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Characterization of the 
remediation of chromium ion 
contamination with bentonite 
by terahertz time‑domain 
spectroscopy
Hang Cheng1,2, Hao‑chong Huang1*, Meng‑fan Yang1,2, Mei‑hui Yang1, He Yan1,2, 
Spozmai Panezai3, Zhi‑Yuan Zheng1*, Zhuo Zhang4 & Zi‑li Zhang1

Heavy metal pollution of agricultural and urban soils limits economic progress in the rapidly 
developing society. Terahertz technology is applied to detect heavy metal pollutants under existence 
of multiple pathways of their dissemination. In this study, terahertz time-domain spectroscopy 
(THz-TDS) is employed as an advanced probing technique in combination with traditional 
detecting methods to measure the adsorption ability of trivalent chromium ions on bentonite. The 
concentration of chromium ions and the weight of bentonite are known to influence on the adsorption 
capacity of the latter. It is tested here by both qualitative and quantitative measurements of two 
mentioned parameters. The adsorption process of chromium ions by bentonite is monitored using 
THz-TDS. The adsorptions signal from samples at 0.5 THz gradually increases with the increase 
of bentonite weight or chromium ion concentration. It would appear to indicate that terahertz 
could be used for quantitative detection of metal ions. Secondly, the ratios of results obtained 
by inductively coupled plasma mass spectrometry (ICP-MS) and the THz-TDS ones are stabilized 
at 0.105  ±  0.014 as the bentonite weight or chromium ion concentration increase. Such finding 
confirms that terahertz technology can be used for the quantitative detection of metal ions. Using the 
relationship between the ICP-MS test results and the THz-TDS ones, the amplitude value of bentonite 
is obtained to be 13.925 at the concentration of chromium ions of 0.05 mol/L, the mass of bentonite 
sample involved in adsorption of 1.5 g, and the detection frequency in THz-TDS measurements of 
0.5 THz. The adsorption coefficient of bentonite is calculated to be 1.44%. Increase of the chromium 
ion concentration to 0.2 mol/L, and the mass of bentonite involved in adsorption to 3 g leads to 
the increase of the amplitude corresponding to adsorbed chromium ions to about 19.463, and  the 
adsorption coefficient  to about 2.1%. Obtained results demonstrate that terahertz technology 
is promising to meet the ever-increasing requirements in mineral analyses for rapid detection of 
chemical contaminants and measurement of the adsorption efficiencies of materials.

Rapid industrialization has caused a large number of issues resulted from pollution, which must not be ignored. 
Environmental deterioration has become a national concern. In particular, heavy metals are among the con-
taminants that are the most widely discussed at the national and international levels. Pollution with heavy metals 
causes soil poisoning1. Many heavy-metal ions come from paper-making, alloy production, manufacturing and 
other industries2. Therefore, environmental legislation is gradually becoming more rigid3 and the detection of 
pollutants has become one of the mainstream research directions.

Chromium (Cr) is widely applied in industry, such as in tanning, electroplating, ore refining, wood pres-
ervation and pigmentation4,5, which inevitably results in the discharge of Cr-containing industrial effluents. 
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Chromium is considered as one of the top 20 contaminants in the Superfund priority list of hazardous sub-
stances for the past 15 years6. Due to the hazardous nature of Cr pollution, it is necessary to elaborate practical 
methods for the remediation of Cr-contaminated soil and water. Cr(III) is naturally present in the environment, 
whereas it is generally removed by tertiary treatment of wastewater or by advanced physical/chemical treat-
ments, which constitute the processes of filtration. Among numerous methods, the best-established one is the 
removal of heavy metals by adsorption7. Characterized by high metal binding capacities, low cost, varying pH 
range, easy operation, flexibility, and simple design, adsorption can be successfully implemented in the pollu-
tion management8. Based on the previous studies, lichen, Celtek clay, moss, red algae, olive leaves, vermiculite 
and amino acid residues are proposed to use as adsorbents. The biosorption of chromium ions by chemical ion 
exchange was observed for lichen9. Optimum biosorption conditions in terms of biomass dosage, contact time 
and temperature were determined. Chromium ions were also trapped by physical adsorption on Celtek clay10. 
At this, the adsorbent dosage, shaking time and temperature affected the sorption results. The biosorption of 
Cd(II) and Cr(III) on moss (Hylocomium splendens) took place by chemical ion exchange11. Similar biosorption 
processes of chromium were observed for red algae (Ceramium virgatum) and olive leaf powder12,13. Unlike moss, 
the adsorption on vermiculite was essentially physical14. Amino acid residues are unique among all the materials 
for heavy metal trapping. In particular, they absorb Cr(III) without being damaged as organic materials15. All of 
the substances described above followed well pseudo-second-order adsorption kinetics.

Bentonite, which is one of the main components of soil, is often used as the experimental object in the 
study of heavy metal adsorption. It is a traditional low-cost efficient adsorbent, which has a high potential for 
application in removing heavy metals from wastewater due to its abundance, chemical and mechanical stability, 
high adsorption capability and unique structural properties16,17. Bentonite is a natural mineral with a layered 
hydrated aluminosilicate structure18,19. It contains montmorillonite, which is a swollen clay mineral with a 2:1 
sheet structure, different from kaolinite of clay minerals. Montmorillonite has good ion exchange properties20.

Modified-bentonite family substances demonstrate stronger adsorption as compared to that of already dis-
cussed materials. Chemical and physical modification of bentonite can be done by various methods. Bentonite 
(BNT)–Gum Arabic (GA) composite excellently removes Th(IV) ions from aqueous media, and the adsorption 
mechanism fits perfectly to the pseudo-second-order (PSO) model21. Bentonite was also modified by ethylene 
diamine (EDA)-trimesoyl chloride (TMC) polymer to create a novel adsorbent for efficient removal of rhodamine 
B dye (RB) from wastewater. The adsorption process by this adsorbent also follows the pseudo-second-order 
kinetic model22.

The reasons to use bentonite as natural adsorbent can be explained as follows. First, cations such as K, Cu, 
Mg, Na, etc. are mainly found in montmorillonite inter-layers23. These cations and crystal structures are unstable, 
which leads to ion-exchange reactions24. Second, high-valence metal cations are easier attracted to clay particles 
than monovalent ones, which is a suitable reason to use chromium ions for experiments. Third, montmoril-
lonite attracts more Cr(III) ions than kaolin25. Finally, a significant role in the absorption by bentonite is played 
by cation exchange reactions26 and sponge structure of this material27. The temperature has an influence on the 
adsorption by bentonite, namely the adsorption capacity decreases with the increase of temperature due to the 
spontaneous and exothermic nature of adsorption process28.

Next, chromium ions were combined with bentonite, where the former were used as adsorbate and the lat-
ter as adsorbent, respectively. We characterized pre- and post-adsorption states of adsorbent by using terahertz 
techniques. A detailed mechanism of the adsorption of trivalent chromium on the prepared adsorbent was 
explained based on the obtained results of adsorption investigations.

Various methods for detecting heavy metal ions have emerged in recent years29. The commonly used tech-
niques are X-ray diffraction (XRD)30, X-ray fluorescence spectrometry31,32, surface enhanced Raman scattering 
(SERS) and Raman techniques33, infrared spectroscopy34, reflection spectroscopy, etc. However, all these meth-
ods have a number of drawbacks. In particular, they are more expensive and time-consuming as compared to 
terahertz technology. The measurement process using the latter technology is very easy and does not require the 
addition of highly expensive reagents or creation of complex measurement conditions. Moreover, these methods 
are available only in high-end laboratories. Furthermore, sample preparation also requires much effort. Therefore, 
use of terahertz time-domain spectroscopy is a suitable alternative to overcome these shortcomings.

Terahertz waves are usually defined as far-infrared electromagnetic radiation35 with frequencies in the range 
of 0.1 to 10 THz36–38 corresponding to the wavelengths between 30 µm and 3 mm. They belong to a specific 
wavelength band between micro- and infrared waves. Due to the specificity of the electromagnetic spectrum of 
terahertz waves, their interaction with materials has unique physical properties. Terahertz technology is widely 
used for safety applications39 as well as for qualitative and quantitative detection of drugs, solutions, and char-
acterization of material quality40,41. Terahertz technology has many advantages as compared to other medical 
diagnosis methods42. Terahertz radiation does not cause ionization in biological tissues due to very low photon 
energy43. Terahertz technology can be used for imaging spatial distribution and penetration of drug applica-
tion sites44. This technology has been also applied to detect agricultural pollution45. Terahertz techniques offer 
significant advantages for qualitative and quantitative studies of heavy metal ions in soil contaminants because 
of the complex structure of soil and its unique absorption properties for terahertz waves46–48.

Results
Terahertz time‑domain spectroscopy.  Terahertz time-domain spectra (Fig. 1a) of the bentonite sam-
ples (CH-1 and CH-14) were obtained by terahertz measurements at the same weight values. Figure 1b,c are 
derived from Fig. 1a using the principle of partial algorithm. In particular, Fig. 1b shows phase diagrams for two 
different equal-quality sets of samples, which entirely overlap. Figure 1c shows that the amplitude charts for two 
groups of the original bentonite samples of equal quality obtained from terahertz measurements coincide. These 
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Figure 1.   Results of terahertz measurements on raw bentonite samples. Terahertz time-domain spectra (a). 
Phase diagrams for two sets of raw bentonite samples (b). Frequency-domain spectra (c). The experiments were 
carried out at the temperature of 293.15–298.15 K, the pressure of one atmosphere and the humidity of air inside 
the setup < 3.5%.
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Figure 2.   Results of terahertz measurements on bentonite samples. THz-TDS diagrams (a). THz-TDS phase 
diagrams obtained in the first test of all samples (b). THz-TDS phase diagrams obtained in the second test of all 
samples (c). Frequency-domain spectra obtained in the absorption by bentonite samples with different weights 
at different concentrations of trivalent chromium ions (d). The experiments were carried out at the temperature 
of 293.15–298.15 K, the pressure of one atmosphere and the humidity of air inside the setup < 3.5%.
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results demonstrate the similarity of the petrographic characteristics of the bentonite samples and confirm that 
terahertz measurements can be effectively used to identify the material and obtain its qualitative characteristics.

The bentonite sample CH-1 (Fig. 2a) was tested at the weight of 1.5, 2.0, 2.5, and 3.0 g. Terahertz measure-
ments were carried out after absorption of 0.5, 1.0 and 2.0 mol/L chromium ion solution. The results obtained 
after data processing are presented by the frequency-domain spectra (Fig. 2d) and the spectral phase diagrams 
(Fig. 2b,c). The phase diagrams for two measurements overlapped when the measurements were performed on 
the same type of bentonite before and after absorption. This indicates that the structure of bentonite does not 
change significantly due to the absorption of chromium ions.

However, terahertz analysis in the high- and low-frequency ranges is not reliable. The absorption coefficient of 
water, where the test samples are stored all the time, increases with the frequency of terahertz radiation. Therefore, 
the high-frequency signal is weaker when the terahertz radiation passes through thick samples. In its turn, the 

Figure 2.   (continued)



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11149  | https://doi.org/10.1038/s41598-022-15182-x

www.nature.com/scientificreports/

signal in the low-frequency range is mainly affected by the setup noise. Thus, a suitable range of frequencies for 
analysis should be carefully chosen.

The amplitude characteristics of the sample as a whole resulted from the absorption of chromium ions are 
clearly seen from the absorption map for the first THz-TDS test (Fig. 2d). The values of absorption coefficient at 
0.5, 1 and 1.5 THz were selected by analyzing the data presented in Fig. 2d to build Fig. 3a. Taking into account 
the relationship between the amplitude at certain weight of bentonite and the concentration of chromium ions, 
it is evident that the CH-2 sample point is on top and the CH-13 sample point is at the bottom of all the sample 

Figure 3.   Results of terahertz absorption measurements on bentonite samples at different frequencies. Diagram 
of absorption relationship at the frequency of 0.5, 1, and 1.5 THz (a). Absorption coefficient versus bentonite 
weight and chromium ion concentration at the frequency of 0.5 THz (b). The experiments were carried out 
at the temperature of 293.15–298.15 K, the pressure of one atmosphere and the humidity of air inside the 
setup < 3.5%.
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points. The relationship between the amplitude values and the values of absorption coefficient presumably exists 
(Eqs. (1) and (2). Therefore, we inferred the amplitude values as a function of the absorption values.

Figure 3a shows the dependence of absorption coefficient on the weight of bentonite sample and the con-
centration of chromium ions in the solution. The general trend is that the absorption coefficients measured at 
all the frequencies decrease in the direction of low chromium ion concentrations and low bentonite weights. 
The absorption rate increases with the weight of bentonite and the concentration of solution. Moreover, there is 
a significant difference between the values of absorption coefficient corresponding to different terahertz wave 
frequencies and the same concentrations of chromium ions and bentonite weights. Observed phenomena sup-
port the suitability of the quantitative detection of substances by terahertz measurements.

The rate of absorption increased with the increase of chromium ion concentration and weight of bentonite 
sample. The value of absorption coefficient at 0.5 THz was calculated by Eqs. (1) and (2) as shown in Fig. 3b. 
The values of absorption coefficients obtained in the THz-TDS tests for the samples from CH-02 to CH-13 were 
as follows: 13.925, 15.620, 16.518, 16.277, 15.670, 15.358, 17.178, 18.215, 16.088, 16.416, 17.557, and 19.463. 
Slope 1, slope 2 and slope 3 were obtained by linear regression fitting without maintaining strict accuracy using 
generalized estimating equations. These slopes refer to the ones of the rate of changing absorption coefficient 
obtained at the increase of the weight of bentonite sample (1.5–3 g) at the concentrations of chromium ions of 
0.05, 0.1 and 0.2 mol/L, respectively. They are equal to 0.795, 0.946 and 1.127, respectively, which are positive 
values. It is evident that the absorption coefficient increases with the increase of bentonite weight at fixed values 
of initial chromium ion concentration. Furthermore, the absorption coefficient shows a significant increase with 
the increase of chromium ion concentration at fixed values of the weight of bentonite. Therefore, the absorp-
tion process on bentonite has a positive feedback characteristic, so that the absorption efficiency is improved 
with the increase of bentonite weight. Such characteristic is caused by that the absorption of chromium ions by 
montmorillonite.

We calculated the dependence of the slope of absorption coefficient on the serial number of bentonite sam-
ples. Increasing from linear regression fit using generalized estimating equations and the Slope is 0.301. Slope 
refer to the ones of the rate of changing absorption coefficient obtained with the increase of the serial numbers 
of samples. The serial numbers of samples corresponded to numbered sections 2 to 13, i. e., the serial number of 
CH-02 sample was 2 etc. It can be concluded that the value of absorption coefficient increases with the increase 
of the weight of bentonite sample and the concentration of chromium ions and also that terahertz can be used 
for quantitative analysis within a scalar.

Spectrophotometry.  Results of spectrophotometry show that the absorbance linearly depends on the 
concentration of chromium ions in the solution (Fig.  4a). The solution concentration is obtained when the 
adsorption process is completed and the solution is centrifuged. The absorbance of the solution after absorption 
drops linearly with the increase of the amount of bentonite in it. This linear dependence is caused by the inverse 
relationship between the solution and bentonite absorption.

Initially, the concentration of chromium ions was constant and had the values of 0.05 mol/L, 0.1 mol/L, and 
0.2 mol/L. The linear dependence of absorbance on the solution concentration was analyzed according to the 
Beer–Lambert law. The slope of the equation in Fig. 4a range from 11.537 to 12.781 (slope ± SD, 12.159 ± 0.622), 
and the y-intercept ± SD of is 0.122 ± 0.072. The linear fit of the absorbance of standard sample versus chromium 
ion concentration was excellent with the goodness of fit index equal to 0.997.

The results of analysis for constant weight of bentonite are shown in Fig. 4b. The values of absorbance for the 
samples from CH-02 to CH-13 presented in this figure are as follows: 0.666, 0.627, 0.587, 0.545, 1.398, 1.581, 
1.482, 1.377, 2.515, 2.523, 2.450, and 2.523. Slope 1, slope 2, and slope 3 (they are not indicated in the figure) 
were generated by linear regression fitting without maintaining strict accuracy using generalized estimating 
equations. Slopes 1, 2 and 3 refer to the ones of the absorption coefficient obtained at the increase of bentonite 
weight (1.5–3 g) at the concentrations of chromium ions of 0.05, 0.1 and 0.2 mol/L, respectively. These slopes 
are equal to − 0.365, − 2.732 and 0.119, respectively. The fluctuation of the value of slope 3 is around 2.500. 
Therefore, this slope is not used for the calculations due to the limitation of the maximum measurement range 
of spectrophotometer. Both slope 1 and 2 are negative. It is evident that the absorbance linearly depends on 
the weight of bentonite at constant solution concentration. On the other hand, the serial numbers of samples 
gradually increase, which means that the absorbance linearly changes with the chromium ion concentration.

Because of these two relationships that two values represented by slope 1 and slope 2, absorbance is a binary 
function of the concentration of trivalent chromium ions and the weight of bentonite. The relationship between 
the absorbance and the chromium ion concentration is expressed by the Beer–Lambert law. The absorbance of 
solution is also a function of its concentration, which means that the absorbance of a solution is a function of the 
absorption of bentonite. As a result, the latter is a binary function of the concentration of trivalent chromium 
ions and the weight of bentonite. The adsorption process obeys a quasi-second-order kinetic model.

XRD tests.  Diffraction of X-rays on crystals enables to register X-ray diffraction spectra. Analysis of such 
spectra provides the information about the crystal material. The XRD diffractogram is shown in Fig. 5. It can 
be seen from this figure that this curve remains unchanged after the adsorption process. CH-01 was a refer-
ence bentonite sample, while the samples from CH-02 to CH-13 were subjected to XRD measurements after 
the dynamic adsoption experiment. No change of intensity of from bentonite samples CH-01 to CH-13 was 
observed at the diffraction angle 2θ = 21.984°. This apparently demonstrates that the inter-layer structure of ben-
tonite was preserved during the adsorption process. In particular, the diffraction angle for SiO2, being the main 
component of bentonite clay structure, is 2θ = 21.984°. The XRD results are compatible therefore with the results 
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obtained in terahertz measurements and confirm that the structure of bentonite does not significantly change 
due to the adsoption of chromium ions.

XRD can be also used to determine the values of lattice parameters of materials and to study structural 
changes in a semi-quantitative manner. The diffraction peaks at 27.681° ((110) plane) and 42.717° ((210) plane) 
are the main diffraction peaks of CrOOH. The adsorption of chromium ions is known to occur, but the overall 
adsorption is modest. It is also worth to note that the amount of adsorbed substance cannot be reliably quantified 
due to the semi-quantitative results provided by XRD. Estimation of the concentration of a substance from XRD 
results is based on the RIR or K of the card. Hence, the estimated values can contain great errors. Usually, the 
error of the estimation of concentration based on XRD results is around 10%. This is the reason for our inability 
to perform precise quantification by using XRD method.

Figure 4.   Diagram of the relationship between the absorbance of standard sample and chromium ion 
concentration (a). Yellow rectangles represents the sample and red straight line is the standard curve. Fitting 
equation and its parameters are provided in the Figure. Diagram of the relation between the absorbance, 
the chromium ion concentration and the weight of bentonite (b). Red spheres correspond to the values for 
absorbance of different samples. The experiments were carried out at the temperature of 293.15–298.15 K and 
the pressure of one atmosphere.
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ICP‑MS tests.  Results of the ICP-MS analysis of samples after adsorption are shown in Fig. 6. The residual 
concentrations of chromate ions in post-absorption samples from CH-02 to CH-13 presented in Fig. 6 are as 
follows: 1.436, 1.328, 1.490, 1.579, 1.736, 1.674, 1.732, 1.742, 2.179, 2.090, 1.572, and 2.165%. The absorption 
values of the ICP-MS tests are the adsorption efficiencies of bentonite. Slope was generated by linear regression 
fitting without maintaining strict accuracy using generalized estimating equations. The slope refer to the ones 
of the rate of changing adsorption coefficient obtained at the increase of serial numbers of samples. The adsorp-
tion coefficient increased with the increase of the serial numbers of bentonite samples and the slope amounted 
to 0.061.The slope is a positive value. The intensity of signal corresponding to chromium ions retained in ben-
tonite after adsorption increased significantly with the increase of chromium ion concentration (Fig. 6). This 
means that increase of the concentration of chromium ions due to adsorption leads to the increase of bentonite 
absorption capability. The concentration of solution decreased because bentonite adsorbed trivalent chromium 
ions from it. The ICP-MS data showed roughly the opposite trend to the one obtained based on the measured 
spectrophotometry data for solution.

The ICP-MS results were identical to the results of terahertz measurements, demonstrating that the latter may 
be used for quantitative sample analysis. Output data from the THz-TDS analysis were normalized to the ICP-
MS values for the control samples. The overall adsorption efficiency of bentonite calculated in this experiment 

Figure 5.   XRD diffractogram of bentonite with adsorbed chromium ions. Different colors of curves correspond 
to different samples. The wave peaks and troughs correspond to different diffraction angles. The experiments 
were carried out at the temperature of 293.15–298.15 K and the pressure of one atmosphere.

Figure 6.   Distribution of the concentration of chromium ions in the samples after absorption. Red spheres 
correspond to different samples. The experiments were carried out at the temperature of 293.15–298.15 K and 
the pressure of one atmosphere.
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was around 1%. The efficiency of adsorption raised up to around 2.1% with the increase of bentonite mass or 
chromium ion concentration.

Both ICP-MS and terahertz tests showed absorption of chromium ions by bentonite, which is influenced by 
the concentration of chromium ions and the weight of the bentonite with linear relation. The absorption efficiency 
improves with the increase of the weight of bentonite and the concentration of chromium ions.

Discussion
In this study, adsorption capacity of bentonite is characterized by the results of terahertz absorption measure-
ments. It is quite evident that this method offers a means for detecting the concentrations of heavy metal pol-
lutants. The THz-TDS results were further validated using spectrophotometry, XRD, and ICP-MS. In our study, 
THz-TDS served as a method for qualitative and semi-quantitative analysis of materials. THz-TDS is holistic, 
safe, and straightforward. The most prominent is that the permselectivity of THz-TDS has an important influence 
on its results. THz-TDS shows a high degree of differentiation of non-metallic and non-polar substances due to 
accurate identification of molecular and chemical bonds. This makes it different from the ICP-MS method, which 
is superior in atoms. Hence, THz-TDS is a better choice for qualitative and semi-quantitative testing of non-
metallic and non-polar substances as compared to ICP-MS when the accuracy requirements are not stringent.

The terahertz amplitude of bentonite has a maximum at the frequencies less than 0.5 THz. It was also observed 
that the character of the increase of adsorption rate can be changed by tuning the weight of bentonite and chro-
mium concentration. The reliability of THz-TDS measurements was assessed by dividing the THz-TDS results 
by the corresponding ICP-MS ones. Obtained ratios for the samples from CH-02 to CH-13 are as follows: 0.103, 
0.085, 0.090, 0.097, 0.111, 0.109, 0.101, 0.096, 0.135, 0.127, 0.090, and 0.111. The estimated values were obtained 
by linear regression fitting without maintaining strict accuracy using generalized estimating equations and the 
slope value is 0.0018. We supposed that the relation between the THz-TDS results and the ICP-MS ones was the 
constant-coefficient equation at too small values of slope. This points to that terahertz technique may be applied 
for quantitative analysis of materials but requires a reference standard for this. This issue will be considered in 
our future studies.

Finally, using THz-TDS, we made a quantitative study of the sorption of chromium ions from solutions of 
different concentrations by bentonite samples of different weights. Based on the relationship between the ICP-
MS test results and the THz-TDS ones, we calculated the adsorption coefficient of bentonite to be 1.44% at the 
concentration of chromium ions of 0.05 mol/L and the weight of bentonite sample involved in the adsorption 
of 1.5 g. The adsorption rate of chromium ions by bentonite significantly increased and the value of adsorption 
coefficient could reach about 2.1% with the increase of chromium ion concentration and the mass of bentonite 
involved in the absorption.

In this work, terahertz time-domain spectroscopy was used to qualitatively and semi-quantitatively charac-
terize adsorption of trivalent chromium ions from solutions by bentonite. The advantages of THz-TDS are low 
energy as well as non-destructive, fast and damage-free measurement process. Using the proposed method, the 
relationship between the adsorption coefficient, concentration of chromium ion solutions and bentonite weight 
were successfully measured and characterized. Besides, we calculated the efficiency of the adsorption of trivalent 
chromium ions by bentonite. The terahertz technology may be considered promising to meet the ever-increasing 
requirements in mineral analyses for rapid detection of chemical contaminants.

Methods
Principle.  Spectrophotometry.  Chemical substances absorb or reflect light in specific wavelength ranges. In 
a spectrophotometer, light passes through the sample under study. The intensity of transmitted light is measured 
to estimate the intensity of the light absorbed by a substance to analyze its chemical composition or concentra-
tion of known elements49. Transition of electrons takes place between different levels depending on the wave-
length of light passing through the material. Since different wavelengths of light mean different photon energies, 
the light absorption rate is wavelength-dependent.

The absorption wavelength of 600 nm was used to determine the presence of chromium ions by a 617 
ultraviolet spectrophotometer (722S, Shanghai Precision Scientific Instrument Co., Ltd, Shanghai, China). The 
spectrophotometer was pre-heated for 30 min before the measurements and its wavelength was adjusted to 600 
nm. Containers for spectrophotometer cuvettes were triple rinses with chromium ionic liquids with the con-
centrations of 0.025, 0.05, 0.1 and 0.2 mol/L. After this, chromium ionic liquids were pipetted into the cuvettes.

The excess solution around the cuvettes was wiped off with absorbent paper. The cuvettes were placed into 
the test tank, and the sample chamber was covered. The performance of measurement device is correct if 100.0 
is displayed when the transmittance button 100% is pressed after closing the cover and 0 is displayed if the 0 
button is pressed after opening the cover. Then the device cover was open and the instrument changed to the 
patterns of absorbance. At this, 0.00 was displayed on the screen. The cuvette was placed in the light pathway 
by pulling a control lever. The measurement data, namely the absorbance of solution in the cuvette No. 1, were 
recorded on data sheets. This sequence of operations was repeated four times for each sample in order to obtain 
mean values. A total number of 64 measurements were carried out in this experiment.

The spectrophotometer can only perform measurements on solutions. Therefore, obtained measurement 
results refer to a liquid environment. On the other hand, the results of THz-TDS are obtained for solids. In this 
respect, spectrophotometry enables to obtain a side view of the terahertz measurement results and to provide a 
more comprehensive explanation of the process of heavy metal adsorption by bentonite.
Terahertz time‑domain spectroscopy.  A transmission THz-TDS system was used in this study. This system con-
sists of a femtosecond laser, a photoconductive antenna that generates terahertz radiation, a detection system 
and a time-delay control system. The schematic view of the experimental setup is shown in Fig. 7.
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Femtosecond laser light was generated by a laser diode driven by a femtosecond laser (green line in Fig. 7). 
This light was divided by a beam splitter into two beams. One beam acted as a probe light (yellow line), and 
the other one (purple line) was focused on the GaAs photoconductive antenna50,51 as a pump light to generate 
terahertz pulses52. Generation of terahertz radiation is based on photoconductivity. This is a resonant process in 
which a femtosecond optical pulse is absorbed by GaAs through interband transitions with generation of free 
charge carriers. These carriers are accelerated either by an externally applied voltage or by a built-in electric field 
in the depletion or accumulation region of the semiconductor. A transient current is generated in this way, which 
induces emission of terahertz electromagnetic radiation.

Parabolic mirrors (PAM1 and PAM2) were used to focus the beam on the sample under study. Terahertz beam 
passing through the sample is directed toward the detector by PAM3 and PAM4. Both the terahertz pulses and 
the probe light beam pass through the ZnTe electro-optical crystal. The electric field of terahertz waves causes 
an electro-optical effect in the electro-optical crystal changing its refractive index. In its turn, change of refrac-
tive index can induce a change of the polarization state of linearly polarized probe light. The optical signal is 
photoelectrically converted to the electrical one. This beam is split by a Wollaston prism and received by a bal-
anced photodiode. A critical factor of the THz-TDS system is the coupling between the emitter and the detector. 
Lenses made of silicon (Si)53 or other high-index materials are often used in THz-TDS systems to ensure high 
efficiency of such coupling. Moreover, parabolic mirrors are used to guide terahertz radiation in free space from 
the emitter to the detector. A system consisting of two pairs of parabolic mirrors arranged to have the emitter, 
detector and the midpoint in confocal planes, is often used in terahertz imaging and optical pump-THz probe 
systems. To reduce the absorption of terahertz radiation by water vapor, spectrometer is often purged with dry 
air or nitrogen gas54.

During the experiments, THz-TDS setup obtains a time-domain signal by detecting the sample or a reference 
signal in the absence of sample in the setup. Fourier transformations are used to convert the time-domain signal 
into amplitude and phase of the sample in the frequency domain. By comparing the amplitude and the phase of 
the signal from the sample and the reference one, the refractive index and absorption coefficient are calculated 
by the following expressions:

where c is the speed of light, φ is the bit-phase difference between the signal from the sample and the reference 
one, d is the sample thickness, ω is the frequency, k is the wave vector, and A is the amplitude, respectively.

To measure terahertz signal, the THz-TDS system was used in the reflection mode. GaAs photoconductive 
antennas were driven by a femtosecond fiber laser to generate and detect terahertz pulses. The spectral range 
was from 0.1 to 3.5 THz. The spectral resolution of the terahertz comb spectroscopy system was set to 1 GHz to 
match it to the pressure-induced broadening of absorption linewidth with a temporal resolution of less than 1 
ps. The infrared femtosecond laser operated at the wavelength of 800 nm. Requisite electric field was achieved 
with ultrashort pulses of the width of less than 100 fs.

(1)n =
cϕ

2πdω + 1

(2)α =
4πkω

c
=

2

d
× ln

[

4n

A(n+ 1)2

]

Figure 7.   Schematic diagram of the transmission THz-TDS system. Incident and transmitted terahertz waves 
are shown with blue lines.
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The THz-TDS device used in this study was Terahertz Air Biased Coherent Detection (CIP-ABCD, Daheng 
New Epoch Technology, Inc.). The measurements were carried out after completion of adsorption process. All 
samples were prepared in powdered form with a fixed weight of 0.2020 g by mixing with polytetrafluoroethylene 
(PTFE) at a mass ratio of PTFE to bentonite of 3:7. The pooled samples of about 0.2020 g were weighed after 
stirring for 20 min, pressed for two minutes at 4 mpa and then tested by THz-TDS.

Sample testing started only after the air humidity dropped below 3.5%. The test was repeated two times for 
each sample in order to obtain mean values. A total number of 42 tests were performed in the terahertz time-
domain spectroscopy experiment involving 12 groups of samples after the adsorption process and 2 groups of 
reference samples.

X‑ray diffraction.  X-ray diffraction is a powerful tool for detection of the crystallinity of materials under study. 
In this work, XRD was used to analyze the amorphous versus the crystalline structure of our samples. Moreover, 
the diffraction spectra also enable to reveal the differences in the elemental composition of samples.

The intensity of diffraction (I) and the spacing between the lattice planes in the crystal (d) are two main 
characteristics of an X-ray diffraction spectrum. I refers to the type, number, and positions of diffraction peaks, 
while d is a key characteristic of crystal cells that describes the cell size and shape. XRD pattern of a crystal 
is unique in terms of interlayer spacing and diffraction intensity. Therefore, XRD is an excellent technique to 
identify substances. Comparison of XRD spectra obtained in the experiment with the standard data provided by 
the Joint Committee on Powder Diffraction Standards (JCPDS) enables to retrieve the substance composition.

The XRD device used in this study was D8 discover XRD. 13 groups of bentonite samples were tested using 
X-ray diffraction, each group being tested twice. The XRD analysis aimed to determine structural changes 
resulted from the adsorption. Moreover, it can be used as a standard method to validate the results of the terahertz 
measurements of bentonite structure.

Inductively coupled plasma mass spectrometry (ICP‑MS).  Inductively coupled plasma mass spectrometry is 
an emergent technique for detection, characterization and quantification of nanoparticles. Inductively coupled 
plasma (ICP) is an ionization source, and it can create high-temperature plasma by an electromagnetic coil that 
applies high-power, higher frequency signals and push inert gas through the sample. The mixed gas of the sam-
ple and inert gas is pushed to keep the ionized body equilibrium and continual ionization after a succession of 
evaporation, decomposition, excitation, and ionization procedures in the core zone. High-temperature plasma 
primarily ionizes material producing positive monovalent ions and electrons. Ions in the plasma are separated 
and delivered to the mass spectrometer via the ICP-MS interface, where the receiver target receives them. The 
quality screening and analysis of mass spectrometer and detection of ions with varied nuclei to mass ratios make 
the associated ions recognized and determine their elemental strengths. The possibility of the detection of ele-
ments in both solutions and particles makes this method very promising in nanoscience research.

In this experiment, the ions of the samples were quantified using an inductively coupled plasma mass spec-
trometer (ICP-MS, Agilent 7500 cx). 13 groups of bentonite samples were tested using X-ray diffraction. One 
group was tested at a time. This enabled to carry out quantitative measurements of bentonite samples by ICP-MS 
with high accuracy. In our work, the ICP-MS and THz-TDS measurements were performed on solid samples. 
ICP-MS results confirmed the results of the terahertz measurements of chromium concentration, which provides 
a strong support of THz-TDS for quantitative detection of heavy metal ions.

Data processing methods.  Beer–Lambert law describes the relationship between the intensity of light absorbed 
by a substance at a particular wavelength, the concentration of absorbing substance and the thickness of its 
liquid layer55. In this study, the temperature, pressure, sheet thickness and other parameters were controlled to 
ensure proportionality of sample concentration to the ideal absorbance. We started to investigate the relation-
ship between the bentonite weight, chromium ion concentration and adsorption using the Beer–Lambert law.

Experimental workflow.  In this study, bentonite powder was prepared by grinding solid gray colored 
bentonite samples. The contents of aluminum trioxide (Al2O3) and silicon dioxide (SiO2) in the samples were 
measured by inductively coupled plasma optical emission spectroscopy (ICP-OES) (China University of Geo-
sciences (Beijing) Research Institute). The measured contents of these substances are presented in Fig. 8a. Na 
(2.84%), Ca (1.45%) and K (2.24%) elements were also detected. These elements are stable and not involved in 
reactions. The montmorillonite, which was the most abundant mineral in bentonite, mainly consisted of Al2O3 
and SiO2. Hence, the contents of the two mentioned compounds determined the grade of bentonite. The content 
of SiO2 dust was 66.29% and the content of Al2O3 dust was 11.93%. To avoid the influence of loss-on-ignition, 
the content of rocks was reconverted. The internal content of silica was found to be 75.98% and the content of 
alumina trioxide was 13.67%. The sum of these two numbers make 89.65%, which indicates that the samples 
were clay-like and could be used as the samples in this study.

40 mg sample weighed on automatic electronic balance was placed in a mixture of two acids (HNO3 + HF) 
to chemically pre-process the material. The trace elements present in this sample were determined using Agi-
lent 7500 plasma mass spectrometer. Standard solutions labelled as STD-1, STD-2 and STD-4, provided by the 
American Bureau of Standards Equipment Laboratory (ABSEL), were used as the external standard. Moreover, 
Rh was added as the internal standard for calibration. In our experiments, standard specimens such as AGV2, 
BHVO-2, and W-2 provided by the United States Geological Survey (USGS) as well as full-flow dissolved rock 
samples such as GSR-1 and GSR-3 provided by China Geological Testing Center (CGTC) were used as standard 
samples for comparative analysis.
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The content of chromium ions in the mineral samples was determined (Fig. 8b) to check their purity. The 
contents of other ions were also found to exclude the errors introduced by them. It was established that K, Mn, P 
and Zr were the most abundant elements among the total number of 19 inorganic trace elements found in ben-
tonite, and the content of Cr was 10.504 ug/g. The distribution of elements was close to the average distribution 
of elements in the upper part of the Earth’s crust. This indicates that the samples used in the experiment were 
natural bentonite. In principle, chromium ions filling each reservoir of bentonite do not react with other ions. 
Cr3+ binds to OH− of inter-layer H2O molecules in bentonite to form CrOOH, Cr(OH)3 and other compounds. 
The adsorption of chromium ions by bentonite took place according to the following reaction:

For sample preparation, 1.5, 2.0, 2.5 and 3.0 g of bentonite were placed in a shaker and shaken at a constant 
temperature of 302.15 K for 3 days with a minimum speed of 250 rpm/min. After that, the shaker was turned 
off and the samples were stored for 1 day. Finally, the samples were centrifuged for 10 min at 10,000 rpm/min. 
After centrifugation, the supernatant in the centrifuge tube was transferred to a new centrifuge tube. The ions 
on the surfaces of remaining solids were washed by deionized water in order to remove chromium ions adhering 

(3)Cr3+ +
(

Al2,Mg3
)

Si4O10OH2 · nH2O → CrOOH + Cr(OH)3 + · · ·

Figure 8.   Pie chart of the chemical composition of primitive bentonite samples (a). Blue, green and gray colors 
represent SiO2, loss-on-ignition (LOI) and Al2O3. Histogram of the content of trace elements in primitive 
bentonite samples (b). K and Ti have the highest contents. The experiments were carried out at the temperature 
of 293.15–298.15 K and the pressure of one atmosphere.
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to the solid surface after. The remaining solid samples were placed in an evaporation dish in an oven and dried 
at 331.15 K during 24 h. After being dried, the samples were grounded to about 200 mesh for subsequent study.

Then deionized water was added to bentonite to get adsorb the blank group. The synthesized bentonite was 
labelled as CH-1 and commercial bentonite was labelled as CH-14. The relationship between the serial number 
of sample and the weight of bentonite as well as the chromium ion concentration is shown in Fig. 9. It clearly 
seen from this figure that the serial number increases with the increase of bentonite weight and the concentra-
tion of chromium ions.

Analysis of solid samples.  After the separation of solid from liquid the solid surface was rinsed with a small 
amount of deionized water to wash off the residual solution and dried in an oven at a constant temperature of 
333.15 K for 2 days. After this, a solid powder of about 200 mesh was prepared by grinding. A portion of the sam-
ple was added to the XRD sample solution and left for one hour. It was finally tested using a Bruker D8 DISCO 
device. The sample was placed in the XRD sample bath and kept there during one hour. One part of the sample 
was subjected to ICP-MS measurements to determine the amount of trivalent chromium ions. The other part 
was mixed with PTFE at a ratio of 3:7 during 15 min. The 0.2 g portion of the sample was pressed at 4 Mpa for 
2 min to produce a test sample for THz-TDS. The results of XRD measurements were compared to the results 
obtained by THz-TDS.

Analysis of liquid samples.  Five milliliters of the solution were poured in the 50 ml cuvette with a pipette gun. 
The absorbance was measured at 600 nm using a 617 spectrophotometer to determine the concentration of chro-
mium ions. Finally, the relationship between the change of the concentration of adsorped ions, the bentonite 
content and the concentration of chromium ions configured was determined. The adsorption process of chro-
mium ions by bentonite can be better presented by solid-liquid comparison of the results obtained by THz-TDS, 
ICP-MS, XRD, and spectrophotometry.

Data availability
Data underlying the results presented in this paper are not publicly available at this time but may be obtained 
from the authors upon reasonable request.
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