maintain ~250 mice on study at any given time. Cohort size was initially targeted at >300 animals 
based on known variation in DO mouse phenotypes (e.g., body weight) and lifespan variation, though 
no specific power analysis was employed.

Data collection
Mice were profiled in Promethion High-Definition Multiplexed Respirometry Cages (from Sable 
Systems International) on a 1 week on, 3 weeks off cycle until death or study termination (~1.5 years 
after study initiation). Mice were singly housed when in Promethion cages and had ad libitum access 
to food and water.
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Each cage records raw measurements from seven integrated sensors at 1 s resolution: water bottle 
mass module, food hopper mass module, sleeping chamber mass module (for mouse weight), wheel 
sensor, and X/Y/Z infrared beams. Each cage also records gas measurements from an oxygen sensor, 
carbon dioxide sensor, and humidity sensor at 3 min resolution.

From these raw data, a data processing macro provided by Sable Systems was used to generate 
features at 3 min interval: VO2, VCO2, VH2O, energy expenditure, respiratory quotient, food and water 
intake, walking speed, all movement, wheel speed, X/Y/Z beam breaks.

Data analysis
High-level summary: Following initial macro processing, the data were analyzed in four main stages. 
First, outlier detection was run to remove outlier points and identify instrument failures. Next, this 
processed data was used to train an HMM which was used to identify distinct physiological states and 
assign each 3 min timepoint to one of these states. After state assignment, we derive 309 per-run 
features from the combination of the cage measurements and inferred physiological states. We use 
the term ‘per run’ to indicate that we treat each run as an independent event and take the average 
of each feature over the time in that run. Finally, we use network analysis to identify aging-related 
features, cluster features into phenotype clusters, assess resilience, and train models.

Data and code is available at https://github.com/calico/catnap, (copy archived at swh:1:rev:2f18ee-
a0d02c23501bdd36558822a6974f99f640; Chen, 2002) including Python scripts to train and run the 
CASPAR model (Chen et al., 2021).

Outlier detection and QC
Outlier detection was performed on each channel of a run (a week in the metabolic cage) inde-
pendently. To eliminate the stress of acclimatizing to the metabolic cage as a potential confounder, we 
dropped the first 24 hr of data (empirically we observed that mice reached a steady state after the first 
light cycle). Runs shorter than a full day (after truncation) were removed to avoid bias. We removed 77 
runs for being too short (2.2%).

We then performed a range check on each channel, censoring measurements that were outside of 
plausible physiological range (0–10 for gas measurements, 0–100 for walking and wheel speed, 5–80 g 
for body mass, and 0–2000 for beam breaks). These extremely permissive ranges were adopted to 
detect sensor faults.

We next identified outliers in the five gas measurements by removing the circadian component of 
each channel using RobustSTL (Wen et al., 2019) and applying a generalized extreme studentized 
deviate (ESD) test for outliers after subtracting the circadian trend. We used 24 hr as the period for 
RobustSTL seasonality extraction and 0.05 significance level for the ESD test.

To avoid low power in detecting outliers from multiple hypothesis correction, we set the upper 
bound for the generalized ESD test to 30% of the number of data points in a run and removed a run 
if 30% or more of its points were flagged as outliers. We removed 295 runs (~8.4%) for having too 
many outlier timepoints.

Data points which were flagged as outliers were censored, thus, no imputation of any data points 
was done.

HMM and state assignment
In order to identify common activity states and assign timepoints to these states, we trained a discrete 
state HMM on the data after QC and outlier detection. We extend the standard discrete HMM, lever-
aging the multi-dimensional nature and the dense temporal sampling of our data to identify unreliable 
measurements. First, to account for intermittent sensor failure and to identify subtle outliers that were 
not detected in the outlier detection and QC stage, we augmented the HMM with two additional 
states: (1) a ‘censored’ state which models spurious zero readings from the sensors and (2) a ‘noise’ 
state which models measurements that are unlikely to be observed given other measurements at the 
same timepoint. Second, to model batch effects due to calibration of gas sensors and other cage-
related biases, we learn a gas analyzer-specific batch correction offset per channel which was fit simul-
taneously with the HMM parameters.

In order to determine the number of HMM activity states, we split the dataset into a training set of 
2689 runs and a held-out a validation set of 471 runs. We then trained our robust HMM on the training 
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set varying the number of latent states between 1 and 10 and determined the number of latent states 
using the one standard error rule on the log-likelihood on the held-out validation dataset. This selec-
tion process yielded 6 as the optimal number of states, we then fit a final robust HMM using all the 
data with 6 states.

Labels were then assigned to each of the states identified by the robust HMM based on the distri-
bution of the underlying 14 raw cage measurements conditioned on each HMM state.

Features
We controlled for exposure to the phenotyping cage as a confounder using ANOVA/multiple linear 
regression. After introducing a new variable ‘run number’ for the number of times a mouse has been 
profiled in the phenotyping cages, we fit a regression model regressing out the effect of ‘run number’ 
and interactions between ‘run number’ and the HMM state on all measurements. This allowed us to 
learn a correction for exposure effects specific to each state for each measurement.

To enable easier comparison across ages, we also normalized the gas measurements for body 
mass. We fit a multiple linear regression model regressing each gas measurement on body mass and 
interactions between body mass and the HMM state. We then normalized each gas measurement to 
the mean body mass across all runs (31 g).

All regressions were performed using algorithms provided in the Scikit-learn package. We derived 
309 aggregate features from each run (excluding partial days) including:

•	 Means of base measurement across the entire run.
•	 State occupancy across the entire run.
•	 Means of base measurements during each state across the entire run
•	 Means of base measurement and state occupancy in 4 hr periods aligned to the light cycle.
•	 Ratio of base measurement and state occupancy pre/post light transitions.
•	 Frequency, duration, and interval between bouts of feeding, exercise, and sleep. Bouts were 

determined from individual 3 min data streams rather than HMM states, as the latter do not 
reflect single behaviors.

In all results shown, figures indicate means across runs of these features with the standard error 
of the mean as error bars. p-Values with respect to age were calculated via univariate KT test and 
Bonferroni-adjusted for multiple hypothesis testing.

ℓ-1 trend filtering
In order to account for run-to-run batch variability, we apply ‍ℓ− 1‍ trend filtering (Kim et al., 2009) to 
mice with ‍≥ 4‍ runs individually, treating each mouse as a 309-dimensional time series with 1 timepoint 
per run. Features were standardized to zero mean and unit variance and smoothed using multivariate 
‍ℓ− 1‍ trend filtering with an ‍ℓ− 1ℓ− 2‍ penalty (and then re-scaled back to their original scales). The 
‍ℓ− 1ℓ− 2‍ penalty captures our intuition that real, dramatic, changes in animal physiology should be 
captured across multiple sensor modalities or derived features (or conversely that abrupt changes in 
a single or small number of features are more likely to be noise). The ‍ℓ− 1‍ trend filtered data is only 
used for the subsequent analysis steps (aging rate regression and constructing phenotype networks).

Aging rate regression model
We fit aging rate regression models using the 309 features described above. In contrast to the typical 
regression models on chronological age or survival, our aging rate regression framework allows us to 
both (1) leverage repeated longitudinal measurements of the same mouse and (2) incorporate both 
age and survival regression into a unified framework. In order to evaluate the performance of the 
aging rate regression model and to investigate the impact of various assumptions in the model, we 
train models on 15 random animal hold-out splits – holding out all runs of 10% of mice to form a test 
set and training the models on the remaining 90% of mice – and report mean ‍R2‍ statistics for age and 
time to death predictions, averaged across all random splits. p-Values when reported are the ‍2×‍ the 
median p-value over all random splits as a conservative bound on the p-value across multiple data 
splits (Romano and DiCiccio, 2019).

At a high level, the aging rate regression model assumes that individual animals have an ‘aging-
rate’ ‍β‍ which uniformly speeds up/slows down their rate of aging relative to some reference animal. 
We infer this aging rate by comparing a proxy of animal health (remaining lifespan) to the reference 
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animal − as a concrete example, a 12-month-old mouse with ‍β = 1.5‍ would have the same expected 
remaining lifespan of a ‍12 × 1.5 = 18‍-month-old ‘reference mouse’. We infer the aging rate by 
extending the classical accelerated failure time model (Wei, 1992) commonly used in survival analysis. 
Modeling the time to death of an animal by

	﻿‍ log Yj
i = β

j
i + Zj

i‍�

where ‍Y
j
i‍ is the time to death of mouse ‍j‍ at run ‍‍, ‍β

j
i ‍ is the inferred ‍β‍ for mouse ‍j‍ at run ‍‍, and ‍Z

j
i‍ 

the random variable denoting the remaining lifespan of a reference mouse at the predicted age for 
mouse ‍j‍ at run ‍‍. In order to estimate this aging rate, we must first estimate ‍Z ‍ which we do by fitting a 
left-truncated, right-censored log extreme value distribution to estimate the distribution of DO mouse 
lifespans and use that to compute the distribution of remaining lifespan for a mouse of a given age.

In order to incorporate multiple measurements of the same animal at different ages, we addition-
ally assume that each mouse has some latent aging rate ‍β
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ϵ‍represents our prior on the variance of the aging rate across different observations of the same 

mouse, a small value denoting a strong prior for a single consistent ‍β‍ over the entire lifespan of a 
mouse. We find that small values of ‍σ
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ϵ‍ generally outperform larger values on a held-out validation set 

which supports our assumption of a component of aging rate that is uniform throughout life. However, 
the model was not sensitive to small changes in value of ‍σ
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ϵ‍ and in all subsequent experiments and 

results, we set ‍σ
2
ϵ = 1‍.
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β‍ denotes our prior on the variance of the aging rate within the population. When 
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β‍ is set to a small value, it represents a belief that all animals age at roughly the same rate. In this 

regime, the aging rate regression model approximates chronological age regression (mostly ignoring 
information about remaining lifespan). When ‍σ

2
β‍ is large, it represents a belief that animals can age 

at very different rates, so the aging rate regression model emphasizes the health component (in this 
case, time to death) and approximates an accelerated failure time survival regression model (largely 
ignoring the chronological age of the animal). By adjusting ‍σ

2
β‍, we can fit hybrid models that take both 

into account.
We fit the aging rate regression models by maximizing the likelihood:
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predicted biological age of features ‍X
j
i‍ of mouse ‍j‍ at run ‍‍. In our experiments, we implemented the 

aging rate regression models using gradient boosted decision trees for ‍F(·)‍ (Chen and Guestrin, 
2016).

Age-specific phenotype networks
We fit age-specific phenotype networks using taking 3-month age bins starting from age 0 as separate 
age bins. The graphical LASSO is a method of fitting a sparse Gaussian graphical model – allowing 
us to identify putative causal relationships between features. In order to account for changes in rela-
tionships between features as mice age, we used a variant of the graphical LASSO called time-varying 
graphical LASSO (Hallac et al., 2017) which fits a separate model per age bin but penalizes differ-
ences between adjacent age bins (to encode our prior that changes in network connectivity occur 
gradually with age). We used the standard ‍ℓ− 1‍ sparsity penalty per age bin and a perturbed node 
penalty between age bins (Mohan et al., 2012). Since several of our features are non-Gaussian in 
distribution, we adopted the nonparanormal covariance estimator described in Liu et al., 2009.

In order to cluster features into phenotype clusters, we bootstrap sample the estimated graph-
ical model 1000 times and consensus cluster (Monti et al., 2003) features using spectral clustering. 
The number of clusters to use was determined using the approach described in Monti et al., 2003. 
We estimate the degree of interdependence between features using the negative copula entropy 
(log-determinant of the estimated covariance matrix) (Singh and Póczos, 2017) which we termed 
‘resilience’.
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Heritability and genetic correlations
We collected tail clippings and extracted DNA from all animals. Samples were genotyped using the 
143,259-probe GigaMUGA array from the Illumina Infinium II platform (Morgan et  al., 2015) by 
NeoGen Corp. (genomics.neogen.com/). We evaluated genotype quality using the R package: qtl2 
(Broman et al., 2019). We processed all raw genotype data with a corrected physical map of the 
GigaMUGA array probes (https://kbroman.org/MUGAarrays/muga_annotations.html). After filtering 
genetic markers for uniquely mapped probes, genotype quality, and a 20% genotype missingness 
threshold, our dataset contained 116,377 markers.

For each mouse, starting with its genotypes at the 116,377 markers and the genotypes of the eight 
founder strains at the same markers, we inferred the founders-of-origin for each of the alleles at each 
marker using the R package: qtl2 (Broman et al., 2019). This allowed us to test directly for association 
between founder-of-origin and phenotype (rather than allele dosage and phenotype, as is commonly 
done in QTL mapping), and used these founder-of-origin inferences to compute the kinship between 
pairs of mice for heritability and genetic correlation analyses.

For each of the 309 derived phenotypes in this study, we computed the heritability (proportion of 
phenotypic variance explained by additive genetic effects, or PVE) using a custom implementation 
of EMMA (Kang et al., 2008), a standard linear mixed model used for genetic association analyses. 
Specifically, for each mouse, we randomly sampled a representative run to construct a 415 × 309 
matrix of phenotype values, with each column quantile-normalized to the standard normal distri-
bution. We computed heritability for each phenotype while controlling for fixed effects of age and 
cohort (since the runs spanned the entire age and cohort distribution in the study). This workflow was 
repeated for 100 random draws of runs for each mouse, and the median (and inter-quartile range) of 
the estimated heritability was reported for each phenotype.

For the 45 phenotypes with significant nonzero heritability, we compute genetic correlation for 
each pair of phenotypes, using a matrix-variate linear mixed model (Furlotte and Eskin, 2015), while 
conditioning on the fixed effects of age and cohort. Similarly, we computed the partial phenotypic 
correlation for each pair of phenotypes, controlling for age and cohort effects.
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