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Abstract: In recent years, vinyl selenones were rediscovered as useful building blocks for new
synthetic transformations. This review will highlight these advances in the field of multiple-bond-
forming reactions, one-pot synthesis of carbo- and heterocycles, enantioselective construction of
densely functionalized molecules, and total synthesis of natural products.
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1. Introduction

Selenium chemistry has rapidly grown over the past years and nowadays sele-
nium reagents are recognized tools in the chemo-, regio-, and stereoselective synthesis of
molecules containing selenium or not [1–3]. In fact, selenium functionalities can be easily
reduced, eliminated or transformed into other functional groups with high stereocontrol.
In this field, over the past decade, the chemistry of vinyl selenones has been the object of
renewed interest, leading to the development of diverse and powerful methods with appli-
cations in challenging fields of organic synthesis, such as the enantioselective synthesis and
the total synthesis of natural products. The chemistry of these hexavalent, tetra-coordinated
selenium compounds shows interesting analogies with that of the corresponding vinyl
sulfones. Both contain an electron-withdrawing group that stabilizes vicinal carbanions
and activates the double bond to conjugate nucleophilic attack, but the weak C-Se bond
donates to the phenylselenonyl moiety, a better leaving group character for further sub-
stitution or elimination reactions. In this review, recent applications of vinyl selenones in
domino or sequential one-pot processes for the assembly of carbo- and heterocycles, the
functionalization of biomolecules, and the organocatalyzed enantioselective construction
of all-carbon quaternary stereocenters will be presented and discussed (Figure 1). Main
advantages of such multiple-bond forming strategies are the mild and operationally simple
reaction conditions, the good to excellent yields, and the high chemo-, regio-, and stereo-
selectivities. Examples of use of vinyl selenones in the total synthesis of natural products
will also be shown.
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Figure 1. Vinyl selenones as versatile reagents in organic synthesis. 
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Figure 1. Vinyl selenones as versatile reagents in organic synthesis.
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2. Synthesis of Vinyl Selenones and Their Biological Activities

Selenones are usually prepared by oxidation of the corresponding selenides [4,5]. The
first oxidation of selenides to selenoxides is fast, but the decreased electron density on
the selenium atom makes selenoxides less prone to the second oxygen transfer. Even if,
several strong oxidants convert selenides into selenones, i.e., KMnO4 [6], peroxyacids or
their salts [6,7], H2O2 in the presence of benzenseleninic acid [8], HMPA peroxo complex
of molybdenum [9], Oxone® [10], and HOF·CH3CN complex [11], 3-chloroperoxybenzoic
acid (m-CPBA) [12] is the reagent of choice for the oxidation of vinyl selenides (Scheme 1,
route a). It is used in excess in alcoholic, ethereal or halogenated solvents. Recently, the
greener Oxone® was used to generate vinyl selenones [13] in water without addition of
any catalyst or co-solvent.

 
Scheme 1  . Synthetic approaches to vinyl selenones. 
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Scheme 1. Synthetic approaches to vinyl selenones.

In recent years, selenium-containing compounds have showed interesting biological
activities and a great potential in medicinal chemistry, particularly in cancer therapy [14].
Bioactive vinyl selenones were recently prepared through the multistep sequence described
in Scheme 1, route b. In this protocol the Wittig–Horner reaction between phenylse-
leninylmethyl phosphonates and variously substituted aromatic aldehydes generated vinyl
selenoxides which were transformed into the corresponding selenone by oxidation with
m-CPBA [15]. These compounds were evaluated for their in vitro and in vivo anticancer
activities. They showed tubulin polymerization inhibition and antiproliferative activity
against several cancer cell lines. The structure of the most active compound is reported
in Figure 2 together with other diaryl or aryl alkylselenones with antiproliferative [16] or
pesticide activities. [17,18].
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3. Michael-Initiated Ring Closures

Michael initiated ring closure reactions of vinyl selenones demonstrated to be highly
efficient in the regio- and stereoselective synthesis of small cycles. Cyclopropanes have
attracted great attention by the scientific community. These small rings are present as key
structural motif in several natural products and drugs and are used as synthetic intermedi-
ates due to the easy ring opening. Since the seminal independent works by Kuwajima and
Tiecco [19–21], vinyl selenones and several active methylene pronucleophiles, such as di-
alkyl malonates, β-ketoesters, and β-ketoamides, have been employed for the construction
of these small rings. Nitromethane was also a competent pronucleophile. The reactions
proceed in the presence of strong bases through a deprotonation/Michael addition, fol-
lowed by a proton transfer and a ring closure reaction by nucleophilic displacement of the
selenium moiety. Thus, the electron-withdrawing benzenselenonyl group, first activates
the alkene to the Michael addition and then promotes the cyclization acting as an excellent
leaving group (Scheme 2). Benzeneseleninic acid is generated as the by-product.
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In 2009, this strategy was applied to the asymmetric synthesis of cyclopropanes start-
ing from malonates containing (−)-bornyl or (−)-mentyl groups as chiral auxiliaries [22].
These reactions occurred with low diasteroselectivity, but the mixtures of the two di-
astereoisomers were easily separated by chromatography, giving access to enantiomerically
pure compounds. Some products were successfully converted into α-cyclopropane-α-
amino acids (ACCs) in two steps. Enantiopure ACCs find interesting applications in
pharmacology and bioorganic chemistry. In fact, they are conformationally constrained
analogues of proteinogenic aminoacids and play an important role in the synthesis of
peptidomimetics and foldamers. Very recently, alkyl phenyl selenones were involved in
an interesting cyclopropanation reaction by dearomatization of 1-nitronaphthalenes [23].
Contrary to the previously mentioned processes, this domino reaction, employs alkyl
selenones as Michael donors in a Corey–Chaykovsky type cyclopropanation (Scheme 3).
The experiments demonstrated that sterically demanding substituents at the selenium
nucleophile favor the formation of cyclopropanes and suppress the competitive formation
of the alkylated products by a Michael/elimination sequence. The reaction has been suc-
cessfully extended to 2-nitronaphtalenes, 6-nitroquinoline, and isomeric 5-nitroindazolines.
Mixtures of endo and exo isomers were usually isolated.
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In the past decade, the development of new methods for the synthesis of spiro-
cycles became a hot topic in organic synthesis. The conformational rigidity, the three-
dimensional nature with substituents in well-defined spatial disposition, the improved
physicochemical and pharmacokinetic properties and the relative structural novelty make
spirocycles attractive leads in drug discovery programs [24,25]. In fact, compared to flat
aromatic compounds, they seem to have more chances to maximize specific interactions
with biomolecules. A number of new protocols have been described as a mean for generat-
ing structural diversity and/or impart efficiency and stereoselectivity to the cyclization. In
this field, Marini and co-workers used 2-oxindoles as pro-nucleophiles for a facile assembly
of spirocyclopropyloxindoles [26]. The synthesis of spirocyclopropyl oxindoles has been
developed in aqueous basic conditions in the presence of catalytic cetyltrimethylammo-
nium bromide (CTAB). As reported in Scheme 4, variously substituted spirocyclopropyl
oxindoles with three point of diversity were isolated in good to excellent yields. High
diastereoselectivities were observed starting from the β-aryl substituted vinyl selenones,
probably due to the stabilizing π-π interactions between the oxindole ring and the neigh-
boring aromatic ring in the transition state. Some selected spiro-compounds demonstrated
anti-HIV-1 activity.
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Scheme 4. Spirocyclopropyl oxindoles via a Michael addition/cyclization cascade.

Aqueous basic conditions were also successfully employed for the construction of
a challenging spiro 2,2-substituted oxetane motif in moderate to good yields [27]. The
Michael addition/intramolecular etherification cascade was performed with N-protected
or unprotected 3-hydroxy isatins and the phenyl vinyl selenone without addition of surfac-
tants (Scheme 5). This reaction is a valid alternative to photochemical [2+2] cycloadditions
(Paternò–Buchi reactions) or multistep protocols involving intramolecular Williamson
etherifications in the preparation of spirooxindole oxetane. Limitations of these approaches
are the narrow substrate scope and the poor yields, respectively. Authors also performed
comparative studies among the vinyl selenone and its more common sulfur analogue, vinyl
sulfone. Equal amounts of the two chalcogenones were allowed to react with a limiting
amount of the 3-hydroxy isatin. Vinyl sulfone showed a poorer reactivity as Michael
acceptor and a complete inability to cyclize under the standard reaction conditions.
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A simple synthesis of methoxyoxetanes has been previously described by Kuwa-
jima [28]. In this telescopic protocol, the 1-alkyl-3-phenylseleno-2-propen-1-ols were oxi-
dized with m-CPBA and then treated with NaOH in MeOH. The methoxide ion adds to
vinyl selenones generating oxa-Michael adducts that after proton transfer and intramolec-
ular nucleophilic substitution gave methoxyoxetanes in good yields, as 2:1 mixtures of
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unseparable cis and trans diastereoisomers, independently of the geometry of the starting
selenide (Scheme 6).
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Scheme 6. Oxidation/oxa-Michael/etherification cascade of 1-alkyl-3-phenylseleno-2-propen-1-ols.

In 2010, a one-pot synthesis of aziridines from vinyl selenones and primary amines,
aminoalcohols or diamines was described [29]. The aza-Michael Initiated Ring Closure
reaction (aza-MIRC) was performed both in toluene or in aqueous suspension or emulsion,
without addition of any catalyst or additive in good yields. The main limitation of this protocol
was the lack of reactivity of aromatic amines. In this case, water also played a beneficial
role, since higher reaction rates were observed in aqueous media. It seems reasonable that
water may be responsible for a faster proton transfer. Moreover, the H-bonding network can
facilitate either the conjugate addition or the cyclization step (Scheme 7).
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Scheme 7. Aziridines by aza-Michael Initiated Ring Closure (aza-MIRC) of β-substituted
vinyl selenones.

The one-pot synthesis of α,α-disubstituted γ-lactams from vinyl selenones and N-
phenyl substituted amides has been reported (Scheme 8). Lactams were obtained in good
to excellent yields via a Michael addition/intramolecular N-alkylation cascade [30].
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Scheme 8. Synthesis of γ-lactams.

The choice of the proper base was crucial for the success of the process. In fact, due to
the bidentate nature of the nucleophilic amide, the formation of C-N or C-O bonds gave
access to lactams or imidates, respectively. Both Et3N and K2CO3 gave consistent amount of
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the imidates, whereas 2 equivalents of the stronger base, 1,8-diazabicyclo[5.4.0]undec-7-ene
(DBU), afforded lactams in high yields as the sole reaction products. This approach was
extended to the synthesis of spirolactams containing a cyclopentanone, indanone, tetralone,
or oxindole scaffold.

In 2016, Zhu reported that alkyl isocyanides react with phenyl vinyl selenone in the
presence of 1 equivalent of water and a catalytic amount of Cs2CO3 affording oxazolidin-2-
ones in good yields [31]. In this reaction four new bonds were generated and the phenyl
selenenonyl group acted not only as an activating and a leaving group, but also as a
latent oxidant. The plausible mechanism, reported in Scheme 9, was supported by control
experiments carried out with nBuN13C and H2

18O. Water adds to phenyl vinyl selenone
under basic conditions to generate an oxa-Michael adduct that in small amounts cyclizes to
give an oxirane (observed by 13C-NMR experiment) and benzenseleninic acid. The latter
compound, in equilibrium with its anhydride (BSA), is responsible of the oxidation of
the isocyanide to isocyanate. The nucleophilic addition of the Michael adduct onto the
isocyanate generates a carbamate which can cyclize to oxazolidinone by the extrusion of
benzenseleninic acid.
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Scheme 9. One-pot synthesis of oxazolidin-2-ones.

Interesting domino processes for the access to six or seven-membered heterocycles
were developed by Bagnoli and co-workers in 2011 [32]. 1,4-Dioxanes, oxazines, thiazines
and piperazines were synthesized through the formation of two new carbon-heteroatom
bonds using vinyl selenones and commercially available chiral 1,2-diols, N-protected
amino alcohols, thiols or diamines without loss of enantiomeric purity. The access to
enantiopure piperazines is particularly interesting. This privileged scaffold is present
in several pharmacologically active compounds, but there is a paucity of reliable and
stereoselective approaches to carbon-substituted piperazines since most of the methods
give access only to compounds with substituents at the nitrogen atoms. Moreover, 1,4-
Benzoxazepines, and 1,4-benzodiazepines were prepared (Scheme 10).

Scheme 11 shows similar one-pot conjugate addition/cyclization strategies for the
synthesis of fused benzenes [33], indoles and pyrroles [34,35]. Such condensed heterocycles
are very common in drugs and natural products. Carboxamides derived from enantiopure
amino esters or amines (ee > 98%) also gave chiral pyrazino fused indoles and pyrroles
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in good yields. The addition of the complexing agent 18-crown-6 was essential to obtain
products with high chemo- and regio-selectivity in the synthesis of oxazino[4,3-a]indoles.
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Vinyl selenone-modified nucleosides or monosaccharides were deeply investigated
as substrates for the diversity-oriented synthesis (DOS) of enantiopure, structurally and
functionally complex molecular scaffolds. In early reports, Chattopadhyaya et al. [36–39]
described the synthesis of 2′,3′-modified uridine derivatives as part of a drug discovery
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program concerning new types of selective inhibitors of the HIV-reverse-transcriptase
(Scheme 12).
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Once again, the formation of the products can be explained by the bis electrophilic
properties of the 2′,3′-ene-2′-phenyl selenone which undergoes sequential Michael addi-
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tion and nucleophilic substitution of the selenonyl group. The C2=O group of the uracil
is sometimes involved as the internal nucleophile. The combination of the chirality of
carbohydrates with the high reactivity of vinyl selenones can offer interesting opportuni-
ties for generating new stereochemically defined and structurally complex compounds.
Recently, Pathak designed D-xylose or D-fructose-derived alkenyl selenones to explore
Michael-initiated functionalizations of sugars [40,41] with small carbo and heterocyclic
rings. Moreover, furanoside and pyranoside rings were decorated with five-membered
N-heteroaromatic compounds through Michael addition/elimination sequences. Some
examples with D-fructose-derivatives are collected in Scheme 13.
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These reactions nicely complement vinyl sulfone-mediated transformations of sugars.
In fact, the easy removal of the selenonyl moiety gave access to completely different reaction
pathways [42,43].

In 2017, Tiwari described the N-heterocyclic carbene (NHC)/base catalyzed addition of
aromatic aldehydes and ketones to vinyl selenones for the formation of multifunctionalized
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tetrahydrofuranes [44]. This unprecedented three-component reaction gave access to
challenging 2,3-dihydroxy-2,3-diaryltetrahydrofurans with two contiguous oxygenated
quaternary stereocenters (Scheme 14).
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rahydrofuro[2,3-d][1,3]dioxoles. A third molecule of aldehyde can also react with II in 
place of a ketone. Once again, results highlight the different reactivity of the vinyl sele-
nones in respect to vinyl sulfones and vinyl phosphonates, which simply generate Stetter-
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The following reaction steps can explain the formation of the products: (a) the NHC-
catalyzed synthesis of the benzoin I from two molecules of aromatic aldehyde, (b) the
base promoted Michael addition of the benzoin to the vinyl selenone to generate the
intermediate II, (c) the reaction of II with acetone or 2,2,2-trifluoro acetophenone to generate
tetrahydrofuro[2,3-d][1,3]dioxoles. A third molecule of aldehyde can also react with II in
place of a ketone. Once again, results highlight the different reactivity of the vinyl selenones
in respect to vinyl sulfones and vinyl phosphonates, which simply generate Stetter-type
products under similar conditions. The bicyclic products gave the corresponding 2,3-
dihydroxytetrahydrofuranes by treatment with DIBAL-H at room temperature for 24 h.
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Interestingly, little changing in the substrate can completely alter the reactivity. For
instance, isatins in place of the above mentioned ketones gave not access to the expected
spiro compounds. Alkenylation products were obtained as a consequence of the NHC-
catalyzed redox reaction described in Scheme 15 [45]. The intermediate I, generated when
the aldehyde reacts with the N-carbene catalyst, undergoes a hydride transfer to generate
the intermediate II and the anion III. The reaction between intermediates II and III affords a
2-benzoyl isatin IV that reacts with vinyl selenone via a CsF-assisted Michael addition. The
following elimination of benzenseleninic acid gives variously substituted vinyl oxindoles
in moderate to good yields.
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4. Enantioselective Organocatalytic Transformations

Enantioselective organocatalysis consists in the conversion of prochiral or racemic
substrates into highly enantioenriched products by effect of a chiral organocatalyst. In the
last years this approach acquired great popularity as a robust and powerful strategy for
the synthesis of chiral building blocks, natural products, and pharmaceutically relevant
molecules as single enantiomers [46]. Common advantages of organocatalysts are: easy
handling, low cost, poor toxicity, air and water stability. Moreover, the metal-free condi-
tions are particularly useful in the production of pharmaceutical intermediates. In this
field, privileged chiral organocatalysts with non-covalent activation mode, such as ureas,
thioureas, C6′-hydroxyl cinchona derivatives, or squaramides have been conveniently em-
ployed in Michael-type reactions between vinyl selenones and different pro-nucleophiles
constructing all-carbon quaternary stereocenters and/or multiple stereocenters with ex-
cellent levels of enantioselectivity. These organocatalysts are bifunctional small molecules
bearing a hydrogen bond donor group (in red in the following schemes) besides a basic
site (in blue in the following schemes) on a chiral scaffold. Usually, a tertiary amine at the
basic site generates the nucleophile by deprotonation, while a weak Brønsted acid group
activates the electrophile through hydrogen bonding. Thus, the catalyst simultaneously
orients and activates both the Michael donor and the acceptor allowing that the addition
occurs with an excellent level of stereocontrol. The first organocatalyzed conjugate ad-
dition of vinyl selenones was reported by Marini et al. in 2009 [47]. The reaction was
an α-functionalization of 2-aryl-2-cyanoacetates (Scheme 16). After a careful screening,
it was clear that the reaction is best carried out in the nonpolar aprotic solvent toluene
and in the presence of 4Å molecular sieves. Products containing all-carbon quaternary
stereocenter were obtained at −70 ◦C with a thioureidic catalyst in good to excellent yields
and high enantiomeric excesses. A lower yield (53%) and a poorer enantioselectivity (70%)
was observed with 2-allyl-2-cyanoacetate. The Michael adducts were transformed into
synthetically valuable chiral intermediates, not directly accessible via conjugate addition,
without loss of enantiomeric excess. The formation of the all-carbon quaternary stereocen-
ter bearing a terminal double bond is particularly interesting. In fact, the α-vinylation of
active methylene compounds is still in great demand, due to the lack of methods for the
enantioselective installation of alkenyl groups at sterically hindered positions.
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Scheme 16. Enantioselective addition of 2-aryl-2-cyanoacetates to the vinyl phenyl selenone and
chemical transformations.

Reactions carried out with the less reactive β-substituted vinyl selenones at room
temperature were used for the synthesis of enantioenriched cyclopropanes with vicinal
tertiary and quaternary stereocenters [48]. The sequential one-pot strategy is based on the
nucleofugacity of the selenonyl group and the ability of the same group to control the regio-
and stereoselectivity of the conjugate addition. Enantioenriched Michael adducts were
generated under control of a bifunctional ureidic catalyst and cyclized by intramolecular nu-
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cleophilic displacement of the phenylselenonyl group induced by a de-ethoxycarbonylation
process. Two different conditions were used for the de-ethoxycarbonylation step: a
Krapcho-type protocol with LiCl in HMPA or the more eco-friendly treatment with EtONa
in EtOH (Scheme 17). Z-Cyclopropanes were recovered as single isomers in moderate to
high yields and acceptable to good enantiomeric excesses.
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Organocatalyzed Michael-initiated cyclizations for the enantioselective synthesis of
polycyclic compounds, such as spirolactones [49] and β-aminoesters [50] with a
tetrahydroindeno[1,2-b]pyrrole core, were also developed by the same authors. In these
reactions, the selenonyl group also acts as a traceless agent able to activate and control the
addition step. The key step of both synthetic protocols is the conjugate addition of a cyclic
tert-butyl-β-ketoester to vinyl phenyl selenone, catalyzed by a O-9-phenantryl C6′-OH
quinidine or quinine-derivative, that generates highly enantioenriched Michael adducts.
In the first process, the addition of silica gel after the Michael reaction, promoted the
ring closure through nucleophilic displacement of the SeO2Ph by the carbonyl ester. The
presence of the tert-butyl residue, which can be easily removed by the free silanol groups
of the silica, was essential for an efficient cyclization. The use of pseudo-enantiomeric
catalysts O-phenantryl C6′OH-QD and C6′OH-Q, having opposite configurations at C8
and C9, provided spirolactones with comparable yields and enantiomeric excesses, but
opposite enantioselectivity (Scheme 18).
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Alternatively, the Michael adducts were transformed into alkyl azides by an in-
termolecular nucleophilic substitution with sodium azide. The following Staudinger/
intramolecular aza-Wittig sequence gave access to dihydroindeno[1,2-b]pyrroles. The three
steps were carried out telescopically, with the exclusion of purification steps. Products
were isolated by column chromatography in 60–85% yield and 93–98% enantiomeric excess.
Cyclic β-aminoesters were obtained by reduction with sodium borohydride in MeOH
(Scheme 19).
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Interestingly, a catalyst loading of only 5 mol% did not compromise the chemical
and optical yields, albeit longer reaction times were needed. In more recent papers, the
trifluoroacetic acid deprotection of the racemic β-amino esters obtained by a modified
protocol that employs Na2CO3 in place of the chiral catalyst, gave access to β-amino acids.
These compounds were resolved by amylase or zwitterionic cinchona alkaloid-based chiral
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Scheme 20. Enantioselective addition of 2-aryl-2-isocyanoacetates to the vinyl phenyl selenone.

This method offers a facile access to versatile building blocks in a high enantioenriched
form. Scheme 21 shows their easy transformation into pharmaceutically relevant heterocycles.
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The new methodology also found nice applications in the total synthesis of nat-
ural products. The first example is referred to the enantioselective synthesis of (+)-
Trigonoliimine A (Scheme 22).
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anti-HIV activity. After the Michael addition and the substitution of the phenylselenonyl
group with sodium azide, the synthetic sequence proceeds with the hydrolysis of the
isonitrile. The next step was the reductive amination with 2-(1H-indole-3-yl)acetaldehyde
in the presence of NaBH(OAc)3. Then, a Staudinger reduction was performed to directly
produce a lactam. Finally, the reduction of the nitro group followed by treatment of the
resulting diamine with trimethyl orthoformate and piridinium p-toluensulfonate, and the
Bischler-Napieralski reaction furnished (+)-trigonoliimine in 7.5% overall yield and 84% ee.
It is noteworthy that, employing a quinidine-derived bifunctional catalyst and following
exactly the same procedure, (–)-trigonoliimine A could be obtained in 6.8% overall yield
and 73% ee [54].

The catalytic asymmetric Michael addition of methyl α-(2-nitrophenyl)-α-isocyano
acetate to phenyl vinyl selenone in the presence of a quinidine-derived bifunctional catalyst
was the key step for the enantioselective construction of the (+)-Hinckdentine A (Scheme 23).
This is a marine alkaloid isolated from the bryozoan Hincksinoflustra denticulata collected
from Tasmania’s eastern coast [55].
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Scheme 23. Catalytic asymmetric Michael addition of methyl α-(2-nitrophenyl)-α-isocyanoacetate to vinyl phenyl selenone
as key step for the total synthesis of (+)-Hinckdentine A.

In 2014, Zhu reported the reactions of 2-substituted isocyanoacetates, alkenyl se-
lenones and water to afford 4,4-disubstituted 1,3-oxazinan-2-ones in good to excellent
yields [56]. In this process four new bonds are formed. 1,3-Oxazinan-2-one ring is a
privileged scaffold found in bioactive and natural compounds displaying antibacterial,
anti-inflammatory, anti-diabetes, and anti-HIV activities. The process was carried out
in two steps by treatment with a catalytic amount of a base followed by the addition of
hydrated p-toluenesulfonic acid (PTSA.H2O). Based on the results of control experiments
carried out with 18O labeled water, the following reaction steps were suggested: (a) the
Michael addition, (b) the partial hydrolysis of the isocyanide which generates the for-
mamide, (c) the nucleophilic displacement of the phenylselenonyl group by the amide
oxygen with formation of a 5,6-dihydro-4H-1,3-oxazine and release of benzenseleninic acid
(in equilibrium with the benzeneseleninic anhydride, BSA), (d) a second addition of water
under acidic condition to generate a 1,3-oxazinan-2-ol, (e) the formation of the seleninate
by reaction with BSA and finally, (f) the oxidation to 1,3-oxazinan-2-one with elimination
of benzeneselenenic acid (Scheme 24).
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Scheme 20. Enantioselective addition of 2-aryl-2-isocyanoacetates to the vinyl phenyl selenone. 

 

 

Scheme 24. Synthesis of 1,3-oxazinan-2-ones. Scheme 24. Synthesis of 1,3-oxazinan-2-ones.

Thus, the phenyl selenonyl group acts consecutively as an alkene activator, a leaving
group and a latent oxidant. The asymmetric variant of this reaction employed a quinine-
derived bifunctional organocatalyst to generate the 4,4-disubstituted 1,3-oxazinan-2-one
with an excellent enantiocontrol (Scheme 25).
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Scheme 25. One-pot enantioselective synthesis of a 1,3-oxazinone.

In 2016, Simlandy and Mukherjee developed the enantioselective vinylogous addi-
tion of deconjugated substituted butenolides to vinyl selenones [57]. The reaction was
catalyzed by a thiourea derivative and gave access to γ, γ-disubstituted butenolides as the
Michael adducts in good yield and enantioselectivity starting from both alkyl or aryl sub-
stituted compounds. Interestingly, the vinyl phenyl sulfone resulted completely unreactive
(Scheme 26) under the condition employed. On the contrary, the vinyl (1-phenyl-1H-
tetrazol-5-yl)sulfone gave the adduct in comparable yield and enantioselectivity with
the selenium reagent. As reported in the same scheme, the selenone adduct was prac-
tically converted into an azide and finally into a triazole by Cu-catalyzed click-reaction
with phenylacetylene.

In 2019, Zhu and coworkers developed a highly enatioselective conjugate additionbe-
tween 2-alkyl-2-nitroacetates and phenyl vinyl selenones in the presence of a 6′-OH quinine
derived bifunctional catalyst [58]. The Michael adducts could be further transformed into
quaternary α-aminoacids or other densely functionalized compounds due to the chemical
versatility of the nitro and phenyselenonyl functionalities. The adducts were obtained
in 67–99% yield and 74–96% ee. In another experiment, the phenyselenonyl group was
reduced into a selenide retaining the unmodified nitro group with an excellent level of
chemoselectivity. Alternatively, this group was reductively removed with the simultaneous
reduction of the nitro group. These and other transformations are reported in Scheme 27.
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Scheme 27. Enantioselective addition of 2-alkyl-2-nitroacetates to phenyl vinyl selenones and chemical transformations.

Finally, hydrogen-bond-mediated catalytic processes with vinyl selenone in ionic
liquids were reported [59]. Variously substituted 2-oxindoles were added to phenyl vinyl
selenone at room temperature in the presence of a Cinchona-derived thiourea catalyst in a
pyridine-based ionic liquid with good yields and an excellent enantiocontrol (Scheme 28).

Easy transformations of an enantioenriched Michael adduct furnished the correspond-
ing pyrroleindoline without loss of enantiomeric purity. This heterocyclic scaffold is typical
of (−)-physostigmine and other biologically active compounds.



Molecules 2021, 26, 3148 20 of 25

Molecules 2021, 26, x FOR PEER REVIEW 20 of 26 
 

 

 
Scheme 27. Enantioselective addition of 2-alkyl-2-nitroacetates to phenyl vinyl selenones and chemical transformations. 

Finally, hydrogen-bond-mediated catalytic processes with vinyl selenone in ionic liq-
uids were reported [59]. Variously substituted 2-oxindoles were added to phenyl vinyl 
selenone at room temperature in the presence of a Cinchona-derived thiourea catalyst in a 
pyridine-based ionic liquid with good yields and an excellent enantiocontrol (Scheme 28). 

 
Scheme 28. Enantioselective organocatalyzed Michael additions in ionic liquid and application to the synthesis of a pyr-
roloindoline. 

Easy transformations of an enantioenriched Michael adduct furnished the corre-
sponding pyrroleindoline without loss of enantiomeric purity. This heterocyclic scaffold 
is typical of (-)-physostigmine and other biologically active compounds. 

5. Cycloaddition Reactions of Vinyl Selenones 
As reported from previous discussion, vinyl selenones have been well investigated 

as Michael acceptors, but few methods refer to their use as 2π partners in cycloaddition 
reactions. Seminal examples were described by Chattopadhyaya et al. in 1990 [39] using a 
5′-O-protected vinyl selenone-modified nucleoside and sodium azide at 20 °C for 5 h 

Scheme 28. Enantioselective organocatalyzed Michael additions in ionic liquid and application to the synthesis of
a pyrroloindoline.

5. Cycloaddition Reactions of Vinyl Selenones

As reported from previous discussion, vinyl selenones have been well investigated
as Michael acceptors, but few methods refer to their use as 2π partners in cycloaddition
reactions. Seminal examples were described by Chattopadhyaya et al. in 1990 [39] using
a 5′-O-protected vinyl selenone-modified nucleoside and sodium azide at 20 ◦C for 5 h
(Scheme 29). A triazole was recovered with an acceptable yield (64%) through a [3+2]-
cycloaddition followed by elimination of benzenseleninc acid. In the same paper authors
also explored the Dies-Alder reaction with cyclopentadiene. After four days at 60 ◦C, a
product was obtained in 64% yield.
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Scheme 29. Early examples of cycloadditions with vinyl selenones.

More recently, in 2014, Pathak and co-workers described the synthesis of enantiomeri-
cally pure 1,4,5-trisubstituted-1,2,3-triazoles starting from four different vinyl selenones
derived from D-xylose and D-glucose [60]. The cascade transformation is initiated by a
regioselective1,3-dipolar cycloaddition with organic azides followed by elimination of
benzenseleninic acid. The method did not require any catalyst or metal. The opening of
the sugar ring, due to the cleavage of the acetal bond, afforded the trisubstituted triazoles
(Scheme 30).

In 2021 a multicomponent [3+2] cycloaddition/elimination cascade for the synthesis
of spirooxindole pyrrolizines has been developed [61]. The reaction tolerates the presence
of a range of functional groups. Reactions were performed in 1,4-dioxane at reflux with in
situ generated azomethine ylides and vinyl selenones as dipolarophiles (Scheme 31).
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Scheme 31. Three component [3+2] cycloaddition/elimination reaction for the synthesis of spiro oxindoles.

The 1,3-dipole was obtained by decarboxylative condensation of isatins and a sec-
ondary α-aminoacids. Products were obtained in good to excellent yields and high di-
asteroselectivity, regardless of the nature and position of the substituent on the isatin
derivative. L-proline gave better yields in respect to other secondary aminoacids such as
the trans-4-hydroxy-L-proline, L-thioproline, and sarcosine. Excellent regioselectivity were



Molecules 2021, 26, 3148 22 of 25

observed with aryl-substituted selenones. By analogy with other dipolarophiles, the three-
component cycloaddition can proceed through the following steps: (a) the condensation
between the isatin and the α-aminoacid to generate an iminium ion in equilibrium with
a cyclic intermediate, (b) the decarboxylation for the formation of the azomethine ylide,
(c) the [3+2]-cycloaddition, (d) the spontaneous loss of benzenseleninic acid to generate a
double bond.

The elimination step is not common with other dipolarophiles. Experiments with
other chalcogen-containing functional groups, such as selenoxide, sulfoxide, and sulfones,
were unsuccessful.

6. Transition-Metal Catalyzed Cross-Coupling of Vinyl Selenones

The investigation of vinyl selenones as electrophiles in transition-metal catalyzed cross-
coupling reactions has been explored by Beng in 2015. Scheme 32 shows the iron catalyzed
α-carbofunctionalization of piperidine and azepane ene-formamides or carbamates with
alkenyl, aryl, heteroaryl, and allyl Grignard reagents (route a).
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The electron-withdrawing nature of the selenonyl group also facilitated the
β-functionalization of the aza-heterocycles by lithiation and trapping with selenium elec-
trophiles (route b). The aza-heterocycles were then vicinally difunctionalized with different
carbon partners (route c–d), taking advantage of the diverse reactivity of the two seleny-
lated functional groups [62]. In fact, the coupling between the β-selenyl group and the aryl
bromide required warming to 40 ◦C.

7. Conclusions

In this review, we discussed recent developments in vinyl selenone chemistry. The
reactivity of vinyl selenones has been explored in a variety of Michael-initiated multiple
bond-forming reactions, cycloadditions and coupling reactions. The simple preparation,
the ease of handling, and the variety of possible transformations make the vinylselenones
interesting building blocks with useful applications in (hetero)cycle synthesis, total synthe-
sis of natural products and modular construction of drug-like molecules. Organocatalyzed
protocols with cinchona derivatives or other privileged organocatalysts gave access to
densely functionalized compounds with a high level of enantiocontrol. We hope that the
chemistry described in this review can stimulate further investigations in the underexplored
field of selenone-mediated transformations (Scheme 33).
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