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Abstract: Fibrosis is not a unidirectional, linear process, but a dynamic
one resulting from an interplay of fibrogenesis and fibrolysis depending
on the extent and severity of a biologic insult, or lack thereof.
Regression of fibrosis has been documented best in patients treated with
phlebotomies for hemochromatosis, and after successful suppression
and eradication of chronic hepatitis B and C infections. This evidence
mandates a reconsideration of the term “cirrhosis,” which implies an
inevitable progression towards liver failure. Furthermore, it also
necessitates a staging system that acknowledges the bidirectional nature
of evolution of fibrosis, and has the ability to predict if the disease
process is progressing or regressing. The Beijing classification attempts
to fill this gap in contemporary practice. It is based on microscopic
features termed “the hepatic repair complex,” defined originally by
Wanless and colleagues. The elements of the hepatic repair complex
represent the 3 processes of fragmentation and regression of scar, vas-
cular remodeling (resolution), and parenchymal regeneration. However,
regression of fibrosis does not imply resolution of cirrhosis, which is
more than just a stage of fibrosis. So far, there is little to no evidence to
suggest that large regions of parenchymal extinction can be repopulated
by regenerating hepatocytes. Similarly, the vascular lesions of cirrhosis
persist, and there is no evidence of complete return to normal micro-
circulation in cirrhotic livers. In addition, the risk of hepatocellular
carcinoma is higher compared with the general population and these
patients need continued screening and surveillance.
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L ike many radically disruptive ideas, the debate about
regression of hepatic fibrosis and cirrhosis started in early

1960s. An early study on reversal of fibrosis was published by
Hans Popper, one of the founders of hepatopathology.1–4 The
debate continued with much skepticism and little optimism
over the next 4 decades,5 culminating with the pioneering
publication of Wanless et al.6 The past 2 decades have how-
ever, provided substantial evidence for regression of hepatic
fibrosis.7–10 This new paradigm in the evolution of hepatic
fibrosis led to development of the Beijing classification for
systematic and reproducible documentation of regression

versus progression of fibrosis.11 Successful treatment of chronic
liver diseases, accompanied by of regression of fibrosis, has
additionally changed the diagnostic and therapeutic implica-
tions of the term “cirrhosis.” Considered inevitably “end-
stage” for almost 2 centuries, current evidence for regression of
fibrosis begs us to reconsider the term “cirrhosis” in the face of
timely diagnosis, accurate identification of the underlying eti-
ologies, and effective therapies.12

In this review, we summarize the histopathologic
parameters that have been demonstrated to support regres-
sion of fibrosis in chronic liver disease, elaborate the Beijing
classification’s relevance and clinical utility, and highlight
the underexplored areas of inquiry such as the fate of vas-
cular abnormalities associated with cirrhosis and the risk of
hepatocellular carcinoma (HCC).

HEPATIC FIBROSIS: IS UNIDIRECTIONAL
PROGRESSION INEVITABLE?

Hepatic fibrosis is defined as excessive deposition of col-
lagen (type I and 1V) in the hepatic parenchyma. It is distinct
from parenchymal collapse which results in approximation
(collapse) of pre-existing reticulin network (collagen type III)
when the intervening hepatocytes are lost in a disease process.
Conventional systems for staging of fibrosis in chronic viral
hepatitis, developed before effective therapies became avail-
able, considered fibrosis to be a linear, inevitably progressive
process that proceeded from an early stage (portal fibrosis—
Ishak stage 0 to 2, Metavir F0 to F1, Batts-Ludwig stage 0 to
2), through intermediate stages (fibrous septa, focal or frequent
—Ishak stage 3 to 4, Metavir F2 to F3, Batts-Ludwig stage 3)
to advanced stages of fibrosis (fibrous septa with diffuse nod-
ularity/“established cirrhosis”—Ishak stage 5 to 6, Metavir F3
to F4, Batts-Ludwig stage 3 to 4).13–15 However, fibrosis is not
a unidirectional, linear process, but rather a dynamic one
resulting from an interplay of fibrogenesis and fibrolysis
depending on the extent and severity of a biologic insult, or
lack thereof. In short, fibrosis of the liver parenchyma at any
given time represents the balance between injury and repair.
Thus, when an underlying injurious agent is removed, the
balance shifts towards repair, with fibrolysis leading to
regression of fibrosis.

Initially limited to experimental animal studies, credi-
ble evidence now extends to human patients treated with
phlebotomies for hemochromatosis, and after successful
suppression and eradication of chronic hepatitis B and C
infections.2,4,16–20 Partial regression of cirrhosis has also
been documented in patients with biliary obstruction, Wil-
son disease, intestinal bypass-related cirrhosis, Indian
childhood cirrhosis, autoimmune hepatitis, primary biliary
cholangitis, and alcoholic liver disease.21–28 The earliest case
reports and small case series documenting regression of
fibrosis after therapeutic phlebotomies were published in
1950 to 1970s.29–33 One of the largest series on regression of
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fibrosis in hemochromatosis documented regression of fib-
rosis using METAVIR staging system.34 The study docu-
mented 36 patients, between the ages of 18 to 75 with
homozygous C282Y mutation, METAVIR stage F3 or F4
on the initial liver biopsy, and a minimal interval of 2 years
between cessation of phlebotomies and a second liver
biopsy. The pretherapeutic and posttherapeutic biopsies
were compared independently by 2 liver pathologists, who
were blinded to the clinical and biochemical data. The his-
tologic parameters studied included portal fibrosis (MET-
AVIR grading system), quantity of iron (semiquantitative
grading system of Deugnier et al13),31 and amount of stea-
tosis (a 4-grade scale). Regression of fibrosis, defined as a
decrease of at least 2 METAVIR stages, was seen in 47%
(17/36) patients. Among 23 patients with cirrhosis (F4) on
their initial biopsy, fibrosis decreased in 10 (43.5%); from F4
to stage 0 in 1 patient, to stage 1 in 4 patients, to stage 2 in 3
patients, and to stage 3 in 2 patients. Among 13 patients
with F3 fibrosis on initial biopsy, fibrosis decreased in 11
(84.6%); from F3 to stage 0 in 3 patients, to stage 1 in 6
patients, and to stage 2 in 2 patients.

DOES REGRESSION OF FIBROSIS IMPLY
REVERSAL OF CIRRHOSIS?

Cirrhosis is not merely a “stage of fibrosis,” but rather
a diffuse process characterized by advanced fibrosis, regen-
erative nodule formation, and vascular remodeling. Vas-
cular remodeling accompanies parenchymal damage and is
fundamental to the progression of chronic liver diseases.

A hallmark of chronic liver diseases are regions of
parenchymal extinction, originally defined as a parenchymal
area with contiguous loss of hepatocytes.35 The drop-out of
hepatocytes is accompanied by loss of the local micro-
vasculature, which causes vascular compromise and ischemia,
leading to further parenchymal damage. A self-perpetuating
cycle is set up with increasing vascular compromise, involving
progressively larger branches of the hepatic and portal vein
thus escalating the congestion and ischemia,36 and leading to
ever larger areas of parenchymal collapse and extinction.
Therefore, Wanless et al36 proposed a revised definition of
parenchymal extinction as “a region with focal loss of con-
tiguous hepatocytes and adjacent microvascular structures.”
The fate of vascular abnormalities in cirrhosis is an under-
explored area and there is lack of substantial evidence to
support the idea of complete regression of these lesions. Thus,
regression of fibrosis does not equate to reversal of cirrhosis
as vascular abnormalities persist in livers with regressed
fibrosis.

HISTOLOGIC FEATURES OF FIBROSIS
REGRESSION

The Hepatic Repair Complex
The “hepatic repair complex” defined by Wanless et al6

describes the elemental microscopic features that signal
regression of fibrosis: delicate perforated septa, isolated thick
collagen fibers, delicate periportal fibrous spikes, portal tract
remnants, hepatic vein remnants with prolapsed hepatocytes,
hepatocytes within portal tracts or splitting septae, minute
regenerative nodules, and aberrant parenchymal veins. These
features form the basis of the Beijing classification (discussed
below), which broadly classifies them into 3 categories; frag-
mentation and regression of scar, vascular remodeling (reso-
lution), and parenchymal regeneration (Fig. 1).11

Fragmentation and Regression of Scar
An established cirrhotic nodule is a “regenerative”

nodule surrounded completely by thick fibrous septae
containing inflammatory infiltrate, ductular proliferation,
and edema. The central hepatic veins are compressed,
obliterated, thrombosed, and often extinct, with con-
comitant development of vascular collaterals shunts. The
vascular shunts in the cirrhotic nodule act as independent
microcirculatory units. With regression, the fibrous septa
start to lose inflammatory infiltrates and edema thus
becoming more compact, thin, delicate, and less cellular or
completely acellular. Thinning of septa leads to perfo-
ration and fragmentation and eventual interruption by
regenerating hepatocytes. The hepatocytes can often be
seen splitting the septa. Other features suggestive of
regressing fibrosis are the presence of periportal delicate
fibrous spikes or “adhesions,” and reduction in the amount
of collagen in the portal tracts.

Vascular Remodeling
With resorption of collagen, the portal tracts at the

periphery of cirrhotic nodules start losing collagen resulting in
appearance of “portal tracts remnants”—paired artery/arte-
riole and bile duct with a thin, delicate rim of collagen. The
small veins are often obliterated. As repair/regeneration per-
sists, hepatocytes migrate into the portal tract stroma and can
be seen in the proximity of ducts/arteries and even in the lumen
of portal vein remnants. Partially or completely recanalized
large hepatic veins can be seen with regression, however most
veno-occlusive disease lesions persist as fibroelastotic cords of
collagen. Migration of regenerating hepatocytes into these
lesions is also seen. Other features include presence of telan-
giectatic sinusoids and unpaired arteries in the regions of
parenchymal extinction. These “arterialized sinusoids” and
“capillarized channels” representing vascular shunts persist
even when much of the fibrosis has regressed (Fig. 2).37–39

Parenchymal Regeneration
Suppression of the underlying injurious agent (viral

infection, autoimmune hepatitis, alcohol etc.) tilts the balance
in favor of hepatocellular regeneration. Hepatocytes pro-
liferate and repopulate foci of parenchymal extinction, hitherto
rich in proliferating ductules and inflammatory cells. Resorp-
tion of sinusoidal collagen results in remodeling of these areas
and appearance of “near-normal” hepatic plates. However,
large regions of parenchymal extinction persist, thus a com-
plete regression of cirrhosis is almost never seen (Fig. 2).35

Incomplete Septal Cirrhosis
Incomplete septal cirrhosis, an enigmatic entity first

described by Popper,40 is a type of cirrhosis characterized by
vaguely macronodular appearance delineated by delicate,
incomplete septa. It is often associated with portal
hypertension.41 Although incomplete septal cirrhosis has
been a perplexing entity, there are documented reports of
partially resolved cirrhosis following suppression of liver
injury that appear as incomplete septal fibrosis.42,43 Wanless
et al,6 based on a study of 52 cases, proposed that incom-
plete septal cirrhosis, in fact represents a stage of regression
of cirrhosis. With regression of fibrosis, the septa around the
cirrhotic nodules become thin and delicate with time, and
with migration of hepatocyte buds are split apart and
eventually fragmented, imparting the appearance of an
“incomplete” nodule. This observation was supported by
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Theise et al11 after assessment of 71 cases of treated chronic
viral hepatitis B cirrhosis.

THE BEIJING CLASSIFICATION11

The advent and wide-spread availability of successful
therapies for suppression of hepatitis B viral replication
and eradication of hepatitis C virus has compelled a re-
examination of existing staging systems. Contemporary
practice requires a staging system that take into consid-
eration the bidirectional nature of evolution of fibrosis
with the potential ability to predict if the disease process is
progressing or regressing. The Beijing classification pro-
posed by Theise and colleagues attempts to fill this gap by
devising a method to assess whether fibrosis is progressing
or regressing at a given period in time, as captured in a
liver biopsy.

The Beijing classification was developed on a study of
paired pre and post treatment biopsies from 71 patients
successfully treated for chronic hepatitis B virus (HBV)
infection. In addition to grading of necroinflammatory
activity and staging of fibrosis, it provides a P-I-R
(Progressive-Indeterminate-Regressive) score to evaluate
the predominant pattern and quality of fibrosis: predom-
inantly progressive, predominantly regressive or inde-
terminate for cases in which the pattern is not straight-
forward one way or the other.

Evaluation is performed on a routine hematoxylin-
eosin stain, combined with a trichrome or reticulin stain for
assessment of fibrosis. Grading and staging are simplified
into 3 grades of necroinflammatory activity and 3 stages of
fibrosis, respectively. The 3 grades of necroinflammatory
activity are “inactive” (portal inflammation only or rare foci
of interface or lobular hepatitis; no confluent necrosis),
“active, nonsevere” (varying degrees of interface and lobular
hepatitis easily identified at low power; no confluent
necrosis), and “active, severe” (confluent necrosis, peri-
venular drop out, bridging necrosis or parenchymal col-
lapse). The 3 stages of fibrosis are “early” (no fibrosis or
portal fibrosis), “intermediate” (fibrous septa, focal or fre-
quent), and “advanced” (fibrous septa with focal or diffuse
nodularity).

The defining histologic features of the progressive pat-
tern are broad fibrous septa with loosely aggregated collagen
fibers, edema, congestion, and inflammatory cells. In pro-
gressive disease, as parenchymal extinction evolves, the
inflammatory activity is initially marked but gradually
decreases and is masked by activation of macrophages and
hepatic stellate cells, increasing deposition of collagen with
broad fibrous septa formation, and appearance of ductular
reactions. The predominantly regressive pattern is charac-
terized by presence of thin, compact relatively acellular septa
without edema, inflammation and other cellular infiltrates.

FIGURE 1. A, Regressing fibrosis seen as an incomplete nodule with progressively thinning septum (arrowhead) and regeneration of
hepatocytes in a patient with cirrhosis due to nonalcoholic steatohepatitis. Hematoxylin and eosin ×100. B, Nodular liver parenchyma
with incomplete septa. Compared with the portal tracts, fibrosis has regressed significantly with one thin septum (arrowhead) and
aberrant vein remnants (stars) in a patient with cirrhosis due to nonalcoholic steatohepatitis. Hematoxylin and eosin ×100. C, Vaguely
nodular liver parenchyma characterized by absence of complete septa and presence of portal tract remnants. Mild steatosis persists
without ballooned hepatocytes or Mallory-Denk bodies in a patient with cirrhosis due to nonalcoholic steatohepatitis. Hematoxylin and
eosin ×40. D, Hepatocyte buds are seen splitting the thin septum; the collagen band is significantly thinned out in the center compared
with the periphery in a patient with cirrhosis due to nonalcoholic steatohepatitis. Hematoxylin and eosin ×100.
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Septal fragmentation, recanalization of vascular thrombosis,
and foci of disintegrating scar tissue become evident as
regenerating hepatocytes begin to grown into and replace the
scar tissue.

The prognostic value of the P-I-R score lies in its
strong clinical correlations. In the pilot study, the P-I-R
score reflected the prognosis of the disease, independent of
necroinflammatory activity, fibrosis severity, or treatment
experience. The score showed strong correlation with the
treatment; P/I before treatment versus R after treatment.
It also correlated with the 4 stage Laennec system for
staging of cirrhosis, and thus may potentially serve as a
surrogate marker for hepatic venous wedge pressures for
risk stratification of portal hypertension. The Laennec
system implies a sequential progression of cirrhosis from
4A to 4B to 4C; the Beijing classification’s P-I-R score
reflects the dynamic evolution between Laennec stages 4A,
4B, and 4C, thus incorporating the probability of regres-
sion from 4B and 4C to 4A.

DOES REGRESSION OF FIBROSIS DOWNGRADE
THE RISK FOR HCC?

Pathogenesis of HCC is the result of accumulative
mutational burden resulting from factors that affect
the tumor and its microenvironment, the tumor

microenvironment (TME). Different etiological factors
[HBV, hepatitis C viral (HCV), non alcoholic steatohepa-
titis, etc.] may elicit different pathways leading to hep-
atocarcinogenesis. The fibrous stroma, cellular elements,
and vascular abnormalities in cirrhosis constitute the TME.
When the injurious trigger is removed by effective therapies,
the TME landscape changes due to decrease in inflamma-
tion and downregulation of the fibrogenic pathways.
Despite this resolution, however, the driver mutations
already imparted to hepatocytes in early disease, for
instance, in HBV infection, do not vanish. The mutational
burden rather becomes more complex and biodiverse with
repeated cycles of injury and repair, resulting in genomic
instability.44–47 Furthermore, hypoxia-induced vascular
endothelial growth factor (VEGF) expression is linked to
tumor diversity and TME polarization.48–51 With persis-
tence of vascular lesions in cirrhosis, the hypoxic injury
persists despite elimination of inflammation and regression
of fibrosis.

HBV predisposes to hepatocarcinogenesis through
direct and indirect mechanisms. One of the earliest direct
mechanisms is HBV DNA integration into the host genome
resulting in direct insertional mutations, leading to high
levels of HBV replication, genomic instability and sub-
sequent clonal expansion of tumor cells. In chronic HBV
infection, HBV-encoded oncoproteins like hepatitis B virus

FIGURE 2. A, Regressed fibrous septa seen as periportal fibrosis (arrowheads) and regenerating hepatocytes splitting the septa (stars) in a
patient with cirrhosis due to nonalcoholic steatohepatitis. Hematoxylin and eosin ×100. B, Fragmentation of septa and regression of scar
seen as thinning of septae leading to perforation and fragmentation and eventual interruption by regenerating hepatocytes in a patient
with cirrhosis due to chronic hepatitis C infection. Trichrome stain ×100. C, As repair/regeneration continues, hepatocytes migrate into
the portal tract stroma and can be seen in the proximity of bile ducts and hepatic arteries in a patient with cirrhosis due to chronic
hepatitis C infection. Trichrome stain ×40. D, Resorption of a bridging septum between 2 portal tracts with negligible inflammatory
infiltrate and resorption of sinusoidal collagen resulting into remodeling and appearance of “near-normal” hepatic plates. Trichrome stain
×40.
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X protein and truncated preS2/S proteins impair control of
proliferation and transcription, thus contributing to malig-
nant hepatocyte transformation. Hepatitis B virus X protein
is also responsible for epigenetic changes of tumor sup-
pressor genes, thus HBV associated HCCs have a higher
rate of chromosomal alteration including TP53 mutations
and relatively low rate of activating β-catenin mutations.
HBV-related HCCs can arise in noncirrhotic livers, further
supporting the direct role of the virus in hepatocarcino-
genesis. Chronic high viral load and specific genotypes ini-
tiate a cascade of host immune response leading to recurrent
necroinflammation, fibrosis, accelerated hepatocyte turn-
over and accumulation of mutations.52,53

The principal oncologic drivers in chronic HCV infec-
tion are core protein and NS3 and NS5A proteins. HCV
core is an RNA-binding protein, that is singularly capable
of inducing hepatic steatosis, insulin resistance and
HCC.54–56 It also promotes hepatocyte proliferation and its
distinct mutations in genotype 1 patients confer a higher
HCC risk, even after elimination of HCV.57,58 The NS3
protein of HCV promotes hepatic fibrosis in chronic liver
disease while NS5A has a central role in viral replication
and assembly, is capable of inducing hepatic steatosis, is
protective against apoptosis and confers resistance against
interferon α.59–64 The key cellular and molecular pathways
underlying progression of chronic HCV infection to HCC
are: the epidermal growth factor,65–70 signal transducer and
activator of transcription 371,72 transforming growth factor
beta73–76 and VEGF.77,78 In its evolution, HCV infection is
also associated with higher microvessel density compared
with chronic hepatitis B patients.79

In the face of ever-growing obesity epidemic in the devel-
oped and developing world, nonalcoholic fatty liver disease
(NAFLD) has become one of the leading causes of end-stage
liver disease.80 Furthermore, it is the fastest growing cause of
HCC.81 Inflammation in non alcoholic steatohepatitis is “met-
abolic” in nature82; several pathways including insulin resist-
ance, lipotoxicity, lipid peroxidation, and necroinflammation
precipitate steatohepatitis.83 With regression of fibrosis, most of
the risk factors for development of HCC persist in NAFLD;
lipid metabolic reprogramming involving carnitine palmitoyl
transferase and fatty acid β-oxidation, being key mechanisms.84

Similarly, the risk of HCC persists in cirrhosis secondary to
hemochromatosis even after “clinically successful” therapeutic
phlebotomies.85–90

FUTURE PERSPECTIVE
With better understanding of the underlying cellular and

molecular mechanisms of fibrosis, novel therapeutic strategies are
under investigation to target these pathways.91–93 Although the
significance of vascular lesions in the progression of liver disease
is quite underappreciated, there is evidence to support and
explore the potential role of anticoagulants, statins, and VEGF
modulators as protective agents that can either slow down the
progression or even reverse the vascular abnormalities.94–99

CONCLUSIONS
The evidence in favor of regression of fibrosis in

chronic liver disease is substantial and irrefutable. However,
complete resolution of cirrhosis is yet to be demonstrated.
So far, there is little to no evidence to suggest that large
regions of parenchymal extinction can be repopulated by
regenerating hepatocytes. Similarly, the vascular lesions of
cirrhosis persist, and there is no evidence of complete return

to normal microcirculation in cirrhotic livers. Despite
regression of fibrosis, adequate suppression of viral load in
chronic HBV infection, and successful treatment of chronic
HCV infection, the risk of HCC is higher compared with the
general population and these patients need continued
screening and surveillance.100–103

There is need for reassessing the timing of protocol
biopsies for chronic viral hepatitis (HBV, HCV) and more
studies are needed to explore the clinical utility and reprodu-
cibility of the Beijing classification. The vascular lesions of
cirrhosis need to be studied and explored for their natural
history and evolution. Cirrhosis, as a term either needs to be
revised or discontinued as its historical diagnostic connotations
and clinical implications would be increasingly less relevant in
the face of modern therapeutic strategies.12 And last but not
the least, given the burden of NAFLD and a multitude of
ongoing clinical trials, there is a need for documenting the
regression of fibrosis and cirrhosis in a systematic, reprodu-
cible, and clinically relevant manner.
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