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Abstract: Multiple myeloma (MM) is the second most common hematological malignancy. Despite
the huge therapeutic progress thanks to the introduction of novel therapies, MM remains an incurable
disease. Extensive research is currently ongoing to find new options. MicroRNAs (miRNAs) are
small, non-coding RNA molecules that regulate gene expression at a post-transcriptional level.
Aberrant expression of miRNAs in MM is common. Depending on their role in MM development,
miRNAs have been reported as oncogenes and tumor suppressors. It was demonstrated that specific
miRNA alterations using miRNA mimics or antagomirs can normalize the gene regulatory network
and signaling pathways in the microenvironment and MM cells. These properties make miRNAs
attractive targets in anti-myeloma therapy. However, only a few miRNA-based drugs have been
entered into clinical trials. In this review, we discuss the role of the miRNAs in the pathogenesis of
MM, their current status in preclinical/clinical trials, and the mechanisms by which miRNAs can
theoretically achieve therapeutic benefit in MM treatment.
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1. Introduction

Multiple myeloma (MM) is a malignancy of plasma cells that accounts for 1.8% of
all cancer cases [1]. Worldwide, an estimated 176,404 people were diagnosed with MM in
2020. MM is classically considered as a disease of older adults; the median age at diagnosis
is 70 years [2,3]. The disease can cause failure of the bone marrow, leading to anemia,
destructive bone lesions, kidney failure, immune disorders with recurrent infections, and
hypercalcemia. In recent years, the increase in the number of therapeutic options, such
as proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies, has
significantly changed the prognosis for MM, leading to an increased length of survival. A
5-year survival rate reported in the SEER database is estimated at 57.9% (2012–2018) [4].

The development of MM is controlled by both genetic and epigenetic mechanisms.
Genome instability is an early event in the development of the disease and a hallmark of
patients with monoclonal gammopathy of undefined significance (MGUS)—a precancerous
condition preceding MM. The IGH-mediated translocation and hyperdiploidy (trisomy)
are two distinct molecular pathways that initiate neoplastic trans-formation and are key
pathways to the pathogenesis. As the disease progresses, MM is characterized by increasing
and often extreme genetic abnormalities [5,6]. A number of epigenetic abnormalities have
also been noted in patients with MM, the importance of which is still under investigation.
The epigenetic effect is defined as changes in gene expression resulting from modification
of the chromatin structure without changes in the DNA sequence. Epigenetics includes
mechanisms such as DNA methylation, histone modifications: acetylation, methylation,
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phosphorylation, ubiquitination and sumoylation, and non-coding RNAs, i.e., microRNA
(miRNA), long non-coding RNA (lncRNA), small interfering RNA (siRNA), and RNA
interacting with piwi (piRNA) [7,8].

2. MicroRNA

MicroRNAs (miRNAs) are a class of short (about 22 nucleotides in length) non-coding
RNA fragments that regulate post-transcriptional gene expression. They are mostly tran-
scribed by RNA polymerase II (Pol II), which generates “hairpin” structure precursors
known as pri-miRNAs [9]. The pri-miRNAs are cleaved by Drosha, a specific double-
stranded RNA endoribonuclease, and a stem-loop structure of ~70 base pairs long (pre-
miRNAs) is produced [10,11]. Pre-miRNAs are actively transported by exportin 5 to the
cytoplasm where they are cleaved by another RNase III type endonuclease, Dicer1, to gen-
erate a ~20-nucleotide miRNA duplex. As a result, molecules without a loop connecting the
3′ and 5′ arms are formed, creating a double-stranded form—duplex miRNAs (miRNAs-3p
and miRNAs-5p). The mature miRNAs are selectively bound together with the Argonaute
AGO2 protein to the RNA-induced silencing complex (RISC), which plays a crucial role
in silencing the expression of specific genes in the process of RNA interference. By bind-
ing to the 3′-UTR region of the target mRNA, miRNAs cause translational repression or
destabilization of the mRNA. In the case of full complementarity with the 3′-UTR region,
the mRNA is cut. Other miRNAs have the ability to inhibit translation by binding to the
5′-UTR region or to the RNA region constituting the open reading frame [9,12].

Genes for miRNAs are often located at fragile sites on chromosomes [13]. A common
change in gene expression for miRNAs is observed in tumor cells, caused by, e.g., deletions,
amplifications, or translocations. These alterations lead to changes in the expression
of target genes. Depending on which genes they influence, miRNAs can function as
oncomirs-procarcinogenic or as suppressors-inhibiting oncogenes. Therefore, miRNAs can
be promising biomarkers in the diagnosis, prognosis, and treatment of cancer [14–16].

The disturbances in miRNA expression are closely related to MM development, and
miRNAs seem to be an attractive research area for new therapeutic targets in MM [17–19].

3. Oncogenic and Tumor Suppressor miRNAs in MM

So far, a number of miRNAs with oncogenic potential have been identified, the
overexpression of which is associated with the development or progression of MM. On the
other hand, many studies have observed decreased expression of miRNAs with suppressor
functions that act to inhibit oncogenes and reduce tumor growth. Functional studies have
elucidated, at least partially, the mechanisms by which selected molecules can promote
MM cell growth and expansion (Figure 1).

3.1. The Role of miRNAs in the Bone Marrow Microenvironment

Specific interactions between microenvironmental cells (in particular endothelial cells
and bone marrow stromal cells) and the tumor cell clone determine MM growth, prolifera-
tion, and expansion [20,21]. Recent discoveries in cancer biology have revealed that BMSC-
derived extracellular vesicles (EVs) are of key importance in communication [22,23]. EVs
contain proteins, lipids, DNA, messenger RNA, miRNA, and long non-coding RNAs that
are transported between selected cells [24–26]. miRNAs involved in the regulation of vascu-
lar development, reprogramming of fibroblasts and T lymphocytes have all been reported.

miR-10a is overexpressed in EV while intracellular expression in MM-BMSC is de-
creased, suggesting that miR-10a is actively released into the extracellular matrix. The
inhibition of EV release causes accumulation of intracellular miR-10a, inhibition of cell
proliferation and induction of apoptosis in MM-BMSC. Moreover, miR-10a derived from
MM-BMSCs transferred to MM cells via EV enhances their proliferation [27]. It has been
shown that a potential miR-10a target gene is EphA8, encoding the ephrin receptor. High
EphA4 expression promotes proliferation and drug resistance mediated by cellular adhesion
associated with activation of the AKT pathway [28]. EphA8 may be involved in MM progres-
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sion by regulating the expression of an axon guidance molecule, SEMA5A. SEMA5A was
also identified to be highly expressed in MM patients and led to their decreased survival
time [29].
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Overexpression of miR-27b-3p and miR-214-3p triggers proliferation and apoptosis
resistance in MM fibroblasts via the FBXW7 and PTEN/AKT/GSK3 pathways, respectively.
It has been proven that neoplastic plasmocytes, by releasing exosomes containing WWC2
protein, increase the expression of both miR-27b-3p and miR-214-3p in fibroblasts, which
causes their reprogramming and consequently accelerates the transformation of MGUS to
MM [30].

It has been shown that inhibition of miR-21 expression in naive T cells suppresses
production of IL-17, which is an essential cytokine promoting MM progression and osteol-
ysis through osteoclast activity. The main mechanism is the increase in the regulation of
STAT-1/-5a-5b and the impairment of the STAT3 signaling pathways [31].

It has been demonstrated that the expression of miR-15a and miR-16 is significantly
decreased in both MM cells and MM cell lines. Moreover, the expression of miR-15a/16 is
inversely correlated with the expression of the vascular endothelial growth factor (VEGF-
A). Ectopic overexpression of miR-15a/16 led to a decrease in the pro-angiogenic activity
of MM cells. Finally, transfection with lentivirus-miR-15a or lentivirus-miR-16 results in
significant inhibition of tumor growth and angiogenesis in mice [32].

It has been shown that miR-199a-5p leads to downregulation of several angiogenic
factors such as VEGF-A, fibroblast growth factor (FGF-b), hypoxia-induced factors (HIF-
1α), and IL-8. Furthermore, miR-199a-5p regulates MM spread processes. It has been
shown that miR-199a-5p inhibits tumorigenesis through weakening malignant plasma cells’
chemotaxis [33,34].

3.2. The Influence of miRNAs on the Proliferation and Growth Processes of MM Cells

The miR-17-92 cluster located on chromosome 13q31.3 includes miR-18a, miR-20a,
miR-92, miR-17, and miR-19a/b, and is activated by the proto-oncogene MYC and the
transcription factor BHLH (C-MYC). Increased expression of miR-17-92 has been observed
in various neoplasms [35]. It has also been shown that abnormally increased expression of
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the miR-17-92 cluster is involved in the malignant progression of MM [36]. The miR-17-92
cluster was upregulated in malignant MM cells as compared to normal plasmocytes [37].
Moreover, the miR-19a and miR-19b components reduced the expression of suppressor of
cytokine signaling 1 protein (SOCS1), thereby accelerating the proliferation of MM cells.
SOCS1 is a negative regulator of IL6-mediated signaling. It is suggested that decreased
SOCS1 expression may induce signal transducer and activator of transcription 3 (STAT3)
phosphorylation, ultimately resulting in unrestricted tumor cell growth. Moreover, it was
revealed that miR-19 targets the BCL2 gene and lowers the expression of the encoded
protein, resulting in decreased apoptosis and increased proliferation of malignant PCs [38].

miR-21 is overexpressed in most cancer types and acts as an oncogene to target
genes involved in proliferation, apoptosis, and metastasis. The effect of forced expression
of synthetic miR-21 molecules on MM cells was assessed. It has been found that miR-21
exerted MM growth-promoting activity. Overexpression of miR-21 decreased the expression
of PTEN, BTG2, and Rho-B mRNA. Furthermore, Western blot analysis showed that PTEN
protein levels were decreased in MM cells [39].

miR-221 is another known oncogenic miRNA. The overexpression of miR-221 has
been reported in many human cancers. The observed up-regulation of miR-221/222 in MM
suppresses the expression of suppressor genes, and its reduction causes the inhibition of
tumor cell growth both in vitro and in vivo. The canonic miR-221/222 targets include the
following pathways: PTEN, PUMA, p27Kip1, and p57Kip2 [40].

The miR-29 family, including miR-29a, miR-29b, and miR-29c, has an inhibitory effect
on tumor growth and is down-regulated in hematological neoplasms [41,42]. miR-29 is
a prototypical example of epi-miRNA by targeting epigenetic regulators including DNA
methyltransferases (DNMTs). MM discloses that the miR-29b target is DNMT, demethylat-
ing the SOCS1 gene and increasing its protein expression. Moreover, miR-29b can inhibit
the PI3K/AKT signaling pathway, the AKT phosphorylation process and the P1 Forkhead
box protein (FOXP1) pathway, thereby increasing the expression of apoptosis-promoting
proteins (including P53 and caspase-9) and accelerating proliferation [43]. Wang et al. noted
a significantly decreased expression of miR-29b in MM cell lines. MiR-29b downregulation
was closely correlated with the International System Staging (ISS) stage. Exogenous overex-
pression of miR-29b, on the other hand, inhibited MM cell proliferation, induced cell cycle
arrest, and induced apoptosis [44].

Downregulation of miR-26a is observed in MM patients compared to healthy volun-
teers. Hu et al. showed that induced overexpression of miR-26a reduces proliferation and
migration and induces apoptosis in MM cell lines, and the CD38 protein is a direct target of
miR-26a [45].

MM cell lines are characterized by decreased expression of miR-489. miR-489 acts as a
tumor suppressor gene, inhibiting the viability and proliferation of malignant plasma cells.
Additionally, miR-489 reduces glucose uptake and therefore ATP production. A potential
target of miR-489 is lactate dehydrogenase-A (LDHA) [46].

Downregulation of miR-30-5p is also a common pathogenetic event in MM. It has
been shown that this is the result of an interaction between MM cells and bone marrow
mesenchymal stromal cells (BMSCs), which in turn increases the expression of BCL9, a
transcriptional co-activator of the Wnt signaling pathway known to promote MM cell
proliferation, survival, migration, and drug resistance [47]. It has been shown that the
BMSCs of patients with MM are different in multiple respects to those of healthy patients
and that they contain a lower amount of miR-15a in particular, which has tumor suppressive
properties in MM cells and also in BMSCs [48]. Crosstalk between MM and BMSC cells
occurs via miR-146a, which allows MM-derived exosomes with high miR-146a expression
to be transferred into BMSCs, which then secrete cytokines and chemokines that sustain
and enhance MM cell migration [49].

Next-generation sequencing has led to better resolution of small RNA expression
and a study of bone marrow aspirates from 30 newly diagnosed MM patients using these
methods has revealed the presence of a wider expanse of miRNAs, including miRNA-offset
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RNAs (moRNAs) than was previously reported in MM. This resulted in the annotation of
17 new miRNAs as well as the observation of 74 moRNAs with differential expression of
moRNAs in MM subgroups [50].

3.3. The Role of miRNAs in the Mechanisms of Apoptosis and MM Cell Migration

The P53 protein plays a key role in regulating cell proliferation, mainly by inducing cell
cycle endpoint, apoptosis or activation of DNA repair systems [51]. It has been proposed
that miR-181a/b plays an important role in the regulation of P53. miR-181a/b has been
reported to be elevated in MGUS and MM tumor plasmocytes [36,52]. It has been shown
that miR-181a/b can negatively regulate P-300-CBP related factor (PCAF) expression,
antagonize the positive effect of PCAF on P53, and ultimately decrease P53 expression.
Additionally, miR-181a/b may act as a histone acetyltransferase to maintain P53 proteins at
low concentrations or partially inactivate them [36]. In addition, miR-125a-5p, miR-194-
2/192, and miR-215/194-1 are involved in the regulation of the p53 pathway in the course
of MM [53,54].

MGUS and MM overexpress miR-106b. Several studies have demonstrated that the
miR-106b/25 cluster is involved in cancer-related pro-survival/anti-apoptotic signaling
pathways, including, e.g., the mitogen-activated protein kinase (MAPK) pathway [55]. It
has been observed that the inhibition of miR-106b/25 leads to a suppression of the p38
MAPK expression and hence to a reduction in viability and induction of cell apoptosis [56].

miR-214-3p increases resistance to apoptosis in myeloma fibroblasts by targeting the
apoptotic pathways of FBXW7 and PTEN/AKT/GSK3 [30].

miR-19b and miR-20a are other oncomiRs upregulated in MM cells. miR-19b/20a
enhances plasma cell proliferation and migration as well as inhibits apoptosis. It has
been shown that transfection of miR-19b/20a lowered the concentration of PTEN protein.
Lentivirus-mediated delivery of miR-20a significantly accelerated tumor growth [57].

miR-27 is also overexpressed in MM and correlates with shorter overall survival. It
has been noted that it promotes MM growth by enhancing cell proliferation, migration,
and invasion through the Sprout 2 (SPRY2) homologue. Meanwhile, anti-miR-27 has the
opposite effect. The inhibitors of miR-27 exert an anti-tumor effect on MM cells [58].

On the other hand, miR-15a and miR-16-1 downregulation are observed in MM
cells. Both miRNAs were found to reduce MAPK signaling, AKT kinase, NF-κB-activator
MAP3KIP3, and S6 ribosomal protein. Interestingly, transfection of miR-15a/16-1 sup-
pressed growth and apoptosis in neoplastic plasmocytes [59].

miR-34a acts as a potent tumor suppressor and its expression is dysregulated and
downregulated in a variety of cancers, including MM. By targeting stemness factors such
as NOTCH, MYC, BCL-2, and CD44, miR-34a epigenetically negatively regulates cancer
stem cells [60]. In animal models, miR-34a analogs suppress MM growth by activating
apoptosis and inhibiting pro-survival signaling through the kinases CDK6, BCL2, and
NOTCH1. Moreover, miR-34a has been demonstrated to reduce plasmocytes’ proliferation
by inhibiting transforming growth interaction factor 2 (TGIF2) [61,62]. Decreased expres-
sion of miR-34a-5p in MM cell lines is associated with overexpression of mitochondrial
RNA processing endoribonuclease (RMRP), which enhances cell proliferation. In turn,
RMRP knockdown induces their apoptosis [63].

Suppressor functions are also displayed by miR-125a and miR-125b. MiR-125a reduces
MM cell viability and colony formation capacity. There is evidence of decreased expression
of miR-125a in MM cell lines. Ubiquitin specific peptidase 5 (USP5) was identified as a
target for miR-125a. USP5 enhances cellular deubiquitination and proteolysis. Wu et al.
reported that up-regulation of miR-125a and low expression of USP5 significantly inhibited
MM tumor growth in vivo [64]. It has been shown that miR-125b is downregulated in MM
patients by the tumor necrosis factor (TNF) and insulin-like growth factor (IGF-1) [65].
High expression of miR-125b inhibits tumor plasmocytes by inhibiting IRF4, which is
critical for MM cell survival. Interestingly, miR-125b has been demonstrated to increase
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miR-34a levels, which in turn inhibits the IL-6/STAT3/miR-34a receptor feedback loop.
The activation of these pathways results in MM cell death [66].

It has been reported that patients with MM show a constitutively low expression
of miR-33b. Upregulation of miR-33b reduces MM cell viability, migration, and colony
formation and causes increased apoptosis. PIM-1 kinase is a target for miR-33b, and it
blocks the binding between the BCL2 agonist (Bad) and Bcl2/1-xl to inhibit apoptosis [67].

miR-155 is another molecule with a potential suppressor function in patients with
MM. An oncogenic role for miR-155 was first reported in the context of Waldenstrom
Macroglobulinemia [68]. It is significantly reduced in MM cells. It has been shown that
miR-155 acts by inhibiting the proteasome, targeting the PSMβ5 subunit, and replacing
miR-155 has antiproliferative and pro-apoptotic effects in the MM cell line [69].

miR-29b is responsible for the reduction of the expression of genes involved in prolif-
eration and inhibition of apoptosis. Forced expression of miR-29b in MM cell lines inhibits
cell growth and triggers apoptosis in vitro. Moreover, the ability of miR-29b to induce
apoptosis in vivo was also demonstrated in an animal model of MM. miR-29b negatively
regulates the expression of the Sp1 transcription factor in MM cells [70].

It has been observed that the expression of miR-101-3p in MM cells decreased, while
the expression of survivin (BIRC5), a protein with an anti-apoptotic effect, was high. It has
been confirmed that miR-101-3p, via survivin, reduces the viability of malignant plasma
cells [71].

It has been demonstrated the potential of miR-137/197 as tumor suppressors is in-
volved in the regulation of MM cell apoptosis by targeting MCL-1. The expression of
miR-137/197 is significantly lower in MM cell lines and samples from MM patients com-
pared to normal plasmocytes. miR-137/197 transfection resulted in decreased expression
of the MCL-1 protein as well as induction of apoptosis, inhibition of viability, colony
formation, and migration of MM cells. MCL-1 has been identified as a direct target of
miR-137/197 [72].

Lists of selected clinically significant oncomirs and tumor suppressor miRNAs in MM
are presented at Tables 1 and 2.

Table 1. List of selected oncomirs in MM. ↑—increased expression, ↓—decreased expression.

miRNA Cell Processes Targets Reference

miR-10a ↑ proliferation
↓ apoptosis EphA8, SEMA5A [27–29]

miR-27b-3p
miR-214-3p

↑ proliferation
apoptosis resistance

FBXW7,
PTEN/AKT/GSK3 [30]

miR-21 ↓ T cells differentiation STAT-1/-5a-5b
STAT3 [31]

miR17-92 cluster ↑ proliferation
↓ apoptosis SOCS1, BCL2 [37,38]

miR-21 ↑ proliferation
↓ apoptosis PTEN, BTG2, Rho-B [39]

miR-221/222 ↑ proliferation
↓ apoptosis

p27Kip1, p57Kip2,
PTEN, PUMA [40]

miR-181a/b ↓ apoptosis PCAF, p53 [36,52]

miR-125a-5p
miR-194-2/192
miR-215/194-1

↓ apoptosis P53 [53,54]

miR-106b ↓ apoptosis MAPK [56]

miR-214-3p ↓ apoptosis PTEN/AKT/GSK3
FBXW7 [30]

miR-19b/20a ↓ migration
↓ proliferation PTEN [57]

miR-27 ↓ migration
↓ proliferation SPRY2 [58]
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Table 2. List of selected tumor suppressor miRNAs in MM. ↑—increased expression, ↓—decreased
expression.

miRNA Cell Processes Targets Reference

miR-15a/16
↓ tumor growth
↓ angiogenesis
↑ apoptosis

VEGF
MAPK, AKT, NF-κB-activator

MAP3KIP, S6 ribosomal protein
[32,59]

miR-199a-5p ↓ chemotaxis
↓ angiogenesis VEGF, HIF-1α, IL-8, FGF-b [33,34]

miR-29b ↑ apoptosis
↓ proliferation SOCS1, PI3K/AKT, FOXP1 [43,44]

miR-26a
↓ migration

↓ proliferation
↑ apoptosis

CD38 [45]

miR-489 ↓ proliferation
↓ viability LDHA [46]

miR-30-5p ↓ migration
↓ proliferation BCL9 [47]

miR-34a ↓ proliferation
↑ apoptosis NOTCH, MYC, BCL-2, CD44 [61–63]

miR-125a ↓ viability
↓ colony-forming ability USP5 [65]

miR-125b ↓ tumor growth IRF4 [66]

miR-33b

↓ viability
↓ migration

↓ colony-forming ability
↑ apoptosis

PIM-1 [67]

miR-155 ↓ proliferation
↑ apoptosis PSMβ5 [69]

miR-29b ↓ proliferation
↑ apoptosis Sp1 [70]

miR-101-3p ↓ viability BIRC5 [71]

miR-137/197

↓ viability
↓ migration

↓ colony-forming ability
↑ apoptosis

MCL-1 [72]

4. miRNAs as Prognostic and Predictive Biomarkers in MM

Perhaps the best clinical use of miRNAs in MM lies in the realm of prognostication.
Unfortunately, despite numerous studies demonstrating their value in estimating outcomes
in MM, their widespread adoption has not yet occurred. Mounting evidence points to
biomarker miRNAs as being a priority area for further research and validation.

From disease stage to drug resistance, miRNAs have been found to be predictive
of patient outcomes. In a comparison of serum exosomal miRNAs in healthy patients,
patients with smoldering MM, and patients with MM, distinct miRNA expression profiles
were found to occur. Serum exosome derived levels of miR-20a-5p, miR103a-3p, and
miR-4505 were different in healthy patients compared to those with smoldering MM or
MM. Levels of let-7c-5p, miR-185-5p, and miR-4741 differed in MM patients versus those
with smoldering MM and healthy patients [73]. Analysis of exosomal miRNA expression in
156 patients with MM compared with five healthy individuals found that lower expression
of let-7b or miR-18a independently predicted inferior PFS and OS and complemented
the mortality scoring tools of ISS and adverse cytogenics [74]. A study of 204 patients
examining the miR profile of patients before and after drug resistance to Bortezomib,
Thalidomide, and Lenalidomide found that downregulation of serum exosomal miR-16-5p,
miR-15a-5p, miR-20a-5p, and miR-17-5p was associated with Bortezomib resistance [75].
In a meta-analysis of studies looking at the prognostic role of miRNAs in MM, 10 studies
with a total number of 1214 patients were included and found that upregulated miR-92a
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and downregulated miR-16, miR-25, miR-15a, let-7e, and miR-19b were associated with
poor prognosis in MM [76]. The United Kingdom Medical Research Council declared that
based on the expression of just two miRNAs, miR-17 and miR-886-5p, MM patients could
be risk stratified into three groups which would predict their prognosis better than the
accepted gold standards of International Staging System/fluorescence hybridization and
gene expression profiles [77]. Our own group recently found that high serum expression of
miR-8074 was associated with a higher risk of progression-free survival shortening and a
higher risk of overall survival shortening [78].

A recent meta-analysis of studies including more than 600 MM patients identified
37 differentially expressed miRNAs (DEMs). They found a statistically significant correla-
tion between low expression of miR-30d-3p and reduced overall survival (OS) as well as
high expression of miR-16-2-3p and reduced OS and progression-free survival (PFS) [79]. A
2017 study looked at seven miRNA datasets from MM patients and examined the num-
ber of predicted target genes that DEMs were associated with. Four miRNAs, miR-19a,
miR-221, miR-25, and miR-223, were found to be associated with the highest number of
genes and to be highly conservative in their sequences. This was suggested to be indicative
of their role as prognostic or diagnostic biomarkers in MM [80]. A meta-analysis designed
to examine the prognostic value of miRNA expression levels in MM concluded that down-
regulation of miRs-15a, 16, 25, 744, and let-7e was predictive of decreased OS and also
that reduced PFS was predicted by reduced expression of miRs-15a, 16, 25, or increased
expression of miR-92a [76]. In contrast, urinary expression of miRs-134-5p, 6500-5p, 548q,
and 548y were found to be significantly reduced in MM patients in comparison to healthy
controls. This pattern was preserved between newly diagnosed and relapsed groups and
persisted in MM patients in remission. No significant prognostic data was demonstrated
from urinary miRNA expression levels [81]. miR-720 and miR-1246 have been shown to be
robust diagnostic biomarkers for MM and to be predictive of reduced PFS [82].

5. miRNA Based Therapies in MM

In light of the considerable impact of both oncomirs and tumor suppressor miRNAs
on the pathogenesis and disease course of MM, miRNA-based therapies offer a unique
approach from which to develop treatments for MM. Paracrine and endocrine effects of
miRNAs are possible in MM through their release from MM cells in exosomes [83,84].
Exosomes have been used as vehicles in the delivery of miRNAs for various cancers in
experimental settings [85]. Nanocarriers based on different synthetic and natural structures
have been developed as vectors for miRNAs. Lipid-based carriers may be more effective at
miRNA delivery if they include cholesterol or oleic acid in their formulations [86–88]. The
most commonly used synthetic cationic polymer-based carriers are polyethylenimines [89].
Naturally derived cationic miRNA delivery vehicles frequently employ chitosan due to its
established profile as a nanovector and its biocompatible and biodegradable properties [90].
Chitosan and PLGA have both been approved by regulatory bodies for use in humans and
miR-34a-loaded chitosan/PLGA nanoplexes demonstrated cytotoxic effects in myeloma
engrafted mice without any signs of toxicity [91]. Concerns over immunogenicity and the
persistence of nanovectors with high surface charges led to the exploration of nanogels as
an effective means of myeloma cell transfection with miR-34a [92].

Oncomirs may be targeted by means of miRNA sponges, which are RNA molecules
with a complimentary amino-acid sequence to sequester the target miRNA [93]. A practical
approach has been described for the construction of sophisticated miRNA sponges that
can target multiple different miRNAs [94]. Oncomir knockdown has been achieved at the
genetic level by means of technologies such as CRISPR/Cas9 and these methods may be
applied to MM [95,96]. Peptide nucleic acids and locked nucleic acids (LNAs) can also be
used to bind and decrease available oncomirs. Inhibition of miR-221 by means of an LNA
construct was an effective means of reversing Melphalan resistance in a mouse model of
MM [97]. In addition, miR-138 is a negative regulator of osteogenesis in MM and the effect
of its overexpression can be reversed by using LNA-modified anti-miR-138 oligonucleotides
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in vitro and in vivo [98]. Related technology has been used to effectively manipulate let-7
target genes, including MYC in a mouse model of MM with a significant observed survival
benefit and excellent putative applications outside of MM [99]. Clinical data on miRNA-
based therapies in MM remains elusive as the only approved trial for this paradigm was
halted early due to safety events in patients with other malignancies [100]. Preclinical areas
of interest include the reversal of drug resistance to Melphalan and Bortezomib [97,101].
Increased MM cell sensitivity to Dexamethasone and Dexamethasone in combination with
Doxorubicin and/or Bortezomib has also been demonstrated in preclinical settings by
means of miRNA-based therapies [102].

6. Conclusions

miRNAs have a broad application prospect in MM diagnosis and treatment. Con-
vincing studies have demonstrated that miRNA expression is dysregulated in MM, which
affects maintenance of proliferative signaling, avoiding growth inhibitors, resistance to
cell death, activation of invasion and induction of angiogenesis. Some miRNAs may be
involved in multiple cancer-related signaling pathways, while others may be related to
tumorigenesis by targeting oncogenes and tumor suppressor genes. Ongoing work in the
area of miRNAs in MM demonstrates their undervalued role as diagnostic and prognostic
biomarkers. Their role as therapeutics has been demonstrated preclinically and is best
understood as sensitizing agents in combination with approved drugs. Combining miRNA
therapeutics with chemotherapy may increase the anti-myeloma efficacy. More studies
should be conducted to understand the mechanism completely and improve miRNA-based
therapies in MM. Harnessing and disrupting the miRNA-based pathways in MM may be
sufficient to arrest or reverse the progression of MM in the future.
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