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Abstract: This article summarizes the main findings concerning Helicobacter pylori associated with
gastric MALT lymphoma (GML). Considered together, GML strains based on their virulence factor
profile appear to be less virulent than those associated with peptic ulcers or gastric adenocarcinoma.
A particular Lewis antigen profile has been identified in GML strains and could represent an
alternative adaptive mechanism to escape the host immune response thereby allowing continuous
antigenic stimulation of infiltrating lymphocytes.
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1. Introduction

Gastric MALT lymphoma (GML) is the most common marginal zone lymphoma of the digestive
tract. The involvement of Helicobacter pylori in this lymphoma is now well established and is based
on epidemiological, pathological, clinical, and bacteriological evidence [1]. H. pylori eradication
therapy is now considered the first therapeutic approach for low grade GML [2,3]. Further studies
have indeed revealed a regression of GML lesions after antibiotic eradication of the bacteria [4,5].
H. pylori eradication allows lymphoma regression in 60% to 90% of patients [6]. If a reinfection occurs,
GML reappears and evolves more rapidly because neoplastic cells are already sensitized to H. pylori
antigens [7].

H. pylori infection was the first bacterial infection to be considered as a type I carcinogen
(maximum level) for its implication in gastric adenocarcinoma. Since its discovery, extensive research
has been devoted to the identification of virulence factors or genetic markers, but H. pylori strains
associated with GML have been little studied.

We will endeavor in this review to answer one main question: are there H. pylori strains which are
more capable of inducing GML than others?

2. GML and Cytotoxin-Associated Gene A (CagA)

H. pylori is perfectly suited to the human stomach with an armamentarium allowing it to
withstand stomach acid, move in the gastric mucosa and evade the immune response of the host [8].
The main virulence factors studied in H. pylori are those involved in inflammation and cell damage,
in particular those encoded in the cag pathogenicity island (cagPAI) as well as other pro-inflammatory
proteins [9]. The cagA gene, encoded by the cagPAI, is undoubtedly the most studied virulence factor.
Inside the host cells, CagA can be phosphorylated and exert cellular effects dependent on tyrosine
phosphorylation, but it can also exert cellular effects independent of CagA phosphorylation, namely
IL-8 secretion [10–12]. CagA positive strains are considered to be more virulent and are associated with
peptic ulcers and gastric adenocarcinoma [13,14] while their association with GML is contradictory.
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The results of various studies based essentially on serological data (detection of CagA antibodies)
have not been consistent. Some have shown an association between CagA positive strains and the
occurrence of GML [15–22] and, more importantly, the prevalence of CagA positive strains in diffuse
large B-cell lymphoma (DLBCL) [17,21] (Table 1).

Table 1. Specificities of gastric MALT lymphoma strains.

Virulence Factors Association with Gastric MALT lymphoma References

CagA
Controversial implication. cagPAI present in only 50% of

GML isolated strains. Association with high grade
lymphoma questionable.

[17,21,28,40]

VacA vacAm2 allele predominant in GML strains
(genotype associated with the lowest biological activity) [39,40]

BabA
No association with GML. [40]SabA

Other adhesins

Lipopolysaccharide (LPS)
antigens

cagPAI negative GML strains expressed Ley antigens,
previously associated with autoimmune manifestations.

Strategy to escape to host response?
[55,59]

Genetic markers

Gene group comprised of
iceA1 allele, sabA and hopZ

Association with the risk of GML development
(low sensitivity marker) [40]

ORF JHP950
ORF encoding a protein with no specific function,
association with iceA1 and sabA virulence genes.

The first and only genetic marker of GML strains.
[64]

DNA array GML strains share common genetic background. [65]

Genome sequencing Further studies are needed to understand biological
significance of genetic variabilities [65,66,68]

Indeed, CagA is able to translocate into human B lymphocytes in vitro via the type 4 secretion
system encoded by the cagPAI [23,24]. Once in the cytoplasm, the protein binds to SHP-2, which
stimulates B lymphocyte proliferation and inhibits apoptosis via the regulation of intracellular
pathways, including the activation of endoplasmic reticulum kinases 1 and 2 (ERK 1 and ERK 2) and
p38 MAP kinase (MAPK) and an increase in the expression of Bcl-2 and Bcl-XL [24,25]. The correlation
between CagA expression and the expression of SHP-2, ERK, MAPK, Bcl-2 and Bcl-XLT has been
confirmed in humans [26]. In transgenic mice ubiquitously expressing CagA, leukocytosis is induced
as well as myeloid leukemias and B lymphomas via the deregulation of SHP-2, which is in favor for its
role in the pathophysiology of GML. This activity would be dependent on CagA phosphorylation [27].
CagA also acts by inhibiting the accumulation of p53, an important regulator of apoptosis and
tumor suppressor, and thus allows B-cells to evade apoptosis leading to the accumulation of genetic
mutations [23]. In contrast to CagA activity in the deregulation of SHP-2, this inhibitory effect of
CagA would be independent of its phosphorylation [23]. CagA also has an inhibitory activity on B
lymphocyte proliferation via the suppression of the JAK-STAT signaling pathway which would allow
the bacterium to avoid a specific immune response [23].

Concerning the expression level, Kuo et al., [28] detected the CagA protein in malignant B cells
in half of the GML patients studied. They observed that patients developing GML and infected by
a CagA positive strain responded significantly faster to eradication than those infected by a CagA
negative strain [28].

It is now established that H. pylori strains expressing the CagA protein are not associated with
low grade GML, but rather with gastric DLBCL [17,21,29,30]. Serological and strain analyses showed
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that the prevalence of CagA was significantly higher in gastric DLBCL (approximately 75%) than in
GML (37.8% to 44.8%) [17,21]. CagA and CagA signaling molecule expression in tumor cells could
be markers of H. pylori dependence on gastric DLBCL [30]. The results of the study conducted by
Lehours et al., based on a large collection of well-characterized MALT strains, are consistent with the
absence of CagA association with GML. The absence of CagA in about half of the GML strains studied
indeed suggests the existence of other mechanisms in lymphomagenesis. These strains are probably
less pro-inflammatory than strains associated with peptic ulcer or gastric adenocarcinoma. This was
confirmed in vitro during co-culture experiments with a gastric epithelial cell line, namely AGS. GML
strains and, in particular, the cagPAI negative ones did not have a particular pro-inflammatory potential
in this experimental system and would probably produce no other major pro-inflammatory factor than
those encoded by the cagPAI [10].

3. GML and Vacuolating Cytotoxin A (VacA)

The vacuolating cytotoxin VacA was named for its ability to induce the formation of vacuoles
in some cell lines in vitro. The protein of 140 kDa is encoded by the vacA gene. All H. pylori strains
have a copy of this gene, but only 50% possess the vacuolating ability in vitro. This is explained by its
polymorphism, the variable level of gene transcription [31] and the level of the protein’s secretion [32].
Three major regions of diversity (s, i and m) in the vacA sequence gene have been described: the signal
s sequence is characterized by four different families (s1a s1b, s1c, s2), the m central region by three
families (m1, m2a, m2b) and the intermediate region i by three families (i1, i2, i3). Each gene has a
combination of these different sequences which leads to numerous alleles and determines the activity
of the toxin [33].

Epidemiological studies have shown a correlation between these alleles and the risk of developing
a gastroduodenal disease. The risk of gastric adenocarcinoma or peptic ulcer development is increased
in people infected with strains carrying s1, m1 or i1 alleles compared to those infected with s2, m2 or
i2 strains [33–35].

It has also been shown that VacA induces epithelial cell apoptosis both in vitro and in vivo [36,37].
VacA penetrates inside the mitochondria, leading to a release of cytochrome C and thereby activating
pro-apoptotic signaling pathways [38].

The combination of vacA alleles with GML was also studied. Indeed, the vacAm2 allele,
corresponding to the less biologically active strains (the less vacuolating in vitro, the less pro-apoptotic
and less biologically active in vivo), predominates in GML strains [39,40] (Table 1). The vacA s1m1
genotype (corresponding to a high level of cytotoxin production) was correlated to the presence of cagA
and cagE, suggesting that these virulence genes are closely associated (as already described in H. pylori
strains leading to the other diseases), however, the evolution toward GML remain to be elucidated.

Finally, VacA was shown to exhibit in vivo anti-lymphoproliferative properties, especially on
T cells. This should be interpreted with care, in line with GML pathogenesis. VacA inhibits the
activation and proliferation of B and T lymphocytes [41–43] and could therefore interfere with the
antigen presentation of B-cells [44].

4. Other Virulence Factors

The bacterial adherence capacity is essential for good colonization and persistence of the infection.
H. pylori multiplies in the gastric mucus and the surface of epithelial cells is reached by a small
proportion of bacteria. The expression of adhesins allowed them to adhere [45]. H. pylori must be
able to adhere to gastric epithelial cells to avoid being eliminated by the gastric peristalsis and mucus
renewal [46]. Several adhesins have been described, with the most studied being BabA (Blood group
antigen binding adhesin) and SabA (Sialic acid-binding adhesin). These proteins bind to Lewis antigens,
which are similar to those of blood groups and are present on the surface of gastric epithelial cells [47].
There are two alleles for the babA gene; babA1 and babA2. H. pylori strain sequences could contain
one, two or multiple copies of the babA gene [48]. The babA2 strains are associated with ulcers and
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adenocarcinoma [49,50]. Recognition of SabA by neutrophils allows their activation, and thus a release
of radical oxygen and nitrogen species, inducing epithelial lesions [51]. The major adhesins, BabA
and SabA, and the different outer membrane proteins modulate their expression depending on the
environmental context [52]. Thus, the BabA protein hence could be modulated by phase variation and
antigenic variation in vivo, to facilitate adherence to the epithelium and to permit chronic infection [53].

Lehours et al. studied the presence of H. pylori virulence factors (cagA, cagE, vacA alleles, hopQ,
iceA and babA) and functional status of both sabA and hopZ genes, in 43 GML strains compared with
39 strains isolated from gastritis [40]. None of these genes were associated with GML when considered
individually. However, the gene group comprised of iceA1 allele, sabA and hopZ were identified in
strains with a ten times higher risk of developing GML than strains associated with gastritis. The low
prevalence of these strains among GML strains, however, made it a low sensitivity marker (Table 1).

5. GML and Lipopolysaccharide (LPS) Antigens

The O chain of H. pylori LPS has a similar composition to the Lewis X type antigens (Lex) or
the Lewis Y (Ley) blood group, also found in gastric epithelial cells [54]. This bacterial mimicry
results in an escape from the immune response; H. pylori is no longer recognized as a non-self which
promotes colonization and contributes to chronic infection [55,56]. Moreover, this mimicry is involved
in a phenomenon of autoimmunity leading to gastric atrophy [57]. The nature of the Lewis antigen
expressed by the H. pylori LPS determines the interaction with dendritic cells via a C-type lectin called
DC-SIGN, present on the surface of dendritic cells [58], that could influence the pro-inflammatory
response. Lewis negative strains escape the association with DCs and induce a Th1 response, while
strains expressing Lex and or Ley bind to DC-SIGN, resulting in the production of a IL-10-Treg
associated response and the obstruction of a Th1 response.

LPS antigens expressed by GML strains were studied by our group [59]. cagPAI negative
GML strains strongly expressed Ley antigens. These Ley antigens were associated in the past
with autoimmune manifestations, suggesting a component of this type in the pathogenesis of GML.
The association between Lewis antigen expression and disease status is not modified by vacA genotypes.
In conclusion, a particular Lewis antigen profile has been identified in cagPAI negative MALT
strains, which could represent an adaptive mechanism to the host response and participate in MALT
lymphomagenesis (Table 1).

The chronicity of H. pylori infection is believed to be essential in the context of gastric MALT
lymphoma. LPS is an important effector of the TLR4 among various Gram-negative bacteria.
However, H. pylori LPS evades TLR4 recognition, which therefore plays an important part in this
“camouflage” strategy [8]. According to Suarez et al., an antigenic source of autoimmunity is
provided by the chronic microbial antigenic stimulation observed during persisting H. pylori infection.
This phenomenon leads to sustained B-cell stimulation, thus favoring lymphoid transformation and
lymphoma development [60].

6. GML Strains and Genomic Data

Subtractive hybridization, a technique based on multiple steps of DNA-DNA hybridization, PCR,
cloning and sequencing, was used to identify specific genetic markers of GML strains. This technique
allows the identification of genes or sequences present in a strain of interest (called the tester strain) in
comparison to a control strain (called the driver). It was originally used to identify the cagPAI [61].

One marker, ORF JHP950 (according to the strain J99 annotation), was identified in GML strains.
It belongs to the so-called H. pylori plasticity zone [62,63]. This area was not initially considered
as a pathogenicity island sensus stricto, but rather as a large genomic island. However, JHP950 is
located close to ORF JHP947, which has been associated with strains isolated from patients with
gastric adenocarcinoma [63]. A significant association of JHP950 with iceA1 and sabA virulence
genes was also found in GML isolates [64] (Table 1). JHP950 ORF encodes a protein with no
specific function, which therefore poses a problem to integrate its role in the pathogenesis of GML.
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Only complementary approaches such as reverse genetics or even proteomics would help to answer
this question. Nevertheless, ORF JHP950 is the first and only genetic marker to date that may be used
to screen high-risk GML strains.

In a study performed by Thiberge et al., 43 DNAs extracted from GML strains were hybridized
to high-density membranes containing a selection of 248 non-ubiquitous genes (the flexible part of
the H. pylori genome known at that time) and 50 ubiquitous genes (the stable part) [65] (Table 1).
A homogeneous subpopulation of strains exclusively composed of cagPAI negative GML strains was
identified by hierarchical cluster analyses of the DNA hybridization values. These cagPAI negative
strains therefore appeared more closely together than others, suggesting again that the GML strains
share common genetic background.

This study motivated the same group to sequence and fully annotate the genome of one of
these cagPAI negative strains. This strain, named B38, represented the smallest published genome
(1,576,758 base pairs containing 1528 CDSs) compared to the six previously released H. pylori genomes
at that time (i.e. J99, 26695, HPAG1, P12, G27 and Shi470) [65]. It contains the vacA s2m2 allele
and lacks the genes encoding the major virulence factors (absence of cagPAI, babB, babC, sabB, and
homB). A small prophage was identified in this strain. The presence of prophages was further
confirmed in approximately 20% of H. pylori strains; there was with no association with GML, but with
phylogeographic groups of H. pylori [66,67].

More recently, three H. pylori strains isolated from patients with GML were sequenced by
Wang et al. [68]. Nine genes shared by these three strains and absent in five H. pylori strains isolated
from gastritis and ulcer were identified by whole-genome comparison. Many gene substitutions,
deletions and insertions were also revealed in these three strains. Further investigations are needed
to understand the implication of these genetic variabilities in gastric lymphomagenesis (Table 1).
Knowledge of the genome sequences of GML strains could open new perspectives to explore the
contribution of virulence determinants in the physiopathology of H. pylori infection.

7. Conclusions

No specific virulence factor has been identified yet in GML-associated strains to explain gastric
lymphomagenesis. The situation is very different from gastric adenocarcinoma’s associated strains,
where the molecular effects induced by the cagPAI are now well characterized and linked to gastric
carcinogenesis. Compared to strains associated with peptic ulcer or gastric adenocarcinoma, GML
strains based on their virulence factor profile appear to be less pro-inflammatory. They can indeed be
considered amongst the lowest producers of VacA cytotoxin, which could be a strategy to modulate
T cell functions in vivo. Based on their genetic content and LPS profile, cagPAI negative GML strains
seem to be closely related, even if no major new virulence factor has been identified in this group
of strains. Some genetics variabilities in GML-associated strains have been identified, but further
investigations are needed to understand their potential implication in GML development. In vivo
models of GML are under development and could bring new data on the nature of stimulating and
recognized antigens involved in GML pathogenesis in the near future. Are there H. pylori strains that are
more capable of inducing GML than others? The answer is probably “no.” The information gained over
the past 15 years on GML-associated strains suggests that the key point in gastric lymphomagenesis
should be investigated elsewhere, probably in predisposing host factors.
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