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Abstract

Normative modeling, a group of methods used to quantify an individual’s deviation from

some expected trajectory relative to observed variability around that trajectory, has been

used to characterize subject heterogeneity. Gaussian Processes Regression includes an

estimate of variable uncertainty across the input domain, which at face value makes it an

attractive method to normalize the cohort heterogeneity where the deviation between pre-

dicted value and true observation is divided by the derived uncertainty directly from Gauss-

ian Processes Regression. However, we show that the uncertainty directly from Gaussian

Processes Regression is irrelevant to the cohort heterogeneity in general.

Introduction

In case-control studies, participants are assigned labels and classified into one or more catego-

ries based on their similarities or common criteria, with little consideration for the heterogene-

ity within each cohort. Meanwhile, normative modeling is becoming increasingly popular. In a

normative model, each observation is quantified as a normalized deviation with respect to the

cohort heterogeneity. The growth chart [1, 2] is an example normative model as shown in Fig

1, where a series of percentile curves (normalized deviation) illustrate the distribution of

selected body measurements in children. Another widely-used measure for normalized devia-

tion is the z-score, which is calculated by dividing the difference between an observation and

the reference model, i.e., residual, by a standard deviation that represents local heterogeneity

and assumes residuals are Gaussian distributed locally.

The uncertainty sometimes can be classified into two categories: epistemic and aleatoric

uncertainties. Epistemic uncertainty is known as systematic uncertainty and is due to things

one could in principle know but do not in practice; aleatoric uncertainty is known as statisti-

cal uncertainty and is representative of unknowns that differ each time we run the same

experiment [4]. Epistemic uncertainty is often introduced by the limited dataset size and can

be reduced by adding more observations. On the other hand, aleatoric uncertainty repre-

sents a character of heterogeneity in the underlying distribution itself which is unrelated to
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sample size, so it cannot be reduced by modifying the dataset, and this is the heterogeneity a

normative model should measure. As shown in Fig 1, larger number and density of data

points (black dots) reduce the epistemic uncertainty (red error bars), while the aleatoric

uncertainty (blue curly brackets) is unrelated to the sample size or distribution. The confi-

dence intervals obtained from most statistical tests and advanced machine learning models

only capture epistemic uncertainty, while a normative model is designed to capture the alea-

toric uncertainty.

Gaussian Process Regression (GPR) has been widely used in many domains. Schulz et al.

[5] presented a tutorial on the GPR with the mathematics behind the model as well as several

applications to real-life datasets/problems. Tonner et al. [6] developed a GPR based model and

testing framework to capture the microbial population growth and shown their proposed

approach outperformed primary growth models. Banerjee et al. [7] and Raissi et al. [8] intro-

duced two novel approaches to improve the efficiency of GPR in “big data” problems.

However, some previous research implemented the GPR as a normative modeling approach

and utilized the derived prediction variance to model the cohort heterogeneity. Ziegler et al.

[9] attempted to build a normative model for diagnosing mild cognitive impairment and Alz-

heimer’s disease based on the normalized deviation of predicted brain volume from GPR.

Marquand et al. [10] used delay discounting as covariates and reward-related brain activity

derived from task Functional Magnetic Resonance Imaging (fMRI) as the target variable with

GPR and extreme value statistics to identify the participants with Attention-Deficit/Hyperac-

tivity Disorder (ADHD). Wolfers et al. [11] investigated the deviation of brain volume in an

ADHD cohort from healthy control group (HC) with respect to age and gender, and they also

explored the heterogeneous phenotype of brain volume for schizophrenia and bipolar disorder

with GPR [12]. Zabihi et al. [13] studied Autism Spectrum Disorder (ASD) regarding the devi-

ation of cortical thickness via a similar methodology.

In this paper, we introduce some background knowledge related to GPR. We then present a

rigorous mathematical derivation and several examples to demonstrate that the variance from

GPR cannot be used in a normative model alone. In the last section, we discuss the difficulties

and disadvantages of modeling the cohort heterogeneity by modifying original GPR variance,

and a misunderstanding existed in previous research.

Fig 1. Weight-for-age boys: Birth to 2 years. Reprinted from [3] under a CC BY license, with permission from World

Health Organization, original copyright (2021). The percentiles show the distribution of weights in boys form birth to

2 years. Black dots: observations; red error bars: epistemic uncertainty; blue curly brackets: aleatoric uncertainty.

https://doi.org/10.1371/journal.pone.0252108.g001
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Materials and methods

Gaussian Process Regression

The relation between the observation and the predictive model usually can be expressed as

y ¼ f ðxÞ þ ε; ð1Þ

where y is the observation (output), f(�) represents the predictive model, x is a vector of inde-

pendent variables (input) corresponding to the output y, and ε is the noise term which follows

a normal distribution ε � N 0;s2
noise

� �
. Gaussian Process Regression (GPR) assumes a zero-

mean normal distribution over the predictive model

f ð�Þ � N ð0; kð�; �ÞÞ; ð2Þ

where k(�, �) is some covariance (kernel) function. Given the training set input X and testing

set input X�, since both of them follow the same distribution, we have

f
X

X�

" # !

� N 0;
KðX;XÞ KðX;X�Þ

KðX�;XÞ KðX�;X�Þ

" # !

: ð3Þ

According to the Eq 1, the observation follows the summation of these two normal distribu-

tions

y

y
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where S2

train
and S2

test
are two square diagonal matrices that represent the variance of observa-

tion noise in training and testing sets, and all diagonal elements of S2

train
and S2

test
are identical

and equal to s2
noise

. By the rules of conditional Gaussian distribution, the prediction of testing

set y� follows a normal distribution y� � N m�;S
2

�

� �
, where μ� and S2

�
are defined as [14, 15]

m� ¼ KðX�;XÞ½KðX;XÞ þ S
2

train�
� 1y; ð5aÞ

S2

�
¼ KðX�;X�Þ þ S

2

test � KðX�;XÞ½KðX;XÞ þ S
2

train�
� 1KðX;X�Þ: ð5bÞ

Kernel trick

Similar to Support Vector Machines (SVM), the kernel trick can also be implemented with

GPR to project the input of data from the original space into a same or higher dimensional fea-

ture space via some mapping function z(�). Given a pair of inputs (x1,x2), the kernel function

calculates the inner product of the coordinates in the feature space, i.e., k(x1,x2) = z(x1)z(x2)T

[16, 17]. The kernel trick avoids the expensive computation of calculating the coordinate in

the feature space for each input. We use the linear kernel and Radial Basis Function kernel

(RBF) as examples to illustrate this advantage.

Linear kernel. The linear kernel is non-stationary and the simplest kernel, which is

defined as

kðx1; x2Þ ¼ x1xT2 ; ð6aÞ

zðxÞ ¼ x; ð6bÞ

where the input is projected into a feature space according to Eq 6b, and the feature space is

the original space.
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Radial Basis Function kernel. The RBF kernel is a stationary kernel, which is also widely

used and defined as [17]

kðx1; x2Þ ¼ e�
kx1 � x2k

2

2l2 ; ð7aÞ

zðxÞ ¼
e�
kxk2

2l2 j

ffiffiffiffiffiffiffi
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p 1
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; ð7bÞ

where l is a free scaling parameter. The RBF kernel projects the input from the original space

onto an infinite dimensional feature space where the mapping is defined by Eq 7b. It is impos-

sible to exactly compute the coordinates in an infinite dimensional space, while Eq 7a still

allows straightforward computation of the inner product for coordinate pairs in that feature

space.

Matérn and Rational-Quadratic kernels. Matérn kernel is a generalization of the RBF

kernel which is defined as [14]

k x1; x2ð Þ ¼
21� n

GðnÞ

ffiffiffiffiffi
2n
p

l
k x1 � x2 k

� �n

Kn

ffiffiffiffiffi
2n
p

l
k x1 � x2 k

� �

; ð8Þ

where the parameter ν controls the smoothness of the function, Γ(�) refers to the gamma func-

tion, and Kν(�) represents modified Bessel function. Rational-Quadratic kernel is another ker-

nel based on the RBF kernel, which is given by

k x1; x2ð Þ ¼ 1þ
k x1 � x2 k

2

2al2

� �� a

; ð9Þ

where α is a scale mixture parameter. The Rational-Quadratic kernel can be considered as an

infinite sum of RBF kernels with different length-scales l [18].

Estimated uncertainty for GPR

One benefit of using GPR to build a data-driven model is the predictions are associated with

the derived variances as shown in Eq 5. However, we need to emphasize that this variance is

only related to the kernel function k(�, �) and distribution/coordinate of training set input X,

i.e., it cannot be utilized in a normative model approach alone to capture the variance intro-

duced by the conditional distribution Var(y|x).

We better illustrate and verify this statement through simplifying the Eq 5b. Since any ker-

nel function k(�, �) can be written as the inner product of a coordinate pair in the feature space

by some mapping function z(�), we present our derivation in a general format. We define a var-

iable x� which represents a testing input, then Eq 5b can be written as

S2

�
ðx�Þ

¼ kðx�; x�Þ þ s2
test � kðx�;XÞ½KðX;XÞ þ S

2

train�
� 1kðX; x�Þ ð10aÞ

¼ zðx�Þzðx�Þ
T
þ s2

test � zðx�ÞZðXÞ
T
½ZðXÞZðXÞT þ S2

train�
� 1ZðXÞzðx�Þ

T
: ð10aÞ
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Applying Singular Value Decomposition (SVD) on
P� 1

train
Z Xð Þ ¼ U

P
VT , Eq 10 is refor-

mulated as (the detailed derivation is presented in S1 Appendix)

S2

�
ðx�Þ

¼ zðx�Þzðx�Þ
T
þ s2

test � zðx�ÞZðXÞ
T
½ZðXÞZðXÞT þ S2

train�
� 1ZðXÞzðx�Þ

T

¼ zðx�ÞV½I � S
TðSST þ IÞ� 1

S�VTzðx�Þ
T

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
quadratic term

þ s2

test|{z}
constant

:

ð11Þ

After simplification, the variance is reformulated as Eq 11, which is a summation of a qua-

dratic term for z(x�) and a constant represents the noise, S and V are constant matrices where

the values are fully depended on training input X, training noise Strain, and mapping function

z(�) or kernel function k(�, �).

Modification of uncertainty from GPR

Regarding Eq 11, the variance calculated via Eq 5b is purely depended on kernel function and

training data input, thus it is only able to capture the epistemic uncertainty which could be

reduced by modifying or adding training data. The derived variance from GPR could be

extended to model the heterogeneity Var(y|x) for a normative model by adding an aleatoric

variance term into Eq 5b

Varðy
�
jX�Þ ¼ KðX�;X�Þ þ S

2

test � KðX�;XÞ½KðX;XÞ þ S
2

train�
� 1KðX;X�Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
epistemic uncertainty

þ S2

aleatoricðX�Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
aleatoric uncertainty

;

ð12Þ

where
P2

aleatoric
X�ð Þ represents the data character of heterogeneity in output at given locations

on the input space. This formula, however, is not implemented in any previous research as we

know and we will discuss the difficulties and disadvantages in estimating the aleatoric uncer-

tainty later.

Results

We apply the unmodified GPR (Eq 5) on several synthetic datasets where both input x and

output y are one dimensional to facilitate visualization. Although the presented results are

based on one dimensional input x, they are generalizable to any dimensional input. We illus-

trate the characteristics of the four kernels mentioned above, but we mainly focus on the linear

and RBF kernels. We also present the results of two scenarios with known and unknown noise

levels.

Dataset

Four synthetic datasets are generated and plotted in Fig 2, and each of them contains 1000

points with a noise level of σnoise = 0.05. Four other undersampled datasets are plotted in Fig 3,

each of which contains 1000 × 5% = 50 points.

In Dataset 1, both input X and output y follow a Gaussian distribution N 0; 12
� �

and are

correlated with a Pearson coefficient of 0.75. Dataset 2 is transformed from Dataset 1, which

moves the set of points where x� 0 in Dataset 1 along the line y = x until the maximum input

in that set equals 0, and moves the remaining points where x< 0 in Dataset 1 until the
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minimum input is 0. Dataset 3 has input X and output y uniformly distributed over a half-

open interval [−π, π). Output y of Dataset 4 is obtained by multiplying a factor function over

output y from Dataset 3, which is defined as f(x) = sin(x)/2 + 1 and x is the corresponding

input. We should note that the inputs X of original Datasets 3–4 are exactly same as shown in

Fig 2C and 2D, and the inputs X of corresponding undersampled Datasets 3–4 are also identi-

cal as shown in Fig 3C and 3D.

GPR with known noise level

Linear kernel. The regression surface of GPR with linear kernel is a hyperplane and the

variance is a quadric hypersurface defined by Eq 11 in feature/original spaces, where the

hyperplane always passes the origin, the variance is a function only with respect to the coordi-

nate of testing input x� and a unique minimum is located at x� = 0. Figs 4 and 5 present results

for GPR with linear kernel on the one dimensional synthetic datasets, where top sub-figures

plot the reference models/predictions (red lines) overlapped on the data (blue dots), middle

sub-figures show the derived variances (blue curves) across the original input space, and the

bottom sub-figures shows the corresponding “z-score” for training set which is computed via

Eq 13 if the residual (y − yreference) is mistakenly normalized by standard deviation S directly

from GPR (Eq 5b).

z� score ¼
y � yreference

S
ð13Þ

The mapping function of linear kernel projects an input to itself (Eq 6b). For one dimen-

sional input, S in Eq 11 is an m × 1 matrix, where m is the size of training set. The only non-

Fig 2. Original datasets.

https://doi.org/10.1371/journal.pone.0252108.g002

Fig 3. Undersampled datasets.

https://doi.org/10.1371/journal.pone.0252108.g003
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zero element S1,1 equals the only non-zero singular value σ of
P� 1

train
X, and V is a 1 × 1 identity

matrix. Therefore, Eq 11 can be further reduced to

S2

�
ðx�Þ ¼ ½1 � S

TðSST þ IÞ� 1
S�x2

�
þ s2

test

¼ 1 �
s2

s2 þ 1

� �

x2
�
þ s2

test

¼
x2
�

s2 þ 1
þ s2

test:

ð14Þ

As shown in Figs 4 and 5, the variance is a univariate function of coordinate of the testing

input x� where the shape is a quadratic curve, and the global minimum is always located at

x� = 0 with a value of s2
test
¼ 0:052 as Eq 14 formulated. The result of GPR with linear kernel

presents a good example which illustrates the derived variance from GPR does not model the

conditional variance Var(y|x), thus corresponding z-score cannot be utilized as a normalized

deviation in a normative model.

As previously mentioned, the predicted variance for testing set from GPR only depends on

the training set input and the kernel function. As the original as well as the undersampled

Datasets 3–4 have identical inputs X, the variance curves in Figs 4C, 4D, 5C and 5D are respec-

tively identical.

RBF kernel. Unlike the linear kernel, RBF kernel mapping function (Eq 7b) defines a fea-

ture space which is different from the original space. Regarding the original space, the

Fig 4. GPR with linear kernel on original datasets.

https://doi.org/10.1371/journal.pone.0252108.g004

Fig 5. GPR with linear kernel on undersampled datasets.

https://doi.org/10.1371/journal.pone.0252108.g005
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regression surface is no longer a hyperplane and the variance is no more a quadric hypersur-

face for the RBF kernel, although regression surface is always a hyperplane and variance is

always a quadric hypersurface for any kernels in the feature space. Because the mapping func-

tion of RBF kernel is very complicated, we only briefly describe the characteristics of the

regression surface and variance in the original space. For a test input x�, the prediction is a

summation of discounted outputs of all training points where each corresponding discount

factor is determined by the Euclidean distance between x� and that training input, and the pre-

dicted value converges to 0 if x� is far away from all training inputs. On the other hand, the

variance depends only on the density of training inputs at x�, and higher density results in

lower variance. Therefore, the variance of GPR with RBF kernel is related of the relative loca-

tion to the training inputs rather than the absolute location specified by coordinate.

The results for GPR with RBF kernel applied to these synthetic datasets are shown in Figs 6

and 7. We should note that the value of hyper-parameter l in the RBF kernel function (Eq 7a)

does not affect the main idea of this paper, thus we used a fixed value of 1.0 instead of utilizing

hyper-parameter optimization in this section. As shown in Figs 6 and 7, the variance is unre-

lated to the conditional variance Var(y|x). Therefore, z-scores based on this model do not rep-

resent normalized deviation. However, unlike the quadratic curves whose unique minimum is

always located at x = 0 in Figs 4 and 5 for linear kernel, the variance function of GPR with RBF

kernel regarding the original input space is related to the distribution of training input X. The

denser inputs at the middle of Dataset 1 and two ends of Dataset 2 lead to lower variances at

those locations in Fig 6A and 6B, while the uniformly distributed inputs of Datasets 3–4 result

in relatively flat curves in and Fig 6C and 6D. According to Eq 7a and given an arbitrary input

x�, the RBF kernel function returns a larger value for a point in X that is closer to x�, and k(x�,
X) and k(X,x�) have more large elements if x� is close to more points in X. Due to K X;Xð Þ þ
P2

train
is a symmetric positive definite matrix, both result in the decrease of the value for Eq

10a, i.e., to smaller variance.

Similar to the result for the linear kernel, the theoretical minimum of variance is

s2
test
¼ 0:052, and the variance curves are exactly identical in Figs 6C, 6D, 7C and 7D

respectively.

Matérn and Rational-Quadratic kernels. The properties of Matérn and Rational-Qua-

dratic kernels are similar to the RBF kernel. Therefore, we only present the results in Figs 8–11

for these two kernels without the detailed analysis. Similar to RBF kernel, the hyper-parame-

ters of Matérn and Rational-Quadratic kernels are also fixed in this section, where ν = 1.5

for Matérn kernel, α = 1.0 for Rational-Quadratic kernel, and l = 1.0 for both kernels. The

Fig 6. GPR with RBF kernel on original datasets.

https://doi.org/10.1371/journal.pone.0252108.g006
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variance curves shown in Figs 8C, 8D, 9C, 9D, 10C, 10D, 11C and 11D are exactly identical,

respectively.

GPR with unknown noise level

The noise level can be included as a hyper-parameter when it is unknown. However, the

derived variance from GPR still does not model the heterogeneity Var(y|x), although it could

be a good approximation in some special cases.

Fig 7. GPR with RBF kernel on undersampled datasets. Scales of Y-axis for variance plots are different.

https://doi.org/10.1371/journal.pone.0252108.g007

Fig 8. GPR with matérn kernel on original datasets. Scales of Y-axis for variance plots are different.

https://doi.org/10.1371/journal.pone.0252108.g008

Fig 9. GPR with matérn kernel on undersampled datasets. Scales of Y-axis for variance plots are different.

https://doi.org/10.1371/journal.pone.0252108.g009
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As the basic properties of linear and RBF kernels have been introduced, a hybrid kernel is

utilized in the following analysis which is defined as

khybridð�; �Þ ¼ wlinearklinearð�; �Þ þ wRBFkRBFð�; �Þ þ kwhiteð�; �Þ; ð15Þ

where wlinear and wRBF represent adjustable weights on linear and RBF kernels, and kwhite(�, �)

refers to a white-noise kernel that represents the independently and identically normally-dis-

tributed observation noise, i.e., Kwhite X;Xð Þ ¼
P2

train
, Kwhite X�;X�ð Þ ¼

P2

test
, Kwhite(X,X�) = 0,

and Kwhite(X�,X) = 0. Because the Matérn and Rational-Quadratic kernels are both based on

the RBF kernel, so we only include the RBF kernel in the hybrid kernel. The Eq 5b can be

reformulated as

S2

�
¼ KhybridðX�;X�Þ � KhybridðX�;XÞKhybridðX;XÞ

� 1KhybridðX;X�Þ: ð16Þ

Original Datasets 3–4 in Fig 2C and 2D are prefect for testing whether a model captures the

heterogeneity Var(y|x), as the large number of instances and uniformly distributed data over

the input space lead to negligible epistemic uncertainty in certain input range, and the true ref-

erence model y = 0 is very simple as well. Besides, the results of two more complex datasets

with quadratic reference models are presented in the S1 Appendix. In this section, the hyper-

parameters are tuned by maximizing the likelihood P(y|X,θ), where θ represents all hyper-

parameters in the model. The results are plotted in Fig 12, and the optimized hyper-parameters

are listed in Table 1 as well as the overall variances of residual Var(y − yreference).

Fig 11. GPR with Rational-Quadratic kernel on undersampled datasets. Scales of Y-axis for variance plots are different.

https://doi.org/10.1371/journal.pone.0252108.g011

Fig 10. GPR with Rational-Quadratic kernel on original datasets. Scales of Y-axis for variance plots are different.

https://doi.org/10.1371/journal.pone.0252108.g010
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As shown in Fig 12, the GPR accurately estimates the reference models, i.e., yreference�

yreference,true. The variance curves are nearly quadratic, since the wlinear is relatively larger than

wRBF while wRBF is not exact zero as listed in Table 1. However, the domination of kwhite(�, �)

over klinear(�, �) and kRBF(�, �) due to small optimized weights flattens the curves, i.e., the value

of the curve is almost constant over the plotted input range in this example. Particularly, the

s2
noise

is very close to the overall residual variance Var(y−yreference), and the explanation will be

presented later. Therefore, Khybrid X�;X�ð Þ �
P2

test
, Khybrid X;Xð Þ �

P2

train
, Khybrid(X�,X)� 0

and Khybrid(X,X�)� 0, which result in
P2

�
�
P2

test
¼
P2

noise
for Eq 16.

Regarding Eq 1, since the noise is included as a tunable hyper-parameter without any con-

straints, the optimizer will adjust reference model f(�) as well as bias s2
noise

to Var(y−yreference) to

maximize the likelihood P(y|X,θ). Even the σnoise refers to the observation noise level in GPR

while the optimizer handles it as a variable without considering its meaning in a model.

In Dataset 3, s2
noise

is biased to the overall residual variance Var(y−yreference), and

Var(y−yreference) is well matched with the homoskedastic heterogeneity Var(y|x). So the

z-scores plotted in Fig 12A show the GPR works as a normative model approach in this

special case. However, in Dataset 4, s2
noise

is also biased to the overall residual variance

Var(y−yreference), while Var(y−yreference) does not approximate the heteroskedastic

Fig 12. GPR with hybrid kernel on original datasets 3–4. Scales of Y-axis for variance plots are different.

https://doi.org/10.1371/journal.pone.0252108.g012

Table 1. Optimized hyper-parameters for hybrid kernel on original datasets 3–4.

wlinear wRBF l s2
noise Var(y−yreference

Dataset 3 7.29e-8 4.88e-10 2.94e2 3.29 3.29

Dataset 4 1.35e-7 1.98e-17 1.54e-5 3.64 3.64

https://doi.org/10.1371/journal.pone.0252108.t001
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heterogeneity Var(y|x). So the z-scores plotted in Fig 12B do not represent a measure of nor-

malized deviation in general.

Discussion

Although GPR could be extended and to model the heterogeneity as presented in this work, it

is either: (1) hard to estimate the aleatoric uncertainty accurately when the data are sparse, e.g.,

at the middle of Dataset 2; or (2) unnecessary to model the conditional variance by Eq 12

when the data are dense, e.g., Datasets 3–4. One approach to estimate s2
aleatoric

x�ð Þ is using the

sliding window technique, but it is hard to choose the window size for each dimension of

input. For Scenario 1, even if the optimal window sizes can be obtained, it is hard to accurately

estimate s2
aleatoric

x�ð Þ when the window centered at x� only covers a small number of training

data points, e.g., x� is far away from all points in X. If the window centered at x� covers a large

number of training data points, e.g., Scenario 2, Var(y|x�) should almost equal s2
aleatoric

x�ð Þ and

epistemic uncertainty is insignificant. Then Var(y|x�) can be simply approximated as a local

variance over a space defined by the window. There are more sophisticated algorithms than

the naive sliding window technique, e.g., LOcal regrESSion (LOESS) [19, 20] and Generalized

Additive Models of Location Shape and Scale (GAMLSS) [21, 22]. However, these methods

still need densely distributed data over the input space based on our experience.

Another misunderstanding we found in the literature is interpreting the noise term s2
noise

as

aleatoric uncertainty. When the observation noise is considered as a hyper-parameter, it will

likely bias the overall residual variance Var(y−yreference). The overall residual variance is a good

approximation of homoskedastic aleatoric uncertainty Var(y|x). It is, however, not valid for

cases with heteroskedastic residuals, which is the main motivation for using normative model-

ing. Although the value of the noise term is biased to estimate overall residual variance during

the optimization, the mathematical/physical meanings are pre-defined by the model. More-

over, in homoskedastic aleatoric uncertainty cases, further investigation is needed to verify

whether K X�;X�ð Þ � K X�;Xð Þ K X;Xð Þ þ
P2

noise

� �� 1

K X;X�ð Þ will still be a good approxima-

tion of epistemic uncertainty with such a biased estimation of observation noise level.

Conclusions

In this paper, we present the mathematical derivation with a general formula to demonstrate

that the derived prediction variance from GPR does not model the heterogeneity Var(y|x),

which in general is necessary for a normative model. GPR with a linear kernel and an RBF ker-

nel are used as examples to illustrate this statement on one dimensional input datasets. Overall,

the derived variance from GPR cannot be utilized in a normative model alone.

Supporting information

S1 Appendix. This file contains data/code availability, Eq S1, S1 Fig, and S1 Table. All data-

sets are generated from the same Python script, which contains the code for analysis as well;

Eq S1 is a detailed derivation for Eq 11; S1 Fig and S1 Table are results for modified Datasets

3-4.

(PDF)

Acknowledgments

I would sincerely appreciate my families and friends from Laureate Institute for Brain

Research, the University of Tulsa, and Brain Technologies Inc. for helping me through my

PLOS ONE The pitfalls of using Gaussian Process Regression for normative modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0252108 September 15, 2021 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0252108.s001
https://doi.org/10.1371/journal.pone.0252108


brain tumor surgery and the subsequent recovery during the revision of this paper. Special

appreciation to Kaiping Burrows and Leandra Figueroa-Hall.

We would also like to thank the journal editor and anonymous reviewers for insightful dis-

cussions and feedback that have improved our study and manuscript.

Author Contributions

Formal analysis: Bohan Xu.

Investigation: Bohan Xu.

Methodology: Bohan Xu.

Writing – original draft: Bohan Xu.

Writing – review & editing: Rayus Kuplicki, Sandip Sen, Martin P. Paulus.

References
1. Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, Wei R, et al. CDC growth charts:

United States. Advance data from vital and health statistics; 314. Hyattsville, Maryland: National Cen-

ter for Health Statistics; 2000.

2. Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, et al. 2000 CDC growth

charts for the United States: methods and development. Vital Health Stat 11(246). Hyattsville, Mary-

land: National Center for Health Statistics; 2002.

3. World Health Organization. Reproduced from “Weight-for-Age Boys: Birth to 2 years (percentiles)”

accessed 6-May-2021; Copyright (2021). Available from: https://cdn.who.int/media/docs/default-

source/child-growth/child-growth-standards/indicators/weight-for-age/boys-charts—weight-for-age-

birth-to-2-years-(percentiles).pdf.

4. Wikipedia contributors. Uncertainty quantification—Wikipedia, the free encyclopedia; 2021. Available

from: https://en.wikipedia.org/w/index.php?title=Uncertainty_quantification&oldid=1015674163.

5. Schulz E, Speekenbrink M, Krause A. A tutorial on Gaussian process regression: modelling, exploring,

and exploiting functions. Journal of Mathematical Psychology. 2018; 85:1–16. https://doi.org/10.1016/j.

jmp.2018.03.001

6. Tonner PD, Darnell CL, Engelhardt BE, Schmid AK. Detecting differential growth of microbial popula-

tions with Gaussian process regression. Genome Research. 2017; 27(2):320–333. https://doi.org/10.

1101/gr.210286.116

7. Banerjee A, Dunson DB, Tokdar ST. Efficient Gaussian process regression for large datasets. Biome-

trika. 2013; 100(1):75–89. https://doi.org/10.1093/biomet/ass068

8. Raissi M, Babaee H, Karniadakis GE. Parametric Gaussian process regression for big data. Computa-

tional Mechanics. 2019; 64(2):409–416. https://doi.org/10.1007/s00466-019-01711-5

9. Ziegler G, Ridgway GR, Dahnke R, Gaser C, Alzheimer’s Disease Neuroimaging Initiative. Individual-

ized Gaussian process-based prediction and detection of local and global gray matter abnormalities in

elderly subjects. NeuroImage. 2014; 97:333–348. https://doi.org/10.1016/j.neuroimage.2014.04.018

10. Marquand AF, Rezek I, Buitelaar J, Beckmann CF. Understanding heterogeneity in clinical cohorts

using normative models: beyond case-control studies. Biological Psychiatry. 2016; 80(7):552–561.

https://doi.org/10.1016/j.biopsych.2015.12.023

11. Wolfers T, Beckmann CF, Hoogman M, Buitelaar JK, Franke B, Marquand AF. Individual differences v.

the average patient: mapping the heterogeneity in ADHD using normative models. Psychological Medi-

cine. 2020; 50(2):314–323. https://doi.org/10.1017/S0033291719000084

12. Wolfers T, Doan NT, Kaufmann T, Alnæs D, Moberget T, Agartz I, et al. Mapping the heterogeneous

phenotype of schizophrenia and bipolar disorder using normative models. JAMA Psychiatry. 2018;

75(11):1146–1155. https://doi.org/10.1001/jamapsychiatry.2018.2467 PMID: 30304337

13. Zabihi M, Oldehinkel M, Wolfers T, Frouin V, Goyard D, Loth E, et al. Dissecting the heterogeneous cor-

tical anatomy of autism spectrum disorder using normative models. Biological Psychiatry: Cognitive

Neuroscience and Neuroimaging. 2019; 4(6):567–578. https://doi.org/10.1016/j.bpsc.2018.11.013

PMID: 30799285

14. Rasmussen CE, Williams CKI. Gaussian processes for machine learning. MIT Press; 2006.

PLOS ONE The pitfalls of using Gaussian Process Regression for normative modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0252108 September 15, 2021 13 / 14

https://cdn.who.int/media/docs/default-source/child-growth/child-growth-standards/indicators/weight-for-age/boys-charts---weight-for-age-birth-to-2-years-(percentiles).pdf
https://cdn.who.int/media/docs/default-source/child-growth/child-growth-standards/indicators/weight-for-age/boys-charts---weight-for-age-birth-to-2-years-(percentiles).pdf
https://cdn.who.int/media/docs/default-source/child-growth/child-growth-standards/indicators/weight-for-age/boys-charts---weight-for-age-birth-to-2-years-(percentiles).pdf
https://en.wikipedia.org/w/index.php?title=Uncertainty_quantification&oldid=1015674163
https://doi.org/10.1016/j.jmp.2018.03.001
https://doi.org/10.1016/j.jmp.2018.03.001
https://doi.org/10.1101/gr.210286.116
https://doi.org/10.1101/gr.210286.116
https://doi.org/10.1093/biomet/ass068
https://doi.org/10.1007/s00466-019-01711-5
https://doi.org/10.1016/j.neuroimage.2014.04.018
https://doi.org/10.1016/j.biopsych.2015.12.023
https://doi.org/10.1017/S0033291719000084
https://doi.org/10.1001/jamapsychiatry.2018.2467
http://www.ncbi.nlm.nih.gov/pubmed/30304337
https://doi.org/10.1016/j.bpsc.2018.11.013
http://www.ncbi.nlm.nih.gov/pubmed/30799285
https://doi.org/10.1371/journal.pone.0252108


15. Do CB. Gaussian processes; 2008. Available from: http://cs229.stanford.edu/section/cs229-gaussian_

processes.pdf.

16. Mohri M, Rostamizadeh A, Talwalkar A. Foundations of machine learning. MIT press; 2018.

17. Shashua A. Introduction to machine learning: class notes 67577; 2009.

18. Duvenaud DK. Automatic model construction with Gaussian processes. Ph.D. Dissertation, University

of Cambridge; 2014. Available from: https://www.cs.toronto.edu/~duvenaud/thesis.pdf.
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