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Abstract: The increase in antibiotic resistance in non-typhoidal Salmonella enterica (NTS) has been
confirmed in Indonesia by this study. We confirmed the virulence genes and antimicrobial susceptibil-
ities of clinical NTS (n = 50) isolated from chicken meat in Indonesia and also detected antimicrobial
resistance genes. Of 50 strains, 30 (60%) were non-susceptible to nalidixic acid (NA) and all of them
had amino acid mutations in gyrA. Among 27 tetracycline (TC) non-susceptible strains, 22 (81.5%)
had tetA and/or tetB. The non-susceptibility rates to ampicillin, gentamicin or kanamycin were lower
than that of NA or TC, but the prevalence of blaTEM or aadA was high. Non-susceptible strains
showed a high prevalence of virulence genes compared with the susceptible strains (tcfA, p = 0.014;
cdtB, p < 0.001; sfbA, p < 0.001; fimA, p = 0.002). S. Schwarzengrund was the most prevalent serotype
(23 strains, 46%) and the most frequently detected as multi-antimicrobial resistant. The prevalence of
virulence genes in S. Schwarzengrund was significantly higher than other serotypes in hlyE (p = 0.011)
and phoP/Q (p = 0.011) in addition to the genes above. In conclusion, NTS strains isolated from
Indonesian chicken had a high resistance to antibiotics and many virulence factors. In particular,
S. Schwarzengrund strains were most frequently detected as multi-antimicrobial resistant and had a
high prevalence of virulence genes.

Keywords: non-typhoidal Salmonella enterica (NTS); Indonesia; antimicrobial resistance; virulence
factors; chicken
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1. Introduction

Salmonella enterica subsp. enterica is broadly classified into typhoid Salmonella, such as
S. enterica serovars Typhi and Paratyphi A, and non-typhoid Salmonella (NTS). More than
2600 serotypes of NTS have been identified, and many are known to cause invasive infec-
tions or enterocolitis with diarrhea in humans [1,2]. NTS can be easily acquired and spread
by the consumption of contaminated foods of animal origin, including eggs, beef, dairy
products and poultry [3]. The main symptoms of NTS infections are gastroenteritis, includ-
ing diarrhea, sepsis, endocarditis, pulmonary infections, and intra-abdominal infections [3].
It is estimated that NTS causes 93.8 million cases of acute gastroenteritis and 15,000 deaths
worldwide each year, and it is estimated that 86% of these are food-borne infections [4].
The pathogenicity of NTS is defined by a variety of factors encoded in virulence genes
involved in adhesion (fimA, agfA), invasion (invA, fliC, sopB), survival and replication in
macrophages (phoP/Q, slyA), systemic infection (spvC, ssel), fimbrial expression (tcfA), toxin
production (hlyE, cdtB), and Mg2+ and iron uptake (sfbA) [5–11].

Ciprofloxacin (CPFX), ceftriaxone (CTRX) and azithromycin (AZM) are recommended
for treatment for some patients with NTS infection [12]. However, NTS strains resistant
to these antibiotics have been identified, making treatment clinically difficult [13]. The
mechanisms of antimicrobial resistance of NTS are generally the production of antimicrobial
inactivating enzymes (aac(6′)-lb-cr: quinolone resistance, blaTEM: ampicillin resistance,
aadA: aminoglycoside resistance), modification of antimicrobial targets, such as gyrA,
gyrB, parC and parE (quinolone resistance-determining region: QRDR) and qnrA, qnrB
and qnrS (plasmid-mediated quinolone resistance: PMQR), antimicrobial efflux (qepA:
quinolone resistance, tetA, tetB, tetC and tetG: tetracycline resistance), and the restriction of
antimicrobial uptake [12,14–16].

The antimicrobial resistance of NTS has been increasing not only in humans but also
in poultry in many countries, especially in Asia [17]. The rapid increase in antimicrobial-
resistant NTS has become a major public health problem in both developing and developed
countries [1]. Misuse and overuse of antibiotics are believed to be the main reasons for the
increase in antimicrobial-resistant bacteria [18]. Since the major source of NTS infection
is food of animal origin, it has been suggested that the presence of antimicrobial-resistant
NTS may be transferred through the food chain to humans [19].

Indonesia is one of the countries projected to have the largest percentage increase in
antimicrobial consumption by 2030 [20]. In Indonesia, where about 90% of the popula-
tion is Muslim, chicken meat accounts for a high percentage of meat consumption [21].
Therefore, if the chicken meat is contaminated with antimicrobial-resistant NTS, there is a
possibility that infection with antimicrobial-resistant NTS will spread in Indonesia, and
this has not been fully investigated. In this study, we confirmed the virulence genes and
antimicrobial susceptibilities of NTS isolated from chicken meat in Indonesia, and also
detected antimicrobial-resistant genes. We additionally determined the relatedness among
the strains by multilocus sequence typing (MLST).

2. Results
2.1. Serotyping

Table 1 shows the O serotype groups and serotypes determined from somatic (O)
and flagella (H) antigens in 50 strains. The most common O serotype was the O4 group
(28 strains, 56%). There were 2 strains in the O2 group, 3 strains in the O7 group, 11 strains
in the O8 group, 3 strains in the O9 group, and 2 strains in the O3,10 group, and 1 strain in
the O1,3,19 group. S. Schwarzengrund in the O4 group was the most common serotype
(23 strains, 46%), followed by S. Istanbul in the O8 group (4 strains, 8%).
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Table 1. Distribution of O groups and serotypes in 50 non-typhoidal Salmonella (NTS) strains.

O Group Serotype Strains (%)

O2 S. Kiel 1 (2)

S. Nitra 1 (2)

O4 S. Schwarzengrund 23 (46)

S. Tokoin 2 (4)

S. Typhimurium 2 (4)

S. Budapest 1 (2)

O7 NT ※ 3 (6)

O8 S. Istanbul 4 (8)

S. Corvallis 2 (4)

S. Portanigra 1 (2)

S. Herston 1 (2)

NT 3 (6)

O9 S. Enteritidis 2 (4)

NT 1 (2)

O3,10 NT 2 (4)

O1,3,19 S. Liverpool 1 (2)

total 50
※ NT: not typed.

2.2. Antimicrobial Susceptibility Testing

The results of antimicrobial susceptibility testing are shown in Table 2. Of 50 strains,
34 (68%) were non-susceptible to at least one antibiotic. In detail, the strains were non-
susceptible to: ampicillin (ABPC; 13 strains, 26%), amoxicillin/clavulanate (AMPC/CVA;
3 strains, 6%), gentamicin (GM; 6 strains, 12%), kanamycin (KM; 8 strains, 16%), tetracycline
(TC; 27 strains, 54%), CPFX (5 strains, 10%) and nalidixic acid (NA; 30 strains, 60%). In
addition, five strains (10%) were non-susceptible to CPFX, which is recommended as a
therapeutic agent, but all were susceptible to CTRX and AZM, which are also recommended.
Of 34 strains, 27 strains (79.4%) were non-susceptible to two or more antibiotics.

Twelve strains (35.3%) were non-susceptible to ABPC, KM and/or GM, TC and NA,
including CPFX.

All S. Schwarzengrund were non-susceptible to at least one antibiotic (23 strains, 100%)
and were especially non-susceptible to ABPC (11 strains, 47.8%), AMPC/CVA (1 strain,
4.3%), GM (5 strains, 21.7%), KM (7 strains, 30.4%), TC (22 strains, 95.7%), CPFX (2 strains,
8.7%) and NA (23 strains, 100%). Among 23 strains, 22 strains (95.7%) were non-susceptible
with two or more antibiotics. Eleven strains (47.8%) were non-susceptible to ABPC, KM
and/or GM, TC and NA, including CPFX. In the other serotypes, 11 of the 27 strains (40.7%)
were non-susceptible to at least one antibiotic, and 5 strains (18.5%) were non-susceptible
to two or more antibiotics, and 2 strains (7.4%) were non-susceptible to three or more
antibiotics. S. Schwarzengrund had significantly higher non-susceptible rates than other
serotypes for ABPC (p = 0.001), KM (p = 0.007), TC (p < 0.001) and NA (p < 0.001).
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Table 2. Antimicrobial susceptibility rates of S. Schwarzengrund and other serotypes of NTS strains.

Antibiotic *

Number of Non-Susceptible Strains (%)
p-Value #Total

n = 50
S. Schwarzengrund

n = 23
Other Serotypes

n = 27

ABPC 13 (26) 11 (47.8) 2 (7.4) 0.001

AMPC/CVA 3 (6) 1 (4.3) 2 (7.4) 1.000

CTRX 0 0 0 -

IPM 0 0 0 -

GM 6 (12) 5 (21.7) 1 (3.7) 0.070

KM 8 (16) 7 (30.4) 1 (3.7) 0.007

AZM 0 0 0 -

TC 27 (54) 22 (95.7) 5 (18.5) <0.001

CPFX 5 (10) 2 (8.7) 3 (11.1) 1.000

NA 30 (60) 23 (100) 7 (25.9) <0.001

CP 0 0 0 -
* ABPC: ampicillin, AMPC/CVA: amoxicillin/clavulanate, CTRX: ceftriaxone, IPM: imipenem, GM: gentamicin,
KM: kanamycin, AZM: azithromycin, TC: tetracycline, CPFX: ciprofloxacin, NA: nalidixic acid, CP: chlorampheni-
col. # bold indicates significant levels, p < 0.05.

2.3. Detection of Antimicrobial Resistance Genes

The prevalence of antimicrobial resistance genes is shown in Table 3. Most of the
non-susceptible strains to ABPC (12 of 13 strains, 92.3%) possessed blaTEM. Eleven strains
were S. Schwarzengrund and one strain was S. Budapest. Among six non-susceptible
strains to GM, four (66.7%) had aadA and all of them were S. Schwarzengrund. In
27 non-susceptible strains to TC, 22 (81.5%) had tetA and/or tetB, of which 15 (68.2%)
had tetA, 6 (27.3%) had tetB, and 1 (4.5%) had tetA and tetB, but not tetC or tetG. Of 15 strains
with tetA, 11 were S. Schwarzengrund and 4 were S. Istanbul. Of six strains with tetB, five
were S. Schwarzengrund and one was S. Budapest. One strain that had tetA and tetB was
S. Schwarzengrund. Among 30 strains non-susceptible to NA, QRDR mutations, especially
gyrA, were detected in all strains. The S83→Y mutation in gyrA was the most common
mutation (27 strains; 90%), including all 23 strains of S. Schwarzengrund. The D87→N
mutation in gyrA was found in two strains (6.7%) which are S. Enteritidis. In addition, only
one strain (3.3%) of the other serotype had two mutations of gyrA (S83→F and D87→N)
with a mutation in parC (S81→I). PMQR was not found in these strains.

2.4. Detection of Genes Encoding Virulence Factors

The prevalence of genes encoding virulence factors is shown in Table 4. Of 13 genes,
invA was confirmed in all strains (50 strains, 100%). Other genes were detected as follows:
sopB (44 strains, 88%), tcfA (37 strains, 74%), hlyE (43 strains, 86%), cdtB (25 strains, 50%),
sfbA (31strains, 62%), agfA (44 strains, 88%), fimA (32 strains, 64%), slyA (30 strains, 60%),
and phoP/Q (43 strains, 86%). No strains had sseI, fliC or spvC.

Prevalence of virulence genes in non-susceptible strains compared with susceptible
strains showed significant differences in tcfA (85.3% vs. 50%; p = 0.014), cdtB (73.5% vs. 0%;
p < 0.001), sfbA (91.2% vs. 0%; p < 0.001) and fimA (79.4% vs. 31.3%; p = 0.002).

All S. Schwarzengrund strains showed non-susceptibility to antibiotics and the preva-
lence of virulence genes in S. Schwarzengrund strains was significantly higher than other
serotypes strains in tcfA (100% vs. 60.9%; p < 0.001), hlyE (100% vs. 74.1%; p = 0.011),
cdtB (91.3% vs. 14.8%; p < 0.001), sfbA (100% vs. 29.6%; p < 0.001), fimA (91.3% vs. 40.7%;
p < 0.001), and phoP/Q (100% vs. 74%; p = 0.011).
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Table 3. Prevalence of antimicrobial resistance genes in S. Schwarzengrund and other
serotype strains.

Antimicrobial
Resistance Gene

Number of Strains (%)

Total S. Schwarzengrund Other Serotypes

blaTEM 12 11 (91.7) 1 (8.3)

aadA 4 4 (100) 0

tetA 15 11 (73.3) 4 (26.7)

tetB 6 5 (83.3) 1 (16.7)

tetAand tetB 1 1 (100) 0

tetC 0 0 0

tetG 0 0 0

Mutation of gyrA 30 23 (76.7) 7 (23.3)

Mutation of gyrB 0 0 0

Mutation of parC 1 * 0 1 (100)

Mutation of parE 0 0 0

qnrA 0 0 0

qnrB 0 0 0

qnrS 0 0 0

aac(6′)-lb-cr 0 0 0

qepA 0 0 0
* The strain had also 2 mutations of gyrA (S83→F and D87→N).

Table 4. Prevalence of virulence genes in S. Schwarzengrund and other serotype strains.

Virulence
Gene

Number of Strains (%)
p-Value *Total

n = 50
S. Schwarzengrund

n = 23
Other Serotypes

n = 27

invA 50 (100) 23 (100) 27 (100) -

sopB 44 (88) 21 (91.3) 23 (85.2) 0.674

ssel 0 0 0 -

tcfA 37 (74) 23 (100) 14 (51.9) <0.001

hlyE 43 (86) 23 (100) 20 (74.1) 0.011

cdtB 25 (50) 21 (91.3) 4 (14.8) <0.001

sfbA 31 (62) 23 (100) 8 (29.6) <0.001

agfA 44 (88) 22 (95.7) 22 (81.5) 0.199

fimA 32 (64) 21 (91.3) 11 (40.7) <0.001

fliC 0 0 0 -

spvC 0 0 0 -

slyA 30 (60) 16 (69.6) 14 (51.9) 0.254

phoP/Q 43 (86) 23 (100) 20 (74.1) 0.011
* bold indicates significant levels, p < 0.05.

2.5. MLST

S. Schwarzengrund had a higher rate of non-susceptibility to antibiotics than other
serotypes and all S. Schwarzengrund strains had the S83→Y mutation in gyrA and a high preva-
lence of virulence genes. Therefore, we determined the homology of 23 S. Schwarzengrund
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strains by MLST. They were classified into sequence type (ST) 96 (22 strains, 95.7%) while
one strain (4.3%) differed only in hisD and was not typed (Table 5).

Table 5. Classification in 23 S. Schwarzengrund strains by Multilocus sequence typing (MLST).

Sequence
Type

Allelic Profile in MLST Number of Strains (%)
N = 23aroC dnaN hemD hisD purE sucA thrA

96 43 47 49 49 41 15 3 22 (95.7)

Not typed 43 47 49 7 41 15 3 1 (4.3)

3. Discussion

Our study investigated the antimicrobial susceptibilities and genetic analysis of
50 NTS strains isolated from chicken meat in Indonesia. This is the first known report
of antimicrobial resistance in NTS strains isolated from Indonesian chicken. The O4 group
was the most common serotype of NTS strains, and S. Schwarzengrund was mainly detected.
S. Schwarzengrund is one of the major serotypes isolated from humans and animals and
has been reported as an epidemic pathogen in Asia, Denmark and the United States since
early 2000 [22]. Among the NTS strains, we observed that 68% (34 of 50 strains) were
non-susceptible to antibiotics. Moreso, especially 60% (30 of 50 strains) were non-susceptible
to NA. All strains non-susceptible to NA had amino acid mutations at positions 83 and 87,
including S83→Y mutation in gyrA. NTS strains with S83→Y mutation were also detected in
poultry from Brazil [23]. Mutations in QRDR of gyrA and/or parC genes are most commonly
related to the resistance of quinolones in Salmonella strains and other bacteria [12].

Non-susceptible strains of TC were the second-most detected (54%) because TC was
commonly used in poultry feed for protection against infectious diseases and growth
promotion. Of 27 non-susceptible strains to TC, 81.5% carried tetA and/or tetB, two genes
most frequently involved in tetracycline resistance in NTS strains. The prevalence of tetA
was higher than that of tetB, consistent with studies in the Nigeria [18,24–26].

The non-susceptible rate to ABPC, GM or KM in NTS strains was lower than that
of NA or TC, however, the prevalence of blaTEM or aadA was high. Since blaTEM and
aadA are present on plasmids, they may lead to horizontal transmission of antimicrobial
resistance genes across other Salmonella or other bacteria. Moreover, strains non-susceptible
to antibiotics had a significantly high prevalence of virulence genes, such as tcfA, cdtB, fimA
and sfbA, encoding ciliary proteins, intracellular survival, adhesion and iron uptake, than
susceptible strains.

Among the NTS strains, S. Schwarzengrund was significantly more resistant to ABPC,
KM, TC and NA than other serotypes. Of 23 S. Schwarzengrund, 22 (95.7%) were non-
susceptible to two or more antibiotics, and 11 (47.8%) were non-susceptible to ABPC,
KM and/or GM, TC and NA, including CPFX. Furthermore, it has been reported that
multidrug-resistant S. Schwarzengrund was isolated from food, including chicken, and
from human samples in Taiwan, Thailand, Denmark and the United States [27]. We also
found that one strain of S. Schwarzengrund isolated from a fetal specimen had multidrug
resistance in Japan [28]. In addition to the virulence genes above, S. Schwarzengrund
also had hlyE and phoP/Q encoding toxin production and survival within macrophages,
respectively. The virulence rate of S. Schwarzengrund was higher than for other serotypes.
S. Schwarzengrund strains were approximately identified as ST96. ST96 strains were re-
ported to carry mcr-1, a plasmidic gene encoding colistin resistance in Brazilian chicken [29].
The multidrug-resistant S. Schwarzengrund might easily spread in the human body and
become difficult to treat.

The limitations of this study include the number of subjects (50), and that 46% of
50 strains were S. Schwarzengrund. Thus, the sample size was insufficient for an epidemi-
ological survey and there were few serotypes to characterize and compare. Additionally,
it is necessary to investigate other mechanisms (other antibiotic-inactivating enzymes or
efflux pumps, for instance) related to antibiotic resistance [30].
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4. Materials and Methods
4.1. Strains

We isolated 50 strains of Salmonella enterica by the following methods from
60 duct rectal swabs and 60 chicken intestines of meats in 12 traditional markets in Surabaya,
Indonesia in 2018 [31]. Salmonella strains were isolated according to the methods of the
Bacteriological Analytical Manual [32], with some modifications.

4.2. Serotyping

The isolates were serotyped with polyvalent O and H antiserum by the agglutination
method using the Salmonella immune serum “Seiken” (Denka Seiken, Tokyo, Japan).

4.3. Antimicrobial Susceptibility Testing

The test for the NTS strains measured 11 antibiotics (ampicillin: ABPC, amoxi-
cillin/clavulanate: AMPC/CVA, ceftriaxone: CTRX, imipenem: IPM, gentamicin: GM,
kanamycin: KM, azithromycin: AZM, tetracycline: TC, ciprofloxacin: CPFX, nalidixic acid:
NA, chloramphenicol: CP) by the microdilution method using Optipanel E063 (Kyokuto
Pharmaceutical Industrial Co., Ltd., Osaka, Japan). In the Optipanel, 96-well microtiter
plates containing cation-adjusted Muller–Hinton broth with twofold dilutions of each
antimicrobial solution were prepared according to the Clinical and Laboratory Standards
Institute (CLSI) recommendations [33]. The Escherichia coli ATCC 25922 strain was used for
quality control. Criteria were in accordance with CLSI M100-ED31 [33].

4.4. DNA Extraction and Detection of Antimicrobial Resistant Genes

Bacterial DNA was extracted by the boiling method. The bacterial samples were
suspended in the Tris-HCL buffer, incubated at 100 ◦C for 15 min and immediately cooled,
centrifuged at 13,000 rpm for 5 min, and the supernatant was collected. Primers were shown
in Table 6. We detected antimicrobial resistance genes (blaTEM for β-lactam resistance; aadA
for aminoglycoside resistance; tetA, tetB, tetC and tetG for tetracycline resistance) by PCR
using TaKaRa Ex Taq (TaKaRa, Shiga, Japan) [34–36].

We also detected amino acid mutations in QRDR (gyrA, gyrB, parC and parE), and
the plasmid-mediated quinolone resistance (PMQR) genes (qnrA, qnrB, qnrS, qepA and aac
(6′)-Ib-cr) by PCR and sequencing [37–39]. The purification of PCR products was conducted
with the QIAquick PCR purification kit (QIAGEN, Hilden, Germany) and the sequencing
analysis was done by Eurofins Genomics (Eurofins Genomics, Tokyo, Japan).

4.5. Detection of Genes Encoding Virulence Factors

Thirteen genes of encoding virulence factors (invA, sopB, ssel, tcfA, hlyE, cdtB, sfbA, agfA,
fimA, fliC, spvC, slyA and phoP/Q) were detected by PCR and sequencing analysis [5–7,40].
The PCR conditions were 94 ◦C, 2 min; 35 cycles of 94 ◦C, 1 min; 55 ◦C, 1 min; 72 ◦C, 2 min;
72 ◦C, 4 min.

4.6. MLST

MLST was conducted by PCR amplification and sequencing of seven housekeeping
genes (suc, hisD, thr, pur, dnaN, hem and aro) [41]. The temperature conditions were initial
denaturing at 94 ◦C for 2 min, followed by 25 cycles of denaturation at 94 ◦C for 1 min,
annealing at 53 ◦C (dnaN) or 60 ◦C (except dnaN) each for 1 min, extension at 72 ◦C for 1 min
and a final extension at 72 ◦C for 4 min. ST was determined using the MLST website [42].

4.7. Statistical Analysis

Significant differences between serotypes and antimicrobial susceptibilities, or serotypes
and virulence genes, were determined by Fisher’s exact test using SPSS software, version
24.0 (SPSS, Chicago, IL, USA). p < 0.05 was considered statistically significant.
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Table 6. Primer pairs used for the analysis of antimicrobial-resistant genes.

Target Genes Amplicon Size (bp) Tm (◦C) Primer Sequence Reference

blaTEM 690 60
blaTEMF 5′-TTTCGTGTCGCCCTTATTC-3′

[34]

blaTEMR 5′-CCGGCTCCAGATTTATCA-3′

aadA 525 60
aadAF 5′-GTGGATGGCGGCCTGAA-3′

aadAR 5′-AATGCCCAGTCGGCAGC-3′

tetA 201 55
tetAF 5′-GCTACATCCTGCTTGCCT-3′

tetAR 5′-CATAGATCGCCGTGAAG-3′

tetB 173 63
TetBGK-F2m 5′-CGCCCAGTGCTGTTGTTGTC-3′

[35]
TetBGK-R2m 5′-CGCGTTGAGAAGCTGAGGTG-3′

tetC 505 50
TetCF 5′-GGTTGAAGGCTCTCAAGGGC-3′

[36]
TetCR 5′-CCTCTTGCGGGAATCGTCC-3′

tetG 662 52
TetGF 5′-GCAGCGAAAGCGTATTTGCG-3′

TetGR 5′-TCCGAAAGCTGTCCAAGCAT-3′

gyrA 251 58.6
stgyrA1 5′-CGTTGGTGACGTAATCGGTA-3′

[37]
stgyrA2 5′-CCGTACCGTCATAGTTATCC-3′

gyrB 181 58
stmgyrB1 5′-GCGCTGTCCGAACTGTACCT-3′

[38]

stmgyrB2 5′-TGATCAGCGTCGCCACTTCC-3′

parC 270

67

stmparC1 5′-CTATGCGATG TCAGAGCTGG-3′

stmparC2 5′-TAACAGCAGCTCGGCGTATT-3′

parE 240
stmparE1 5′TCTCTTCCGATGAAGTGCTG-3′

stmparE2 5′-ATACGGTATAGCGGCGGTAG-3′

qnrA 516 53
qnrA F 5′-ATTTCTCACGCCAGGATTTG-3′

[39]

qnrA R 5′-GATCGGCAAAGGTTAGGTCA-3′

qnrB 469

59

qnrB F 5′-GATCGTGAAAGCCAGAAAGG-3′

qnrB R 5′-ACGATGCCTG¬GTAGTTGTCC-3′

qnrS 417
qnrS F 5′-ACGACATTCGTCAACTGCAA-3′

qnrS R 5′- TAAATTGGCACCCTGTAGGC-3′

aac (6′)-Ib-cr 554
aac(6′)-Ib-cr F 5′-TGACCAACAGCAACGATTCC-3′

aac(6′)-Ib-cr R 5′-TTAGGCATCACTGCGTGTTC-3′

qepA 720
qepA F 5′-GGACATCTACGGCTTCTTCG-3′

qepA R 5′-AGCTGCAGGTACTGCGTCAT-3′

5. Conclusions

We found that NTS strains isolated from Indonesian chicken had a high resistance to
antibiotics and many virulence factors. In particular, S. Schwarzengrund strains belonging
to ST96 were the most frequently detected as multi-antimicrobial resistant and had a high
prevalence of virulence genes. These NTS strains in food or other environments might
be transmitted to humans, and it is necessary to continue investigating NTS strains with
resistance to antibiotics.
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