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Abstract: Despite initial responses to first-line treatment with platinum and taxane-based combina-
tion chemotherapy, most high-grade serous ovarian carcinoma (HGSOC) patients will relapse and
eventually develop a cisplatin-resistant fatal disease. Due to the lethality of this disease, there is an
urgent need to develop improved targeted therapies against HGSOC. Herein, we identified CASC10,
a long noncoding RNA upregulated in cisplatin-resistant ovarian cancer cells and ovarian cancer
patients. We performed RNA sequencing (RNA-seq) in total RNA isolated from the HGSOC cell
lines OVCAR3 and OV-90 and their cisplatin-resistant counterparts. Thousands of RNA transcripts
were differentially abundant in cisplatin-sensitive vs. cisplatin-resistant HGSOC cells. Further data
filtering unveiled CASC10 as one of the top RNA transcripts significantly increased in cisplatin-
resistant compared with cisplatin-sensitive cells. Thus, we focused our studies on CASC10, a gene not
previously studied in ovarian cancer. SiRNA-mediated CASC10 knockdown significantly reduced
cell proliferation and invasion; and sensitized cells to cisplatin treatment. SiRNA-mediated CASC10
knockdown also induced apoptosis, cell cycle arrest, and altered the expression of several CASC10
downstream effectors. Multiple injections of liposomal CASC10-siRNA reduced tumor growth and
metastasis in an ovarian cancer mouse model. Our results demonstrated that CASC10 levels mediate
the susceptibility of HGSOC cells to cisplatin treatment. Thus, combining siRNA-mediated CASC10
knockdown with cisplatin may represent a plausible therapeutic strategy against HGSOC.

Keywords: ovarian cancer; cisplatin resistance; RNA-seq; bioinformatics; long noncoding RNAs

1. Introduction

Ovarian cancer remains a significant cause of cancer-related deaths, with approxi-
mately 19,880 new cases and 12,810 deaths predicted for 2022 in the US alone [1]. Epithelial
ovarian carcinoma (EOC) is the most common ovarian cancer type representing 90% of
these malignancies [1]. High-grade serous ovarian cancer (HGSOC) represents 70% of
all EOCs [2]. The standard line of treatment for ovarian cancer usually consists of cy-
toreductive surgery combined with chemotherapy with platinum (i.e., cisplatin) and/or
taxane-based compounds [3]. Cisplatin forms adducts with the DNA, which causes the
inhibition of replication and transcription, and leads to cell-cycle arrest and apoptosis [4].
Cisplatin is chemically inert; however, it becomes activated once inside the cell. Water
molecules displace chloride atoms on the cisplatin molecule, and the hydrolyzed product
acts as a potent electrophile that can react with any nucleophile (i.e., sulfhydryl groups on
proteins and nitrogen donor atoms on nucleic acids) [5]. Specifically, cisplatin binds to the
N7 reactive center on purine residues and triggers deoxyribonucleic acid (DNA) damage,
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resulting in platinum-DNA adducts that compromise the integrity of the DNA and lead to
cell division impairment and activation of programmed cell death [6]. In addition, cisplatin
alters the mitochondrial membrane potential by inducing oxidative stress and preventing
calcium uptake due to a significant loss in protein-SH groups [7].

Initial response rates are 60–80%, but around 70% of HGSOC patients develop a
cisplatin-resistant-fatal disease [8]. Postulated mechanisms of cisplatin resistance include
decreased levels of receptors/channels that reduce the influx of cisplatin inside cells, in-
creased levels of proteins/channels that promote cisplatin efflux, increased intracellular
levels of certain sulfur-containing macromolecules that reduce the nuclear net cisplatin
concentration, overexpression of cellular scavenger and detoxification enzymes such as
GSH and MTs (glutathione and metallothionein), increased DNA repair process by overex-
pression of the nucleotide excision repair pathway-related proteins ERCC1 and XPF, and the
metabolic rewiring which confers growth advantages to particular cell populations [9–12].
Studies indicate that inactivation of intrinsic cell death pathways, activation of cell survival
pathways, and dysregulation of oncogenes, tumor suppressor genes, and noncoding RNAs
may also play a central role in cisplatin resistance of cancer cells [13–15]. Nevertheless, the
major contributing factors to cisplatin resistance in ovarian cancer cells have not been fully
identified.

To further understand the underlying mechanisms of cisplatin resistance in HGSOC
and therefore identify targets for therapeutic strategies, we characterized the transcriptome
of the HGSOC cell lines OV-90, OVCAR3, and their cisplatin-resistant counterparts. Dif-
ferentially abundant RNA transcripts were filtered using bioinformatics tools, the Kaplan-
Meier plotter cancer patient database, real-time PCR, and a siRNA screening. A total of
27 upregulated RNA transcripts were identified in cisplatin-resistant as compared with
cisplatin-sensitive cells. From this list, the non-previously studied long-noncoding RNA
(lncRNA) CASC10 was selected for further investigation. We studied the biological and
functional effects of siRNA-mediated CAS10 knockdown in cell survival, apoptosis, cell
cycle progression, and tumor growth using an ovarian cancer mouse model. Lastly, we
identified many downstream effectors following siRNA-mediated CASC10 knockdown in
HGSOC cells. Together, these data identified CASC10 as a potential therapeutic target for
cisplatin-resistant ovarian cancer treatment.

2. Results
2.1. Identification of Differentially Expressed Genes in Cisplatin-Sensitive versus
Cisplatin-Resistant HGSOC Cells

The concentration of cisplatin inhibiting 50% of cell growth (IC50) of the ovarian cancer
cell lines has been reported and summarized in Table S2 [16]. To identify critical genes
associated with cisplatin resistance, we performed RNA-seq in OV-90 and OVCAR3 and
their cisplatin-resistant counterparts OV-90CIS and OVCAR3CIS cells. A diagram of how
the RNA-seq data was processed is shown in Figure 1A. We identified 10,714 differentially
abundant RNA transcripts (DATs) in OV-90/OV-90CIS and 5328 in OVCAR-3/OVCAR3CIS
(Figure 1B). At the first stage of data filtering, we retained genes that were identified as
DATs in both pairs of cell lines (n = 5700). DATs identified in only one pair of cell lines
were removed. The second filter was introduced to remove those transcripts that showed
opposite expression patterns in both cell lines (i.e., upregulated in one pair of cell lines
and downregulated in the other pair of cells), which reduced the list to 3749 dysregulated
transcripts. Next, we performed a third filter based on the distributions of the base mean
intensity of the transcript and fold change. We ranked each transcript (Rank range: 2–8)
by adding the numbers corresponding to the quartile of the distribution where the value
of both the base mean intensity and fold change lie within the distribution (1–4 for each
distribution). For this analysis, we selected all transcripts with ranks ≥ 7, which reduced
the number of transcripts from 3749 to 414 (237 upregulated and 177 downregulated in both
cell pairs); see Table S3 for the list of the 414 transcripts. Volcano plots showed several tran-
scripts with significant fold changes among the cisplatin-resistant and cisplatin-sensitive
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cells (Figure 1C). To visualize molecular interactions between the deregulated transcripts,
the list with the 414 transcripts was subjected to Ingenuity Pathway Analysis (IPA), re-
sulting in 25 different networks (Table S4). The top network in the list includes genes
involved in anti-apoptotic pathways such as the growth arrest-specific 1 (GAS1), vascular
endothelial growth factor C (VEGFC), potassium sodium-activated channel subfamily T
member 2 (KCNT2), and mitogen-activated protein kinase 1 (MAPK1) (Figure 1D). The
second network included synaptotagmin like 2 (SYTL2), mitogen-activated protein kinase 1
(MAPK1 or ERK), ATP binding cassette subfamily A member 3 (ABCA3), and protein kinase
cGMP-dependent 1 (PRKG1), which are associated with molecule and vesicle trafficking,
downstream phosphorylation, and cGMP signaling (Figure 1E).

To select potential clinically relevant genes associated with the progression of ovarian
cancer, we interrogated the KM plotter searchable patient database. The KM plotter
includes data from “The Cancer Genome Atlas” (TCGA) data portal and other patient
databases for a total of 1656 ovarian cancer samples. We assessed the correlation between
the 414 genes and the Overall Survival (OS) and Progression-Free Survival (PFS). Using the
KM plotter database, 61 genes showed a significant (p < 0.05) difference in the OS and/or
PFS. Figure 2A shows the Kaplan-Meier curves for the top four relevant genes (CASC10,
PDLIM3, EMP1, and ATP11B) of the list. A strong correlation between the RNA expression
levels and the OS and the PFS was observed for the four genes shown in Figure 2(Aa–Ad).
The Kaplan-Meier curves for the other 57 genes are included in Figure S1. The differential
expression levels of the 61 genes were validated by real-time PCR. As shown in Table 1,
45 out of the 61 genes were validated by PCR, of which 28 were upregulated, and 17 were
downregulated in OVCAR3CIS when compared to its sensitive counterpart (Figure 2B).

We then performed an RNAi screening by transiently transfecting the OVCAR3CIS
cells with a pool of four specific siRNAs against each of the 27 genes, followed by colony
formation assays (Figure 2C). We observed more than 50% reductions in the number of
colonies for CASC10, ATP11B, EMP1, GAS1, SLC6A15, GALNT13, and PDLIM3 compared
with cells transfected with a NC-siRNA (Figure 2C).

2.2. CASC10 Is Upregulated in Ovarian Cancer Patients and Cisplatin-Resistant Ovarian
Cancer Cells

According to survival analysis, CASC10 showed the strongest significant correlation
between the OS (p = 1.6× 10−9 HR = 1.78) and PFS (p = 1.5× 10−5 HR = 1.57) of the disease
(Figure 2(Aa)). A comparative expression (tumor vs. normal tissue) plot using the Gene
Expression Profiling Interactive Analysis (GEPIA) searchable database (RNA-seq data)
revealed a statistically significant higher CASC10 expression in ovarian tumors compared
to normal ovaries (Figure 2D).

We confirmed the expression of CASC10 by real-time PCR in a panel of ovarian cancer
cell lines. The CASC10 levels were higher in the cisplatin-resistant as compared with their
cisplatin-sensitive counterparts (Figure 2E). There were no significant differences between
A2870 and A2780CP20 cells. Of note, the A2780 cell line is derived from an endometrioid
ovarian adenocarcinoma [17].

2.3. CASC10 siRNA-Mediated Knockdown Reduced Cell Growth, Invasion, and Viability in
Ovarian Cancer Cells

We next studied the biological consequences of siRNA-mediated CASC10 silencing in
ovarian cancer cells. The 2−∆∆Ct analysis of an RT-qPCR experiment showed that transient
transfection of OVCAR3CIS cells with CASC10-targeted siRNAs decreased the CASC10
expression by 47% with the CASC10-siRNA(1) and in 57% with CASC10-siRNA(2) as
compared with the NC-siRNA (**** p < 0.001, Figure 3A). In a colony formation assay
with OVCAR3CIS, both CASC10-targeted siRNAs reduced the number of colonies formed
compared with NC-siRNA transfected cells (Figure 3B). Notably, the CASC10-siRNA(2)
reduced the number of OVCAR3CIS colonies by 54% (*** p < 0.0001), whereas CASC10-
siRNA(1) reduced the number of colonies by only 42% (** p < 0.001). We assessed the
effect of CASC10 knockdown on the invasion ability of OVCAR3CIS cells. Invasion assays
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showed that CASC10-siRNA(1) and CASC10-siRNA(2) significantly reduced the invasive-
ness of OVCAR3CIS (42% reduction; **** p < 0.0001 and 62% reduction; **** p < 0.0001,
respectively) compared with NC-siRNA transfected cells (Figure 3C,D).

A B

C

D E

Resistant Cell Pairs Sensitive Cell Pairs

OV-90CIS/OVCAR3CIS OV-90/OVCAR-3

Figure 1. Identification of differentially abundant transcripts in cisplatin-sensitive and cisplatin-
resistant HGSOC cells. (A) RNA-seq data filtering flowchart with the number of genes filtered in each
step. (B) Volcano plots show the global transcriptional changes in the pairs of cell lines. The volcano
plot (The log2FoldChange of each gene is represented on the x-axis, and the log10 of its adjusted
p-value is on the y-axis. Genes with an adjusted p-value less than 0.05 and a log2FoldChange greater
than one are indicated by red dots. These represent upregulated genes. Genes with an adjusted
p-value less than 0.05 and a log2 fold change less than −1 are indicated by blue dots. These represent
downregulated genes. (C) Heat map constructed with the 414 differentially abundant transcripts from
filter-3. (D,E) Ingenuity pathway analysis (IPA). The top network (left) included molecules involved
in cell survival pathways. The top second network (right) includes genes associated with vesicle
trafficking, phosphorylation, and cGMP signaling. The green and red symbols denote downregulated
and upregulated genes in the RNA-seq, respectively. Solid lines represent direct interactions between
molecules, and dashed lines represent indirect interactions.
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Figure 2. CASC10 is upregulated in ovarian cancer patients and cisplatin−resistant ovarian cancer
cells. (A) Kaplan−Meier (KM) plots for gene expression−based overall survival (OS) and progression-
free survival (PFS) analysis. KM plots of ovarian cancer patients were generated using the KM plotter
searchable database. The OS and PFS of patients with ovarian cancer stratified by expression levels
of (a) CASC10, (b) PDLIM3, (c) EMP1, and (d) ATP11B are shown based on gene chip analysis.
p−values < 0.05 were considered to be statistically significant. (B) Validation of 45 differentially
abundant transcripts by RT−qPCR in OVCAR3CIS cells. The normalized expression values were
calculated relative to OVCAR3 (cisplatin−sensitive). Green and red symbols represent downregulated
and upregulated genes, respectively. Diagonal green and red lines represent the selected threshold
for significant fold changes. (C) siRNA screening for the 27 candidate genes. OVCAR3CIS cells were
transiently transfected with siRNAs (100 nM), followed by a colony formation assay. The percent
% of clonogenicity was expressed relative to the values obtained with the negative control siRNA
(NC−siRNA). (D) Relative CASC10 expression levels in ovarian tumor tissues and normal ovarian
tissues were analyzed using the GEPIA internet−searchable database. * p < 0.05. The red and black
boxes represent cancer and normal tissue samples, respectively. (E) RT-qPCR of CASC10 relative
expression in a panel of cisplatin−resistant versus cisplatin−sensitive ovarian cancer cells. (* p < 0.05,
** p < 0.01, and **** p < 0.0001).
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Table 1. Relative expression values of the 45 differentially abundant RNA transcripts in OVCAR3CIS
vs. OVCAR3 cells.

Gene qPCR Log2FC RNA-Seq Log2FC

PDLIM3 13.16 5.56
TPH2 11.53 8.04

TRHDE 10.67 7.82
KCNT2 10.47 5.09
GAS1 10.24 5.01

CLDN16 9.33 5.29
PRRX1 9.09 4.31
SESN3 9.07 3.41

GALNT13 8.50 4.78
SYTL2 7.63 4.55
SULF1 7.43 3.78
BCHE 6.50 1.31

ATP11B 6.44 3.24
SLIT2 5.33 2.09

SLC6A15 5.29 5.45
SH2D5 5.19 2.51
VEGFC 4.85 4.84
CFL2 4.42 1.98

ARRDC3 4.17 2.24
CRABP2 3.43 1.62
NUDT11 3.34 2.13

EYA4 2.74 0.58
SACS 2.55 1.03
KIF1A 2.36 1.43

ARHGAP28 2.19 1.24
EMP1 2.11 1.20

DDAH1 2.09 0.96
CASC10 2.06 0.50
LRRC17 −0.94 −1.42

LRG1 −0.97 −2.72
TMCC3 −1.03 −2.25
SPRY4 −1.67 −1.91

F2R −2.09 −3.80
SULT1A1 −2.67 −3.43

PBX1 −2.78 −2.29
SLC7A2 −2.85 −5.47
MXRA8 −3.16 −4.14

NID1 −3.36 −4.50
RUNX1 −3.59 −1.64
PROCR −4.28 −5.77

LIPG −5.20 −5.68
PDE1A −5.76 −7.53
PTPRD −6.38 −7.88
VCAN −6.60 −5.64
THBS1 −9.79 −4.06

In order to assess the effects of CASC10 knockdown in a different type of OC cells
other than HGSOC, we performed the CASC10 knockdown SKOV3ip1, which is classified
as a clear cell ovarian carcinoma cell line [18]. The 2−∆∆Ct analysis showed a decrease of
CASC10 relative expression of 70% (**** p < 0.0001) and 75% (**** p < 0.0001) following
transfection of SKOV3ip1 cells with CASC10-siRNA(1) and CASC10-siRNA(2) respectively
(Figure S2A) [19]. Interestingly, CASC10-siRNA(2) reduced the number of colonies by 86%
(**** p < 0.0001), whereas CASC10-siRNA(1) reduced the number of colonies by only 81%
(**** p < 0.0001) (Figure S2B). CASC10 knockdown in SKOV3ip1CIS reduced the invasion
ability of these cells in 36% (** p < 0.01), and 58% (*** p < 0.0001) with the CASC10-siRNA(1)
and CASC10-siRNA(2), respectively (Figure S2C,D).
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A B

C D

E

Figure 3. CASC10 siRNA-mediated knockdown reduced cell growth, invasion, and viability in
ovarian cancer cells. (A) RT-qPCR following transfection of siRNAs in OVCAR3CIS cells. (B) colony
formation assay, and (C,D) invasion ability following siRNA transfections in OVCAR3CIS cells.
(E) Cell viability following siRNAs transfection in OVCAR3CIS cells. Cell viability was performed
with and without CIS (2.5 µM). Experiments were performed at least in triplicates. Mean ± SEM is
shown relative to NC-siRNA (** p < 0.01, *** p < 0.001, and **** p < 0.0001).
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We also investigated whether CASC10-targeted siRNAs alone or in combination with
CIS reduced cell viability. The NC-siRNA did not reduce the cell viability of OVCAR3CIS
cells at any of the assessed concentrations (Figure 2E). CIS (2.5 µM final concentration)
neither reduce the cell viability of NC-siRNA-transfected cells. Transient transfections of
50 nM and 100 nM (final concentrations) of CASC10-siRNA(2) into OVCAR3CIS signifi-
cantly reduced (15% with 50 nM ** p < 0.001 and 30% with 100 nM, ** p < 0.001) cell viability
compared with the NC-siRNA (Figure 3E). Outstandingly, the combination of CASC10-
siRNA(2) with CIS (2.5 µM) significantly reduced to 56% (** p < 0.0001) the cell viability
compared with NC-siRNA (Figure 3E). Similar cell viability results were obtained when
combining CASC10-targeted siRNA with CIS in SKOV3ip1CIS cells (Figure S2E). We also
performed cell viability and cell invasion experiments transfecting CASC10-targeted siRNA
in OVCAR3 and SKOV3ip1 cells. The CASC10-targeted siRNA (2) did not significantly
reduce cell viability or invasion at any siRNA concentrations tested compared with the
NC-siRNA (Figure S2F,I).

2.4. CASC10 siRNA-Mediated Knockdown Induced Apoptosis and Cell Cycle Arrest

We further studied whether the reduction in cell growth and proliferation after
CASC10 knockdown was due to activation of apoptosis, cell cycle arrest, or both. Com-
pared to NC-siRNA, siRNA-mediated CASC10 knockdown in OVCAR3CIS cells resulted
in a 5-fold increase in caspase-3 activity (** p = 0.0016, Figure 4A). Similar results were ob-
tained for SKOV3ip1CIS (4-fold increase; ** p < 0.0016, Figure S3A). Activation of apoptosis
was confirmed when we assessed the changes in apoptotic-related proteins by western
blot analysis. Cells treated with CASC10-siRNA(2) showed a significant increase in the
active form of Caspase-9 (cleaved Caspase-9) and Caspase-3 (cleaved Caspase-3) (* p < 0.05
and * p < 0.05, respectively, Figure 4B,C). A significant increase in the cleaved poly-ADP
ribose polymerase-1 (PARP-1) was also observed in CASC10-siRNA(2) as compared with
NC-siRNA transfected cells (**** p < 0.0001, Figure 4C). Moreover, we observed a strong re-
duction of the anti-apoptotic protein, Bcl-2, following siRNA-mediated siRNA knockdown
compared with NC-siRNA-transfected cells (** p = 0.022, Figure 4D). Similar results were
observed for SKOV3ip1CIS (2-fold cleaved Caspase-9 increase; *** p = 0.0005, 6-fold cleaved
Caspase-3 increase; ** p = 0.0076, and 7-fold cleaved PARP-1 increase; **** p < 0.0001, 66%
Bcl-2 decrease; *** p = 0.0003) (Figure S3B–D).

The effect of siRNA-mediated CASC10 knockdown on cell cycle progression was as-
sessed by flow cytometry. A dramatic cell cycle arrest in the G0/G1 to S phase was observed
in OVCAR3CIS and SKOV3ip1CIS 48 h post-transfection (**** p < 0.0001, and **** p < 0.0001,
respectively, Figure 4E,F and Figure S3E,F). These results were confirmed by western blot,
where we observed changes in key proteins involved in the G0/G1 to S phase checkpoint.
Intriguingly, we observed a reduction in the protein levels of the tumor suppressor p27
in OVCAR3CIS-CASC10-siRNA(2) and SKOV3ip1CIS-CASC10-siRNA(2) compared with
NC-siRNA-transfected cells (**** p < 0.0001, and *** p = 0.0002 respectively, Figure 4G–I
and Supplementary Figure S3G–I). In addition, a reduction of the checkpoint proteins of
the S phase, Cyclin E1 and CDK4 was observed in OVCAR3CIS-CASC10-siRNA(2) and
SKOV3ip1CIS-CASC10-siRNA(2) compared with NC-siRNA-transfected cells (** p = 0.0017,
* p < 0.03 and *** p = 0.0001, *** p = 0.0007 respectively, Figures 4G–I and S3G–I).

2.5. In Vivo Targeting of CASC10 with Liposome-Encapsulated siRNAs

Next, we asked whether the siRNA-mediated CASC10 knockdown reduced in vivo
tumor growth. We encapsulated siRNAs into DOPC-based nanoliposomes. We have
extensively characterized and used siRNA-liposomal formulations for siRNA delivery
in mouse models [20]. The tumor weight and the number of nodules were significantly
lower in the CASC10-siRNA group in comparison with the NC-siRNA or with the cisplatin
groups (* p < 0.05, Figure 5A,B). These effects were exacerbated when CASC10-siRNA was
combined with cisplatin (** p < 0.008 Figure 5A,B). A visual image of tumor size in all
conditions is shown in Figure 5C. We did not observe any weight differences among the
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different groups of mice at the end of the experiment (Figure 5D). In summary, combination
therapy of liposomal CASC10-siRNA and CIS attenuated tumor progression in a cisplatin-
resistant mouse model of HGSOC.

A B

C
D

E

F G

H I

(2)

Figure 4. CASC10 siRNA-mediated knockdown Induced Apoptosis and Cell Cycle Arrest. OV-
CAR3CIS cells were transfected with 100 nM of NC-siRNA or 100 nM CASC10-siRNA(2). (A) Caspase-
3 fluorometric activity assay in OVCAR3CIS cells 72 hr after transfection. (B) Western blot analysis of
apoptotic-related proteins. (C,D) Densitometric analysis of the band intensities shown in (B). Mean
± SEM is shown relative to NC-siRNA (* p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001). (E) A
histogram showing cell cycle arrest at G0/G1 to S phase transition after CASC10-siRNA(2) trans-
fection in OVCAR3CIS cells compared to NC-siRNA. (F) Quantification of the flow cytometry data
shown in (E). (G) Western blot analysis of cell cycle-related proteins 48 hr after siRNA transfection.
(H,I) Densitometric analysis of the band intensities shown in (G). Mean ± SEM is shown relative to
NC-siRNA (* p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001).
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A

C

D

B

Figure 5. In vivo Targeting of CASC10 with liposome-encapsulated siRNAs. Therapeutic efficacy of
liposomal CASC10-siRNA (CASC10-siRNA(2)) alone or in combination with Cisplatin (CIS) in vivo.
Mice were intraperitoneally (i.p.) injected with OVCAR3CIS (1.5 × 106 cells/0.2 mL HBSS). Seven
days later, mice were randomly divided into the following treatment groups (N = 10 per group).
Liposomal siRNAs (10 µg siRNA/injection) and CIS (80 µg/injection) were injected (i.p) twice a
week for four weeks. Mean ± SEM is shown relative to NC-siRNA (* p < 0.05, ** p < 0.01 and
ns = non significant). (A) tumor weight, (B) number of nodules, and (C) visual image of tumor size in
all conditions. (D) Mice weight was recorded at the end of therapy.
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2.6. Downstream Effectors of CASC10 in HGSOC Cells

CASC10 is a long noncoding RNA (antisense lincRNA) with a length of 3799 bp
located in the reverse strand of chromosome 10 (Figure 6A) [21]. Splicing of the transcribed
RNA produces a 3799 bp by elimination of an intronic region of 804 bp. Neither the
biological role nor the cellular localization of this noncoding RNA is currently known.
We used the LncATLAS, a web-based cell visualization tool (https://lncatlas.crg.eu/,
accessed on 15 February 2022) that uses available subcRNA-seq raw data from 15 well-
known cell lines from the ENCODE consortium and quantifies the RNA localization
using the “relative concentration index” (RCI). RCI is defined as the log2-transformed
ratio of FPKM (fragments per kilobase per million mapped) in two samples (i.e., nucleus
and cytoplasm) [22]. This analysis showed that the expression of CASC10 is higher in
the nuclear fraction than the cytoplasmic fraction in 10 of the 15 well-known cell lines
(Figure 6B). In addition, we observed a significant enrichment of CASC10 RNA levels in
the chromatin subcompartment in the nucleus of K562 cells (Figure S4A).

To gain further insights into the signaling pathways downstream of CASC10, we
carried out a transcriptome-wise analysis by RNA sequencing (RNA-seq) after siRNA-
mediated CASC10 knockdown in OVCAR3CIS cells. Using an initial p-adjusted value (padj)
cutoff <0.01, we identified 1560 differentially abundant RNA transcripts (DATs) between
NC-siRNA and CASC10-siRNA(2). One hundred sixty transcripts were regulated in NC-
siRNA as compared with non-treated cells, which could represent off-target siRNA effects
(see the Venn diagram, Figure 6C). In total, 1400 differentially abundant transcripts were
exclusive of CASC10-siRNA(2) compared with NC-siRNA, including 736 downregulated
and 816 upregulated transcripts.

The 1400 differentially abundant RNA transcripts (DATs) were used to analyze func-
tional enrichment using Metascape via Gene Ontology (GO) and the Kyoto Encyclopedia
of Genes and Genomes (KEGG). The top 20 most significantly (p-value ≤ 0.01) enriched
ontology clusters include mitotic cell cycle processes, histone modifications, cell cycle,
mRNA metabolic processes, cellular response to stress, and cellular response to DNA
damage stimulus (Figure 6D). In addition, we used Metascape to identify transcriptional
regulatory transcription factors (TFs) for the identified DEGs [23]. Most enriched ontology
clusters were regulated by transcription factors such as E2F1, EGR1, E2F3, TP53, SOX6,
NFYA, and SIRT1 (Figure 6E).

A further log2 fold change cutoff >1.2 or <−1.2 with a p-value ≤ 0.01 was used to
select the most relevant differentially expressed genes following CACS10 knockdown.
Applying these criteria, we identified 32 differentially expressed genes, 18 upregulated and
14 downregulated in CASC10-siRNA(2) vs. NC-siRNA transfected cells (Table 2). Based
on these criteria, among the upregulated genes, the top five included RTN4R, KIAA0754,
PYM1, CNN1, and TGFBRAP1. The top five of the 14 downregulated genes include NUP43,
FHL1, DHFR2, MIR1915HG, and NDUFA7 (Table 2). To better visualize the molecular
interactions between the 32 differentially abundant transcripts, we performed IPA. The top
network in the list includes genes involved in cell death and survival pathways such as
Cyclin D, MERTK, TNF, and CDK4 (Figure 6F). In addition, the top canonical pathways
involved HER-2 signaling in breast cancer, cell cycle Regulation by BTG family proteins,
cell cycle control of chromosomal replication, and PTEN signaling (Figure S4B).

https://lncatlas.crg.eu/


Int. J. Mol. Sci. 2022, 23, 7737 12 of 21

A

B

C D

E F

Figure 6. Downstream effectors of CASC10 in HGSOC cells. Transcriptome−wise analysis by
RNA sequencing (RNA−seq) following siRNA−mediated CASC10 knockdown in OVCAR3CIS
cells. (A) Genomic information of CASC10 (flanking sequences), chromosomal location, and RNA
structure using the NCBI and ENSEMBL databases. (B) CASC10 subcellular localization plots
displayed by lncATLAS. Bars representing CN-RCI values for CASC10 across all cell lines. Expression
values (FPKMs) for CASC10 are shown for both compartments (cytoplasm on top of the bar and
nucleus on the bottom). Bars are colored by their absolute nuclear expression. (C) Venn diagram
showing that 1400 differentially abundant RNA transcripts in NC−siRNA vs. CASC10−siRNA(2) in
OVCAR3CIS cells. (D,E) Gene ontology and KEGG analysis of functional enrichment via Metascape.
The 20 top most significant (p-value ≤ 0.01) enriched ontology clusters (D) and the top 20 most
enriched ontology clusters regulated by transcription factors (E). (F) Ingenuity Pathway Analysis
(IPA) following siRNA−mediated CASC10 knockdown. The top network is shown and involved in
cell cycle regulation, programmed cell death, and survival-related genes.
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Table 2. Top five upregulated and top five downregulated genes in CASC10-siRNA(2) vs. NC-siRNA.

Gene Symbol Gene Name Biological Role p-Value

Upregulated
RTN4R Reticulon 4 receptor Receptor-mediated axonal growth inhibition 4.59 × 10−21

MACF1 Microtubule actin crosslinking
factor 1 Actin-microtubule interactions 2.83 × 10−12

PYM1 PYM homolog 1 Nuclear-transcribed mRNA catabolic process
and regulation of translation 5.24 × 10−20

CNN1 Cellular communication network
factor 1

Regulation of vascular-associated smooth
muscle cell proliferation 7.38 × 10−6

TGFBRAP1 Transforming growth factor beta
receptor associated protein 1

TGF-beta signaling and association to
SMAD4 3.32 × 10−39

Downregulated

NUP43 Nucleoporin 43 Transport of macromolecules between
cytoplasm and nucleus 1.69 × 10−86

FHL1 Four and a half LIM domains 1 Assembly of sarcomeres and muscle
contraction regulation 2.49 × 10−11

DHFR2 Dihydrofolate reductase 2 Tetrahydrofolate metabolic process and
thymidine biosynthesis 1.21 × 10−10

MIR1915HG microRNA1915 host gene Long Noncoding RNA 2.76 × 10−59

NDUFA7 NADH:ubiquinone oxidoreductase
subunit A7

Member of complex I in the electron
transport chain 7.76 × 10−29

3. Discussion

High-grade serous ovarian cancer (HGSOC) is highly associated with disease recur-
rence and platinum resistance. Although multiple molecular pathways contributing to
cisplatin resistance have been identified, not optimal therapies against cisplatin-resistant
ovarian cancer are currently available [24]. In the present study, we performed a systematic
and comprehensive identification of dysregulated RNAs in cisplatin-resistant as compared
with cisplatin-sensitive HGSOC cells. RNA-seq followed bioinformatics, OS, and PFS KM
curves, and an RNAi screening identified several potential genes for ovarian cancer ther-
apy. Particularly, siRNA-mediated knockdown of seven genes, CASC10, ATP11B, EMP1,
GAS1, SLC6A15, GALNT13, and PDLIM3, significantly reduced cell proliferation of ovarian
cancer cells. Moreno-Smith et al. showed that ATP11B is overexpressed in human ovarian
cancer samples and cisplatin-resistant ovarian cancer cell lines [25]. Elevated ATP11B levels
promoted the export of cisplatin from cells [25]. Liu et al. showed that EMP1 was upregu-
lated in ovarian cancer cell lines and tissues and facilitated cell proliferation, invasion and
EMT through the RAS/MAPK/c-JUN pathway [26]. Bignotti et al. showed evidence that
PDLIM3 is overexpressed in ovarian serous papillary carcinoma (OSPC) and metastatic
ovarian serous papillary carcinoma (MET) and is a potential therapeutic marker [27].

CASC10, also known as MIR1915HG, is a lncRNA of unknown cellular localization
and function. LncRNAs molecules play important roles at every step of the gene expression
course, including regulation of transcription, posttranscriptional processing, genomic im-
printing, chromatin modification, and regulation of protein function [28–32]. Dysregulation
of lncRNAs has been associated with cancer initiation, progression, tumor maintenance,
and drug resistance in virtually every tumor type [33]. For example, Wang et al. found
11 lncRNAs (HOTAIR, TC010441, ABO73614, ANRIL, MALAT1, NEAT1, CCAT2, UCA1,
HOXA11-AS, SPRY4-IT1, and ZFAS1) with a significant overexpression in ovarian cancer
patients [34]. Here we reported for the first time that CASC10 is increased in ovarian
cancer samples compared with control ovaries and in cisplatin-resistant ovarian cancer
cells compared with cisplatin-sensitive cells counterparts. CASC10 belongs to the CASC
family of lncRNAs which are spread throughout the genome. Shi et al. demonstrated
that CASC15, a long noncoding RNA, was significantly downregulated in ovarian cancer
tissues and cells [35]. The low expression of CASC15 was closely associated with shorter
overall survival (OS) and progression-free survival (PFS) of ovarian cancer patients [36].
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Evidence indicates that other members of the CASC family (CASC2, CASC11, CASC9)
could be associated with enhanced or reduced proliferation, invasion, and apoptosis in
cervical and colorectal cancers [37–39].

We observed that siRNA-mediated CASC10 knockdown strongly reduced cell prolif-
eration, viability, and the invasiveness potential of cisplatin-resistant ovarian cancer cells.
Most important, CASC10 knockdown fully sensitized ovarian cancer cells to cisplatin treat-
ment. Furthermore, we observed strong increases in caspase-3 activity and other apoptotic
markers, which suggest that CASC10 controls cell survival-related molecules. Interestingly,
we observed cell cycle arrest specifically in the G0/G1 to S phase transition following
CASC10-siRNA knockdown. These results were then confirmed by the observed reduction
in the Cyclin E1 and CDK4 protein levels upon CASC10 knockdown. Intriguingly, we
observed reduced protein levels of the cell cycle inhibitory protein p27 following CASC10
knockdown. Increased levels of p27 are normally observed upon cell cycle arrest under
several conditions [40]. However, our studies are in agreement with studies of Hiromura
et al. on mesangial cells and fibroblast [41]. They observed increased apoptosis when
the levels of p27 were absent or reduced [41]. This information suggests that p27 is able
to trigger proliferation or cell death depending on the presence or absence of mitogenic
signals. In addition, cellular stress conditions that are induced by chemotherapeutic agents,
growth factor deprivation, and reduced or absence of p27 levels increase apoptosis, an
effect mediated by CDK2 [42].

To date, the standard line of treatment for ovarian cancer includes the use of cisplatin
and paclitaxel, but unfortunately, many patients develop chemoresistance leading to thera-
peutic failure [43]. Our liposomal CASC-10-siRNA formulation reduced tumor growth and
metastasis in an HGSOC mouse model. This effect was exacerbated when the liposomal
formulation was combined with cisplatin. Thus, our study provides further evidence
that CASC10 is a plausible target for ovarian cancer treatment. Additional in vivo studies
combining different doses of CASC10-siRNA and cisplatin will confirm the synergistic
interaction of both drugs in suppressing tumor growth. Further pharmacokinetics, pharma-
codynamics, and safety studies are also needed before moving this formulation into clinical
trials. Importantly, siRNA-mediated CASC10 knockout in cisplatin-sensitive cells did not
induce noticeable changes in cell proliferation, suggesting that targeting this molecule will
not produce off-target or undesirable effects in other cell types. This hypothesis should be
confirmed with additional pre-clinical studies.

Interrogation of databases suggests that CASC10 is located in the nuclear compartment.
In the nucleus, lncRNAs play several roles, including chromatin structure remodeling,
epigenetic modulation, and regulation of transcription with lncRNA as enhancers or
decoys [44]. We also found that DNA sequences in the CASC10 region bind transcription
factors such as MYC, MAX, and CTCF (CCCTC-binding factor). Further studies using RNA
fluorescence in situ hybridization (FISH), RNA tracking, and microscopic techniques are
needed to fully understand the cellular localization and biological role of CASC10 in health
and diseases. Likewise, we observed that several genes were regulated following CASC10
knockdown. In particular, high expression of Nucleoporin 43 (NUP43), one of the top
downregulated genes in our study, is associated with DNA amplification and poor overall
survival in luminal A and HER2+ breast cancer tumors [45]. Our observation that CASC10
knockdown arrested the cell cycle at the G0/G1 to S phase is in agreement with those reports
as NUP43 plays a central role as a regulator of the mitotic progression and chromosome
segregation [46]. One of the top increased transcript upon CASC10 knockdown was
calponin-1 (CNN1) which encode a filament-associated protein with pivotal roles in cell
metastasis, embryonic development, and prostate cancer progression [47]. Overexpression
of CNN1 in breast cancer cells inhibited cell survival, migration, invasion, and enhanced
apoptosis [48]. The observed increased expression of CNN1 could partially explain the
observed increase in apoptosis following CASC10 knockdown.

Although this study focused on the biological, molecular, and therapeutic conse-
quences of targeting CASC10, we identified several other clinically relevant transcripts
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in HGSOC. Future studies are needed to confirm their potential as targets for therapy
and their contribution to the cisplatin resistance of HGSOC cells. Also, studies should be
performed to clarify if a panel of these genes could be used to predict therapy response in
HGSOC.

Overall, this study provides evidence that increased levels of the lncRNA CASC10
contribute to the cisplatin resistance of ovarian cancer cells and that a liposomal formulation
of siRNA-CASC10 is a reasonable strategy for ovarian cancer treatment.

4. Materials and Methods
4.1. Cell Culture

The HGSOC cells OVCAR3 (NIH:OVCAR-3) and OV-90 were purchased from ATCC
(Chicago, IL, USA). The human epithelial ovarian cancer cells SKOV3ip1 were a donation
of Dr. Anil Sood (MD Anderson Cancer Center, Houston, TX). The cisplatin-resistant
cells OVCAR3CIS, OV-90CIS, and SKOV3ip1CIS were generated by exposing cisplatin-
sensitive cells to increasing doses of cisplatin. Briefly, cells were exposed to an initial
concentration of 0.5 µM cisplatin (final concentration). One week later, the media was
replaced by regular growth media. Cells were grown for an additional week and then
exposed to 1.0 µM cisplatin (final concentration). This procedure was repeated, increasing
the cisplatin concentration by 0.5 µM until a final concentration of around 10 µM. OVCAR3
and OVCAR3CIS were maintained in RPMI-1640 (HyClone, GE Healthcare Life Sciences,
Logan, UT, USA) supplemented with 0.01 mg/mL insulin (Sigma-Aldrich, St. Louis, MO,
USA), SKOV3ip1, and SKOV3ip1CIS cells were maintained in RPMI-1640 (HyClone), and
OV-90 and OV90CIS were maintained on a 1:1 mixture of MCDB 105, and Medium 199
(Sigma-Aldrich). The culture media was supplemented with 10% Fetal Bovine Serum and
1% antibiotics at 37 ◦C in 5% CO2 and 95% air. All experiments were performed at 70–80%
cell confluence.

4.2. RNA-Seq and Data Analysis of HGSOC Cells

Total RNA was isolated from OVCAR3, OVCAR3CIS, OV-90, and OV90CIS cells using
the mirVanaTM miRNA Isolation Kit (Thermo Fisher Scientific, Grand Island, NY, USA)
per the manufacturer’s instructions. RNA concentration and quality were verified on all
samples with a Thermo Scientific NanoDrop spectrophotometer. RNA was enriched, and
the library was prepared using GENEWIZ® Strand-specific RNA sequencing with rRNA
depletion (GENEWIZ, Inc. South Plainfield, NJ, USA). The library was quantified with
KAPA SYBR® FAST qPCR and then sequenced using the Illumina HiSeq (PE 2 × 150 bp)
with a sequencing depth of approximately 100 million reads per sample. Unique gene
counts were calculated using featureCounts from the Subread package (version 1.5.2,
Parkville, Victoria, Australia), and initial gene expression analysis was performed using
the DESeq2 (version 1.28.1) package in the R version 4.0.1 package.

4.3. Western Blot Analysis

Cell pellets were lysed with a complete lysis buffer (1% Triton X, 150 mmol/L NaCl,
25 mmol/L Tris HCl, 0.4 mmol/L NaVO4, 0.4 mmol/L NaF, and protease inhibitor cocktail
from Sigma). Total protein concentration was quantified using the Bio-Rad DC Protein As-
say reagents (Bio-Rad, Hercules, CA, USA). Protein samples were separated by SDS-PAGE,
blotted onto nitrocellulose membranes, blocked in either 5% non-fat dry milk (Bio-Rad)
or 5% BSA (HyClone), and probed with the appropriate dilution of the corresponding
primary antibody. Membranes were then rinsed and incubated with the corresponding
HRP-conjugated secondary antibody, followed by enhanced chemiluminescence and au-
toradiography. Bands were imaged with a Bio-Rad Gel Doc XR+, and signal intensity was
quantified using Image Lab software (Bio-Rad, Hercules, CA, USA). The antibodies used
are described in Table S1. Western blot images with molecular weight markers are shown
in Figure S5.
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4.4. Small-Interfering RNA (siRNA) and In-Vitro Transfection

A siRNA ON-TARGET plus SMARTpool (a mixture of 4 siRNA as a single tube) was
purchased from Horizon Discovery (Cambridge, UK). A negative control siRNA (NC-
siRNA) (Sigma-Aldrich) was also used. To specifically target CASC10, two siRNAs target-
ing different regions of the CASC10 RNA (named CASC10-siRNA(1): 5′ GCUAUCUGCU-
UGAUCCCUU(dT)(dT) 3′ and CASC10-siRNA(2): 5′ GACUCUUGGAUCCAAGUUU(dT)
(dT) 3′) were purchased from Sigma. OVCAR3CIS or SKOV3ip1CIS cells were seeded into
12-well plates at 3.0 × 104 cells/mL. The next day, siRNAs were mixed with HiPerfect
transfection reagent (Qiagen, Valencia, CA) at a 1:2 ratio (siRNA: HiPerfect) in serum and
antibiotic-free Opti-MEM medium (Gibco, Thermo Fisher Scientific, Grand Island, NY,
USA) and added to the cells. Twenty-four hours later, the media was replaced by regular
culture media, and cells were cultured and used for further experiments. To assess siRNA
efficiency, cells were collected 24 h after siRNA transfection.

4.5. Cell Growth and Cell Viability

To evaluate cell growth, we performed colony formation assays using Crystal
Violet dye (Sigma-Aldrich). OVCAR3CIS cells (3.0 × 104 cells/mL) or SKOV3ip1CIS
(3.5 × 104 cells/mL) were seeded into 12-well plates. Cells were transfected with 100 nM
(final concentration) of each siRNA after twenty-four hours. The next day, 400 cells (OV-
CAR3CIS) or 1000 cells (SKOV3ip1CIS) were seeded into 6-well plates and incubated for
seven days. Colonies were then fixed and stained with 0.5% crystal violet in methanol, and
colonies of at least 50 cells were counted using a light microscope (CKX41; Olympus, Center
Valley, PA, USA) with a total magnification of 40×. For cell viability assays, OVCAR3 and
OVCAR3CIS (3.0 × 104 cells/mL or SKOV3ip1 and SKOV3ip1CIS (3.5 × 104 cells/mL)
were seeded into 96-well plates, and 24 after hours, siRNA transfection was performed as
described above. The following day, the transfection mix was replaced with cisplatin (CIS)
(2.5 µM final concentration dissolved in regular cell culture media). Forty-eight hours after
cisplatin treatment, the medium was removed, and Alamar blue dye (Invitrogen, Thermo
Fisher Scientific, Eugene, OR, USA) was added following the manufacturer’s instructions.
Optical density (OD) was measured using a plate reader (Bio-Rad), and percentages of cell
viability were calculated after blank OD subtraction, taking the untreated cells as 100% cell
viability.

4.6. Cell Invasion

Cell invasion was measured using the Matrigel transwell method as previously de-
scribed [49,50]. OVCAR3CIS (3.0 × 104 cells/mL) or SKOVip1CIS (3.5 × 104 cells/mL)
were seeded into 10 cm Petri dishes and transfected with siRNAs. After twenty-four hours,
serum-free matrigel (BD Biosciences, San Jose, CA, USA) was added onto the upper cham-
bers of 24-well plates and incubated at 37 ◦C for polymerization. Transfected cells were
collected and resuspended in serum-free and re-seeded onto the Matrigel-coated chambers.
Medium containing 10% FBS was added to the lower area of the wells, and the plates were
incubated for 48 h at 37 ◦C. Then, the medium was removed, and cells that invaded through
the matrigel were fixed and stained using the Protocol Hema 3 Stain Set (Fisher Scientific,
Kalamazoo, MI, USA). Invaded cells were counted using the Olympus IX71 microscope
equipped with a digital camera at a 20X resolution. The percentage of cell invasion was
calculated using the NC-siRNA condition as 100% cell invasion.

4.7. Caspase-3 Activity

Caspase-3 activity was quantified using the Caspase-3/CPP32 Fluorometric Assay
Kit (BioVision, Milpitas, CA, USA) as per the manufacturer’s instructions. OVCAR3CIS
(3.0 × 104 cells/mL) or SKOV3ip1CIS (3.5 × 104 cells/mL) were seeded into 10 cm Petri
dishes and transfected with NC-siRNA or CASC10-siRNA(2). After 24 h, the media was
replaced by regular media, and seventy-two hours after transfection, cells were collected,
pellets were lysed, and total protein concentration was determined. Equal amounts of
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protein were mixed with 2X Reaction Buffer and 1mM DEVD-AFC substrate in a 96-well
plate and incubated at 37 ◦C for 2.5 h. Fluorescence intensity at 400 nm excitation and
505 nm emission was measured using the Varioskan Flash reader from Thermo.

4.8. Kaplan-Meier Survival Analysis

Kaplan-Meier (KM) patient survival analysis was performed using available patient
datasets from gene chip and RNA-seq in the internet searchable database, Kaplan-Meier
plotter (www.kmplot.com, accessed on 20 August 2018) [51]. For each gene, ovarian cancer
patients were divided into high and low expression groups by the median value of their
RNA expression. A set of different filters were applied in our search, including ovarian
cancer patients, ovarian cancer patients treated with platinum, and serous ovarian cancer
patients treated with platinum. Kaplan-Meier survival plots for overall survival (OS) and
progression-free survival (PFS) were obtained with their respective hazard ratios (HR),
confidence intervals (CI), and p-values (log-rank). For these studies, p-values < 0.05 were
considered statistically significant.

4.9. KEGG Pathway Enrichment, Gene Ontology, and Network Analysis

Differentially abundant RNA transcripts with a log2 FC cutoff >1.2 or < −1.2 and
a p-value ≤ 0.01 were selected for further assessment of their involvement in various
biological pathways using the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway
enrichment. Gene ontology and biological processes, molecular functions, and cellular
components were enriched using Metascape.

For network analysis, we used Ingenuity Pathway Analysis (IPA; Ingenuity Systems,
Qiagen, Redwood City, CA, USA) software to determine functional networks and pathways
associated with differently abundant RNA transcripts using a p-value cutoff < 0.05.

4.10. SYBR-Green Based qRT-PCR

A custom-made 384-well plate containing pre-designed forward and reverse primers
were purchased from Bio-Rad (Hercules, CA, USA). Total RNA was isolated from OVCAR3
and OVCAR3CIS cells using the GenElute Mammalian Total RNA Mini Kit (Millipore-
Sigma, St. Louis, MO, USA) following the manufacturer’s instructions. RNA was reverse
transcribed using the iScript Reverse Transcription Supermix for RT-qPCR from Bio-Rad.
SYBR Green-based qPCR was performed using the SsoAdvanced™ Universal SYBR® Green
Supermix (Bio-Rad) and a CFX384 Touch Real-Time PCR detection system. Fold-changes
and cycle threshold (Ct) values were calculated by the instrument’s internal software
relative to OVCAR3 cells and normalized to β-actin along with controls for gDNA, PCR
reaction, RT reaction, and RNA quality.4.11. Flow Cytometry.

To assess cell cycle progression, OVCAR3CIS (3.0 × 104 cells/mL) or SKOV3ip1CIS
(3.5× 104 cells/mL) were seeded into 10 cm Petri dishes and transfected with NC-siRNA or
CASC10-siRNA(2), as described above. Forty-eight hours later, attached cells were collected,
washed in ice-cold PBS, fixed with 70% cold ethanol, and stored at 4 ◦C. Cells were then
washed with ice-cold PBS, resuspended in propidium iodide (PI)/RNase Staining Buffer
(BD Biosciences, San Jose, CA, USA), incubated in the dark for 15 min at room temperature,
and then analyzed by flow cytometry in BD C6 Accuri (San Jose, CA, USA). Accuri’s
software was used to determine the percentage of cells in each cell cycle phase.

4.11. Tumor Implantation and Drug Treatment

Female athymic nude mice (NCr-nu, 6 weeks old) were purchased from Taconic (Hud-
son, NY, USA). To assess the therapeutic efficacy of liposomal CASC10-siRNA (CASC10-
siRNA(2)) alone or in combination with Cisplatin (CIS) in vivo, mice were intraperitoneally
(i.p.) injected with OVCAR3CIS (1.5 × 106 cells/0.2 mL HBSS). After 7 days, mice were
randomly divided into the following treatment groups (N = 10 per group): (a) NC-siRNA,
(b) CIS alone, (c) CASC10-siRNA, (d) NC-siRNA plus CIS, and (e) CASC10-siRNA(2) plus
CIS. Liposomal siRNAs (10 µg siRNA/injection) and CIS (160 µg/injection) were injected
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(i.p.) twice a week for four weeks. At the end of the treatment, mice were euthanized,
tumors were collected, and the number of tumor nodules and tumor weight were recorded.
Animal handling and research protocols were approved by the Institutional Animal Care
and Use Committee (IACUC) of the University of Puerto Rico, Medical Sciences Campus.

4.12. RNA-Seq Analysis of CASC10-siRNA Transfected Cells

To prepare the RNA sequencing library, total RNA was extracted using the GenElute
Mammalian Total RNA Miniprep Kit (Sigma). The RNA sample integrity was evaluated
using a Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA) (RNAs with a
RIN > 7 were used). One µg of RNA was used for polyA mRNA enrichment. Library
Prep was carried out on Poly A-selected samples using the NEXTFLEX-Rapid-Directional-
RNA-Seq-Kit (Perkin Elmer, Waltham, MA, USA). The cDNA was then amplified for
15 PCR cycles (25 ◦C for 10 min, 42 ◦C for 15 min, 70 ◦C for 15 min, hold 4 ◦C). The PCR
products were run on a NovaSeq 6000 S1 (Illumina, San Diego, CA, USA) flowcell running a
50-base paired-end (2X50) recipe. Preprocessing steps of quality, trimming, and filtering was
performed using FastQCv0.11.9 and Trimmomaticv0.36 packages, applying the following
parameters ILLUMINACLIP:2:15:10 LEADING:30 TRAILING:30 SLIDING-WINDOW:4:15
MINLEN:30. The trimmed and contamination-filtered reads were mapped to the hg38
genome using STAR aligner version 2.5.2a to generate a count matrix of the number of
reads per identified gene. The differential expression analysis was carried out using the
DESeq2 (version 1.28.1) package in the R version 4.0.1 package. As the count data was
obtained in two batches, a batch correction term was introduced in the DESeq2 model using
ComBat Seq to have better statistical power and control of false positives. Genes with a
p-value < 0.01 after FDR adjustment and a log2 fold change >1 were considered significant
for further analysis.

4.13. Statistical Analysis

All experiments were performed at least in triplicates. Graphing and statistical analysis
were performed using the GraphPad Prism (San Diego, CA, USA) software 9.3.1. Data were
analyzed using Student’s t-test for comparing two groups and ANOVA tests for multiple
comparisons, with a significance level of 0.05.

5. Patents

A provisional Patent Application (No. 63/343,974) with data included in this manuscript
was submitted to the United States Patent and Trademark Office (USPTO).
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9. Surowiak, P.; Materna, V.; Kaplenko, I.; Spaczyński, M.; Dietel, M.; Lage, H.; Zabel, M. Augmented Expression of Metallothionein

and Glutathione S-Transferase Pi as Unfavourable Prognostic Factors in Cisplatin-Treated Ovarian Cancer Patients. Virchows Arch.
2005, 447, 626–633. [CrossRef]

10. Vaezi, A.; Wang, X.Z.; Buch, S.; Gooding, W.; Wang, L.; Seethala, R.R.; Weaver, D.T.; D’Andrea, A.D.; Argiris, A.; Romkes, M.; et al.
XPF Expression Correlates with Clinical Outcome in Squamous Cell Carcinoma of the Head and Neck. Clin. Cancer Res. 2011, 17,
5513–5522. [CrossRef]

11. Li, Z.; Qing, Y.; Guan, W.; Li, M.; Peng, Y.; Zhang, S.; Xiong, Y.; Wang, D. Predictive Value of APE1, BRCA1, ERCC1 and
TUBB3 Expression in Patients with Advanced Non-Small Cell Lung Cancer (NSCLC) Receiving First-Line Platinum-Paclitaxel
Chemotherapy. Cancer Chemother. Pharmacol. 2014, 74, 777–786. [CrossRef]

12. Cocetta, V.; Ragazzi, E.; Montopoli, M. Links between Cancer Metabolism and Cisplatin Resistance, 1st ed.; Elsevier Inc.: Amsterdam,
The Netherlands, 2020; Volume 354.

13. Wu, H.J.; Cao, Y.; Weng, D.; Xing, H.; Song, X.; Zhou, J.; Xu, G.; Lu, Y.; Wang, S.; Ma, D. Effect of Tumor Suppressor Gene PTEN
on the Resistance to Cisplatin in Human Ovarian Cancer Cell Lines and Related Mechanisms. Cancer Lett. 2008, 271, 260–271.
[CrossRef]

14. Moghbeli, M. MicroRNAs as the Critical Regulators of Cisplatin Resistance in Ovarian Cancer Cells. J. Ovarian Res. 2021, 14, 127.
[CrossRef]

15. Abildgaard, C.; Do Canto, L.M.; Steffensen, K.D.; Rogatto, S.R. Long Non-Coding RNAs Involved in Resistance to Chemotherapy
in Ovarian Cancer. Front. Oncol. 2020, 9, 1549. [CrossRef]

16. Santana-Rivera, Y.; Rabelo-Fernández, R.J.; Quiñones-Díaz, B.I.; Grafals-Ruíz, N.; Santiago-Sánchez, G.; Lozada-Delgado, E.L.;
Echevarría-Vargas, I.M.; Apiz, J.; Soto, D.; Rosado, A.; et al. Reduced Expression of Enolase-1 Correlates with High Intracellular
Glucose Levels and Increased Senescence in Cisplatin-Resistant Ovarian Cancer Cells. Am. J. Transl. Res. 2020, 12, 1275–1292.

17. Parker, R.J.; Eastman, A.; BostickBruton, F.; Reed, E. Acquired Cisplatin Resistance in Human Ovarian Cancer Cells Is Associated
with Enhanced Repair of Cisplatin-DNA Lesions and Reduced Drug Accumulation. J. Clin. Investig. 1991, 87, 772–777. [CrossRef]

18. Barnes, B.M.; Nelson, L.; Tighe, A.; Burghel, G.J.; Lin, I.H.; Desai, S.; McGrail, J.C.; Morgan, R.D.; Taylor, S.S. Distinct Tran-
scriptional Programs Stratify Ovarian Cancer Cell Lines into the Five Major Histological Subtypes. Genome Med. 2021, 13, 140.
[CrossRef]

19. Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−∆∆CT

Method. Methods 2001, 25, 402–408. [CrossRef]
20. Reyes-gonzález, J.M.; Armaiz-peña, G.N.; Mangala, L.S.; Ivan, C.; Pradeep, S.; Echevarría-vargas, I.M.; Rivera-, A.; Sood, A.K.;

Vivas-mejía, P.E. Targeting C-MYC in Platinum-Resistant Ovarian Cancer. Mol. Cancer Ther. 2016, 14, 2260–2269. [CrossRef]
21. Dobbins, S.E.; Broderick, P.; Melin, B.; Feychting, M.; Andersson, U.; Brännström, T.; Schramm, J.; Olver, B.; Lloyd, A.; Ma, Y.P.;

et al. Europe PMC Funders Group Common Variation at 10p12.31 near MLLT10 Influences Meningioma Risk. Nat. Gen. 2016, 43,
825–827. [CrossRef]

http://doi.org/10.3322/caac.21708
http://doi.org/10.3390/ijms20040952
http://doi.org/10.1038/sj.bjc.6601497
http://doi.org/10.1016/j.ejphar.2014.07.025
http://doi.org/10.1128/jb.116.3.1247-1252.1973
http://doi.org/10.3390/antiox9020175
http://doi.org/10.1111/j.1440-1681.2004.04127.x
http://doi.org/10.1530/ERC-17-0336
http://doi.org/10.1007/s00428-005-1228-0
http://doi.org/10.1158/1078-0432.CCR-11-0086
http://doi.org/10.1007/s00280-014-2562-1
http://doi.org/10.1016/j.canlet.2008.06.012
http://doi.org/10.1186/s13048-021-00882-1
http://doi.org/10.3389/fonc.2019.01549
http://doi.org/10.1172/JCI115080
http://doi.org/10.1186/s13073-021-00952-5
http://doi.org/10.1006/meth.2001.1262
http://doi.org/10.1158/1535-7163.MCT-14-0801
http://doi.org/10.1038/ng.879


Int. J. Mol. Sci. 2022, 23, 7737 20 of 21

22. Mas-Ponte, D.; Carlevaro-Fita, J.; Palumbo, E.; Pulido, T.H.; Guigo, R.; Johnson, R. LncATLAS Database for Subcellular
Localization of Long Noncoding RNAs. RNA 2017, 23, 1080–1087. [CrossRef] [PubMed]

23. Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape Provides a
Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nat. Commun. 2019, 10, 1523. [CrossRef] [PubMed]

24. Rajendran, G.; Taylor, J.A.; Woolbright, B.L. Natural Products as a Means of Overcoming Cisplatin Chemoresistance in Bladder
Cancer. Cancer Drug Resist. 2021, 4, 69–84. [CrossRef] [PubMed]

25. Moreno-Smith, M.; Halder, J.B.; Meltzer, P.S.; Gonda, T.A.; Mangala, L.S.; Rupaimoole, R.; Lu, C.; Nagaraja, A.S.; Gharpure, K.M.;
Kang, Y.; et al. ATP11B Mediates Platinum Resistance in Ovarian Cancer. J. Clin. Investig. 2018, 128, 3199. [CrossRef] [PubMed]

26. Liu, Y.; Ding, Y.; Nie, Y.; Yang, M. EMP1 Promotes the Proliferation and Invasion of Ovarian Cancer Cells through Activating the
MAPK Pathway. OncoTargets Ther. 2020, 13, 2047–2055. [CrossRef]

27. Bignotti, E.; Tassi, R.A.; Calza, S.; Ravaggi, A.; Bandiera, E.; Rossi, E.; Donzelli, C.; Pasinetti, B.; Pecorelli, S.; Santin, A.D. Gene
Expression Profile of Ovarian Serous Papillary Carcinomas: Identification of Metastasis-Associated Genes. Am. J. Obstet. Gynecol.
2007, 196, 245.e1–245.e11. [CrossRef]

28. Necsulea, A.; Soumillon, M.; Warnefors, M.; Liechti, A.; Daish, T.; Zeller, U.; Baker, J.C.; Grützner, F.; Kaessmann, H. The Evolution
of LncRNA Repertoires and Expression Patterns in Tetrapods. Nature 2014, 505, 635–640. [CrossRef]

29. Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; et al.
The GENCODE v7 Catalog of Human Long Noncoding RNAs: Analysis of Their Gene Structure, Evolution, and Expression.
Genome Res. 2012, 22, 1775–1789. [CrossRef]

30. Katayama, S.; Tomaru, Y.; Kasukawa, T.; Waki, K.; Nakanishi, M.; Nakamura, M.; Nishida, H.; Yap, C.C.; Suzuki, M.; Kawai, J.;
et al. Molecular Biology: Antisense Transcription in the Mammalian Transcriptome. Science 2005, 309, 1564–1566. [CrossRef]

31. Ulitsky, I.; Bartel, D.P. XLincRNAs: Genomics, Evolution, and Mechanisms. Cell 2013, 154, 26. [CrossRef]
32. Kelemen, E.; Danis, J.; Göblös, A.; Bata-Csörgő, Z.; Széll, M. Exosomal Long Non-Coding RNAs as Biomarkers in Human Diseases.

Electron. J. Int. Fed. Clin. Chem. Lab. Med. 2019, 30, 224–236.
33. Gutschner, T.; Diederichs, S. The Hallmarks of Cancer: A Long Non-Coding RNA Point of View. RNA Biol. 2012, 9, 703–719.

[CrossRef] [PubMed]
34. Wang, X.; Han, L.; Zhou, L.; Wang, L.; Zhang, L.M. Prediction of Candidate RNA Signatures for Recurrent Ovarian Cancer

Prognosis by the Construction of an Integrated Competing Endogenous RNA Network. Oncol. Rep. 2018, 40, 2659–2673.
[CrossRef] [PubMed]

35. Shi, Y.; Gao, S.; Zheng, Y.; Yao, M.; Ruan, F. LncRNA CASC15 Functions as an Unfavorable Predictor of Ovarian Cancer Prognosis
and Inhibits Tumor Progression through Regulation of Mir-221/Arid1a Axis. Onco. Targets. Ther. 2019, 12, 8725–8736. [CrossRef]
[PubMed]

36. Shan, S.; Li, H.F.; Yang, X.Y.; Guo, S.; Guo, Y.; Chu, L.; Xu, M.J.; Xin, D.M. Higher LncRNA CASC15 Expression Predicts Poor
Prognosis and Associates with Tumor Growth in Cervical Cancer. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 507–512. [CrossRef]

37. Hsu, W.; Liu, L.; Chen, X.; Zhang, Y.; Zhu, W. LncRNA CASC11 Promotes the Cervical Cancer Progression by Activating
Wnt/Beta-Catenin Signaling Pathway. Biol. Res. 2019, 52, 33. [CrossRef]

38. Luo, K.; Geng, J.; Zhang, Q.; Xu, Y.; Zhou, X.; Huang, Z.; Shi, K.Q.; Pan, C.; Wu, J. LncRNA CASC9 Interacts with CPSF3 to
Regulate TGF-β Signaling in Colorectal Cancer. J. Exp. Clin. Cancer Res. 2019, 38, 249. [CrossRef]

39. Dai, W.; Mu, L.; Cui, Y.; Li, Y.; Chen, P.; Xie, H.; Wang, X. Berberine Promotes Apoptosis of Colorectal Cancer via Regulation of
the Long Non-Coding RNA (LncRNA) Cancer Susceptibility Candidate 2 (CASC2)/AU-Binding Factor 1 (AUF1)/B-Cell CLL/
Lymphoma 2 (Bcl-2) Axis. Med. Sci. Monit. 2019, 25, 730–738. [CrossRef]

40. Cuadrado, M.; Gutierrez-Martinez, P.; Swat, A.; Nebreda, A.R.; Fernandez-Capetillo, O. P27Kip1 Stabilization Is Essential for the
Maintenance of Cell Cycle Arrest in Response to DNA Damage. Cancer Res. 2009, 69, 8726–8732. [CrossRef]

41. Hiromura, K.; Pippin, J.W.; Fero, M.L.; Roberts, J.M.; Shankland, S.J. Modulation of Apoptosis by the Cyclin-Dependent Kinase
Inhibitor P27(Kip1). J. Clin. Investig. 1999, 103, 597–604. [CrossRef]

42. Levkau, B.; Koyama, H.; Raines, E.W.; Clurman, B.E.; Herren, B.; Orth, K.; Roberts, J.M.; Ross, R. Cleavage of P21Cip1/Waf1 and
P27Kip1 Mediates Apoptosis in Endothelial Cells through Activation of Cdk2: Role of a Caspase Cascade. Cell 1998, 1, 553–563.
[CrossRef]

43. Reyes-González, J.M.; Vivas-Mejía, P.E. C-MYC and Epithelial Ovarian Cancer. Front. Oncol. 2021, 11, 601512. [CrossRef]
[PubMed]

44. Yao, R.W.; Wang, Y.; Chen, L.L. Cellular Functions of Long Noncoding RNAs. Nat. Cell Biol. 2019, 21, 542–551. [CrossRef]
45. Tian, C.; Zhou, S.; Yi, C. High NUP43 Expression Might Independently Predict Poor Overall Survival in Luminal A and in HER2+

Breast Cancer. Futur. Oncol. 2018, 14, 1431–1442. [CrossRef] [PubMed]
46. Yang, C.; Tang, D. Patient-Specific Carotid Plaque Progression Simulation. C. Model. Eng. Sci. 2000, 1, 119–131.
47. Xu, X.; Nie, J.; Lu, L.; Du, C.; Meng, F.; Song, D. LINC00337 Promotes Tumor Angiogenesis in Colorectal Cancer by Recruiting

DNMT1, Which Suppresses the Expression of CNN1. Cancer Gene Ther. 2021, 28, 1285–1297. [CrossRef]
48. Wang, Z.; Li, T.E.; Chen, M.; Pan, J.J.; Shen, K.W. MiR-106b-5p Contributes to the Lung Metastasis of Breast Cancer via Targeting

CNN1 and Regulating Rho/ROCK1 Pathway. Aging 2020, 12, 1867–1887. [CrossRef]

http://doi.org/10.1261/rna.060814.117
http://www.ncbi.nlm.nih.gov/pubmed/28386015
http://doi.org/10.1038/s41467-019-09234-6
http://www.ncbi.nlm.nih.gov/pubmed/30944313
http://doi.org/10.20517/cdr.2020.69
http://www.ncbi.nlm.nih.gov/pubmed/35582013
http://doi.org/10.1172/JCI122301
http://www.ncbi.nlm.nih.gov/pubmed/29809169
http://doi.org/10.2147/OTT.S240028
http://doi.org/10.1016/j.ajog.2006.10.874
http://doi.org/10.1038/nature12943
http://doi.org/10.1101/gr.132159.111
http://doi.org/10.1126/science.1112009
http://doi.org/10.1016/j.cell.2013.06.020
http://doi.org/10.4161/rna.20481
http://www.ncbi.nlm.nih.gov/pubmed/22664915
http://doi.org/10.3892/or.2018.6707
http://www.ncbi.nlm.nih.gov/pubmed/30226545
http://doi.org/10.2147/OTT.S219900
http://www.ncbi.nlm.nih.gov/pubmed/31695430
http://doi.org/10.26355/eurrev_201901_16862
http://doi.org/10.1186/s40659-019-0240-9
http://doi.org/10.1186/s13046-019-1263-3
http://doi.org/10.12659/MSM.912082
http://doi.org/10.1158/0008-5472.CAN-09-0729
http://doi.org/10.1172/JCI5461
http://doi.org/10.1016/S1097-2765(00)80055-6
http://doi.org/10.3389/fonc.2021.601512
http://www.ncbi.nlm.nih.gov/pubmed/33718147
http://doi.org/10.1038/s41556-019-0311-8
http://doi.org/10.2217/fon-2017-0690
http://www.ncbi.nlm.nih.gov/pubmed/29402145
http://doi.org/10.1038/s41417-020-00277-2
http://doi.org/10.18632/aging.102719


Int. J. Mol. Sci. 2022, 23, 7737 21 of 21

49. Echevarría-Vargas, I.M.; Valiyeva, F.; Vivas-Mejía, P.E. Upregulation of MiR-21 in Cisplatin Resistant Ovarian Cancer via
JNK-1/c-Jun Pathway. PLoS ONE 2014, 9, e970194. [CrossRef]

50. Báez-Vega, P.M.; Vargas, I.M.E.; Valiyeva, F.; Rosado, J.E.; Roman, A.; Flores, J.; Marcos-Martínez, M.J.; Vivas-Mejía, P.E. Targeting
MiR-21-3p Inhibits Proliferation and Invasion of Ovarian Cancer Cells. Oncotarget 2016, 7, 36321–36337. [CrossRef]

51. Gyorffy, B.; Lánczky, A.; Szállási, Z. Implementing an Online Tool for Genomewide Validation of Survival-Associated Biomarkers
in Ovarian-Cancer Using Microarray Data from 1287 Patients. Endocr. Relat. Cancer 2012, 19, 197–208. [CrossRef]

http://doi.org/10.1371/journal.pone.0097094
http://doi.org/10.18632/oncotarget.9216
http://doi.org/10.1530/ERC-11-0329

	Introduction 
	Results 
	Identification of Differentially Expressed Genes in Cisplatin-Sensitive versus Cisplatin-Resistant HGSOC Cells 
	CASC10 Is Upregulated in Ovarian Cancer Patients and Cisplatin-Resistant Ovarian Cancer Cells 
	CASC10 siRNA-Mediated Knockdown Reduced Cell Growth, Invasion, and Viability in Ovarian Cancer Cells 
	CASC10 siRNA-Mediated Knockdown Induced Apoptosis and Cell Cycle Arrest 
	In Vivo Targeting of CASC10 with Liposome-Encapsulated siRNAs 
	Downstream Effectors of CASC10 in HGSOC Cells 

	Discussion 
	Materials and Methods 
	Cell Culture 
	RNA-Seq and Data Analysis of HGSOC Cells 
	Western Blot Analysis 
	Small-Interfering RNA (siRNA) and In-Vitro Transfection 
	Cell Growth and Cell Viability 
	Cell Invasion 
	Caspase-3 Activity 
	Kaplan-Meier Survival Analysis 
	KEGG Pathway Enrichment, Gene Ontology, and Network Analysis 
	SYBR-Green Based qRT-PCR 
	Tumor Implantation and Drug Treatment 
	RNA-Seq Analysis of CASC10-siRNA Transfected Cells 
	Statistical Analysis 

	Patents 
	References

