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Abstract
Both schizophrenia (SCZ) and autism spectrum disorders (ASD) are neuropsychiatric disor-

ders with overlapping genetic etiology. Protocadherin 15 (PCDH15), which encodes a mem-

ber of the cadherin super family that contributes to neural development and function, has

been cited as a risk gene for neuropsychiatric disorders. Recently, rare variants of large

effect have been paid attention to understand the etiopathology of these complex disorders.

Thus, we evaluated the impacts of rare, single-nucleotide variants (SNVs) in PCDH15 on

SCZ or ASD. First, we conducted coding exon-targeted resequencing of PCDH15 with next-

generation sequencing technology in 562 Japanese patients (370 SCZ and 192 ASD) and

detected 16 heterozygous SNVs. We then performed association analyses on 2,096 cases

(1,714 SCZ and 382 ASD) and 1,917 controls with six novel variants of these 16 SNVs. Of

these six variants, four (p.R219K, p.T281A, p.D642N, c.3010-1G>C) were ultra-rare vari-

ants (minor allele frequency < 0.0005) that may increase disease susceptibility. Finally, no

statistically significant association between any of these rare, heterozygous PCDH15 point

variants and SCZ or ASD was found. Our results suggest that a larger sample size of rese-

quencing subjects is necessary to detect associations between rare PCDH15 variants and

neuropsychiatric disorders.

Introduction
Schizophrenia (SCZ) and autism spectrum disorders (ASD) are neurodevelopmental in origin.
While SCZ and ASD are regarded as separate clinical entities, etiological, clinical, and genetic
overlap between them have been discovered [1,2]. Genetic factors make substantial contribu-
tions to the etiology of both conditions; heritability is estimated to be a minimum of 80% for
each [3]. Thousands of trait- and disease-associated common genetic variants confer increased
risk of developing either condition [4,5,6], however, they may explain less than half of the total
variation in risk of SCZ [7,8] and ASD [9]. Recent studies suggest that rare copy-number vari-
ants (CNVs) and rare single-nucleotide variants (SNVs) may explain additional disease risk or
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trait variability [10,11,12,13,14,15]. A significant excess of rare, disruptive SNVs has been
detected in those genes that have previously been implicated as candidate risk genes for SCZ
and/or ASD [16,17,18]. Thus, deep sequencing of candidate genes might be a good way for elu-
cidating the pathogenesis of these neuropsychiatric disorders [19].

PCDH15 is a member of the largest group in the cadherin superfamily that involved in gen-
erating neural diversity for neuronal differentiation and synapse formation [20]. PCDH15 is
primarily recognized as a gene that forms tip-link filaments in sensory hair cells and associated
with Usher syndrome type 1F (OMIM 602083) [21]. Notably, more than 20% of these patients
exhibit neuropsychiatric symptoms [22]. A GWAS identified PCDH15 as relevant to neurocog-
nitive processes [23]. In mice, PCDH15 is expressed throughout the brain and central nervous
system (CNS) during embryogenesis [24], and influences serotonin transporter expression in
the adult CNS [25]. Rare, exonic CNVs in PCDH15 were recently identified in ASD [26] and
bipolar disorder (BD) patients [27,28]. These findings strongly suggest that PCDH15 is a prom-
ising candidate risk gene for neuropsychiatric disorders because several neuropsychiatric disor-
ders including SCZ, ASD, and BD share genetic risk factors [3,4,5,6,13,27,29,30]. To our
knowledge, however, no published study has focused on rare PCDH15 variants in cases of neu-
ropsychiatric disorders.

Our hypothesis was that rare PCDH15 variants might confer susceptibility to neuropsychi-
atric pathogenesis. To increase statistical power and detect shared risk, we combined SCZ and
ASD samples in a study cohort [6,31,32]. First, we performed targeted-region sequencing of
PCDH15 coding exons in 562 Japanese patients; we then conducted single-variant association
analysis in an independent case-control set comprising 4,013 samples to identify putative vari-
ants with large effect.

Materials and Methods

Study samples
Two independent Japanese sample groups were used in this study. For the targeted-resequen-
cing discovery cohort, 370 SCZ (mean age ± SD, 49.7 ± 14.8 years; 53.0% male) and 192 ASD
(mean age ± SD = 16.3 ± 8.4 years; 77.6% male) individuals participated. For genetic association
analysis, the case control sample set comprised 1,714 SCZ (46.3 ± 15.1 years; 51.2% male), 382
ASD (19.6 ± 10.7 years; 77.8% male), and 1,917 control subjects (44.7 ± 14.7 years; 55.3% male).
All subjects were unrelated, living on the mainland of Japan, and self-identified as Japanese. All
patients fulfilled the criteria listed inDiagnostic and Statistical Manual of Mental Disorders,
Fifth Edition (DSM-5) for SCZ or ASD. Healthy control subjects were selected from the general
population and had no history of mental disorders based on questionnaire responses from the
subjects themselves during the sample inclusion step. The study was explained to all participants
and/or their parents both verbally and in writing. Written informed consent was obtained from
the participants and from the parents of the patients under 20 years old. All procedures per-
formed in this study involving human participants were approved by the Ethics Committee of
the Nagoya University Graduate School of Medicine and conducted in accordance with the
1964 Helsinki declaration and its later amendments or comparable ethical standards.

Sample preparation
DNA was extracted from peripheral blood or saliva from each SCZ, ASD, and control partici-
pant. For DNA extraction, we used the QIAamp DNA Blood Kit or Tissue Kit (Qiagen Ltd.
Hilden, Germany). The quantity of extracted DNA was estimated using the Qubit1 dsDNA
BR Assay Kit (Life Technologies, Carlsbad, CA, USA) on a Qubit1 2.0 Fluorometer (Life Tech-
nologies, Carlsbad, CA, USA) following the manufacturer’s recommended protocol.
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Library preparation and resequencing
The next-generation sequencing technology on the Ion Torrent PGM™ was used to resequence
the PCDH15 coding regions (Ensembl Transcript ID: ENST00000320301; 1995 amino acids)
via the protocols described in the Ion AmpliSeq™ Library Preparation User Guide (Thermo
Fisher Scientific, Rev.5; MAN0006735), Ion PGM™ Template OT2 200 Kit (Thermo Fisher Sci-
entific, Rev. 5; MAN0007220), and Ion PGM™ Sequencing 200 Kit (Thermo Fisher Scientific,
Rev. 3; MAN0007273). After target-specific PCR amplification, amplicons were purified and
pooled. Libraries were then prepared to obtain 200-bp PCR fragments flanked by adaptor and
barcode sequences; these sequences allowed sequencing and sample identification respectively.
The concentration of each library was determined with the Ion Library TaqMan Quantitation
Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). Amplified libraries were subjected
to emulsion PCR and subsequent enrichment for template-positive Ion Sphere™ particles
(ISPs) with the Ion OneTouch™ system (Life Technologies, Carlsbad, CA, USA). ISPs were
enriched and sequenced in a 200-bp configuration run using 318 chips (Life Technologies,
Carlsbad, CA, USA).

Data analysis
Sequence reads were run through a data analysis pipeline on the Ion Torrent platform-specific
pipeline software, Torrent Suite™ version 4.4 (Life Technologies, Carlsbad, CA, USA) to gener-
ate sequence reads filtered according to the pipeline software quality-controls and to remove
poor signal reads. Reads assembling and variant identification were performed with the Inge-
nuity Variant Analysis software™ (http://www.ingenuity.com/variants) from Ingenuity Systems
using Fastq files containing sequence reads and the Ion Ampliseq Designer BED file software
to map the amplicons with default parameters, (call quality>20 and read depth>10). Candi-
date variants were defined as exonic or splice-site variants with allele frequencies of�1% in the
following six public exome databases: dbSNP Build 139 (http://www.ncbi.nlm.nih.gov/
projects/SNP/), the 1000 Genomes Project (http://www.1000genomes.org), NHLBI ESP
exomes (http://evs.gs.washington.edu/EVS/), the Human Genetic Variation Database (http://
www.genome.med.kyoto-u.ac.jp/SnpDB/), the Exome Aggregation Consortium (http://exac.
broadinstitute.org) and the Genebook (http://atgu.mgh.harvard.edu/~spurcell/genebook) [17,
27]. To identify deleterious effects caused by amino acid substitution, Sorting Intolerant From
Tolerant (SIFT) [33] and PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) [34] were used
for in silico prediction of functional consequences. Additional clinical variant annotations were
obtained from NCBI ClinVar (last accessed July 2015; http://www.ncbi.nlm.nih.gov/clinvar/)
[35]. To analyze the potential effect of detected variants on putative splicing regulatory ele-
ments as exonic splicing enhancer and exonic splicing silencer, we used Splicing-based Analy-
sis of Variants (SPANR) (http://tools.genes.toronto.edu) [36]. Evolutionary conservation was
assessed with Evola ver. 7.5 (http://www.h-invitational.jp/evola/search.html) [37]. De novo
analysis was performed when DNA samples from parents were available.

Sanger sequencing with the ABI 3130xl Genetic Analyzer (Life Technologies, Carlsbad, CA,
USA), and standard methods were used to confirm each candidate variant. Sequence analysis
software version 6.0 (Applied Biosystems, Foster City, CA, USA) was used to analyze all
sequence data. Primer sequences for validating each variant are available in S1 Table.

Genetic association analysis
An ABI PRISM 7900HT Sequence Detection System (Applied Biosystems, Foster City, CA,
USA) and TaqMan assays with custom probes were used to genotype putative deleterious vari-
ants. Custom probe sequences are available in S2 Table. Each 384-microtiter plate contained two
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non-template controls and two samples with the variant. The reactions and data analysis were
performed using Genotyping Master Mix and Sequence Detection Systems, respectively, accord-
ing to the standard protocols (Applied Biosystems, Foster City, CA, USA). Differences in geno-
type distribution between cases and controls were tested with one-sided, Fisher’s exact tests.

We computed the effective sample size and statistical power using a web browser program,
Genetic Power Calculator developed by Purcell et al. (http://pngu.mgh.harvard.edu/~purcell/
gpc/) [38].

Results

Variation screening of all PCDH15 coding exons
Nucleotide sequence data reported have been deposited in the DNA Data Bank of Japan
(DDBJ) databases (http://www.ddbj.nig.ac.jp) under the accession number DRA004490.

We sequenced PCDH15 exon and exon-intron boundary in genomic DNA isolated from
Japanese patient sample (n = 562). Of 17 SNVs and three indels detected by the Ion Torrent
PGM™, one SNV and three indels were not validated by Sanger sequencing. In total, we evalu-
ated one splice-site variant and 15 missense variants (Table 1). Analyzing the frequency of rare
SNVs in ASD and SCZ individuals, 8.9% of ASD (17/192) and 5.6% of SCZ (17/370) were iden-
tified as carriers, pointing to a higher frequency of rare SNVs in ASD (p = 0.037). Nonsense
and frameshift variants were not found. Each variant detected was heterozygous. Each of the
15 missense SNVs was located in the coding region of the extracellular domain (Fig 1).

Of the 15 missense variants, 12 were predicted to be damaging with in silico prediction tools
(Table 1). No variants were located in conserved sequences of the cadherin-specific motifs
(XEX, DXD, DYE, XDX, and DXNDN) required for calcium binding and rigidification of the
extracellular cadherin (EC) domains [39]. Based on the in silico predictions, the 15 missense
variants were not expected to affect splicing, but one splice-site variant (c.3010-1G>C) was
(result not shown).

We were able to determine inheritance status for 16 cases. Among these 16 cases, 10
involved mother-to-son variant transmission, three involved father-to-son transmission, and
three others involved father-to-daughter transmission (Table 1). An affected brother shared
the p.T281A variant (S1 Fig). An unaffected brother shared the p.G1151R variant, but an unaf-
fected sister of the same patient did not. No de novo variants were found in these 16 cases.

We regarded four missense variants (p.R219K, p.T281A, p.V469A, p.D642N) and the
splice-site variant (c.3010-1G>C) as novel ones because they were predicted to be damaging or
to affect splicing based on in silico predictions and because each was not registered in any of
the public databases described in the Materials and Methods. p.M60I was included in the asso-
ciation analysis because it was previously detected in a Japanese boy with developmental delay
and hearing loss [40], although it was neither classified as damaging in the in silico analysis nor
absent from the Human Genetic Variation Database. Each of these six SNVs was located in a
genomic region that is highly conserved among eight vertebrate species (Table 2). Brief infor-
mation and results of segregation analysis are in S1 Fig.

Genetic association analysis
For our sample set of cases (n = 2,096) and controls (n = 1,917), we computed a statistical
power of>80% using the following parameters: disease prevalence of 0.01, observed rare-allele
frequency of 0.0021, odds ratio for dominant effect of� 3.59, and type I error rate of 0.0083
(using a Bonferroni correction by a factor of 6, based on the 6 SNVs investigated). An overview
and each phenotype of genetic association analysis of the six novel variants are presented in
Table 3 and S3 Table. Of the six, four novel SNVs (p.R219K, p.T281A, p.D642N, c.3010-1G>C)
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remained as singleton observations after genotyping of all cases and controls. We found no sta-
tistically significant association for any of the six rare heterozygous point variants in PCDH15
with case-control analysis. Post hoc calculation of statistical power based on a minor allele fre-
quency of 0.00048 (p.M60I, Table 3) revealed that good power accrues for odds ratio� 8.96 or
with an increase of the sample size to nearly 20,000 individuals (cases + controls).

Fig 1. Location for each variant of interest. PCDH15 protein structure is based on NCBI Reference
Sequence NP_149045. Each variant was located in the extracellular domain. EC: extracellular cadherin
repeat, TM: Transmembrane.

doi:10.1371/journal.pone.0153224.g001

Table 2. Multiple alignments of amino acid sequences for PCDH15 eight vertebrate homologs.

Variant Reference p.M60I p.R219K p.T281A p.V469A p.D642N

Human NP_149045 LVDNMLIKG VLRKRLNYE CRPLTYQAA LLQPVDREE LQATDREGD

Chimpanzee XP_507798.3 LVDNMLIKG VLRKRLNYE CRPLTYQAA LLQPVDREE LQATDREGD

Orangutan ENSPPYT00000002926 _ VLRKRLNYE CRPLTYQAA LLQPVDREE LQATDREGD

Macaque XP_001098443.1 LVDNMLIKG VLRKRLNYE CRPLTYQAA LLQPVDREE LQATDREGD

Mouse ENSMUST00000105426 LVDNMLIKG VLRKRLNYE CRPLTYQAA LLQPVDREE LQATDREGD

Rat XP_001080000.1 LVDNMLIKG VLRKRLNYE CRPLTYQAA LLQPVDREE LQATDREGD

Chicken ABC79282.1 LVDNMLIKG VLRERLNYE CRPLTYQAS LLQPVDREA LQAFDREGD

Zebrafish AAW50924.1 LVENMQING VLRERLNYE CKPLTYRAS LLRPVDHEE IQATDREKD

doi:10.1371/journal.pone.0153224.t002

Table 3. Association analysis of novel rare SNVs.

Case Control
Exona Ref Val Position

(GRCh38)
Variant Genotype

countb
Minor allele
frequency

P
valuec

Genotype
countb

Minor allele
frequency

5' side of
23

C G 10:53959845 c.3010-
1G>C

0/0/2085 0 1 0/0/1909 0

16 C T 10:54090057 p.D642N 0/0/2087 0 1 0/0/1905 0

12 A G 10:54185168 p.V469A 0/1/2091 0.00024 0.52 0/0/1908 0

8 T C 10:54317306 p.T281A 0/0/2091 0 1 0/0/1911 0

7 C T 10:54329645 p.R219K 0/0/2086 0 1 0/0/1915 0

4 C T 10:54378920 p.M60I 0/2/2090 0.00048 0.19 0/5/1906 0.0013

Note: Ref, reference; Val, variant
a Based on ENST00000320301;
b homozygous for a minor allele / heterozygote / homozygous for a major allele;
C P values were calculated by one-tailed Fisher’s exact test

doi:10.1371/journal.pone.0153224.t003
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Discussion
To our knowledge, this is the first study to investigate the contribution of rare PCDH15 vari-
ants to neuropsychiatric disorders and susceptibility to these disorders. We conducted targeted
resequencing of coding exons in PCDH15 for 562 Japanese patients and detected 16 heterozy-
gous SNVs as condition-related candidate genes. More rare SNVs were detected from samples
of ASD than those of SCZ. Of these 16 SNVs, five SNVs (p.R219K, p.T281A, p.V469A, p.
D642N, c.3010-1G>C) were selected because they were both predicted to be protein-damaging
by in silico analysis and not registered in public databases or found with a very low frequency
in ExAC. p.M60I was selected because it previously implicated in developmental delay [40]. An
independent association analysis was then performed with a cohort comprising 2,096 cases
and 1,917 controls. Our a priori calculation indicated our sample size was appropriately pow-
ered to determine statistical significance of SNVs. To assume the odds ratio for dominant effect
of rare SNVs would be more than 3.59 seems reasonable according to previous studies that
reported odds ratios from 1.88 [41] to 7.1 [32]. Of these six SNVs, four variants (p.R219K, p.
T281A, p.D642N, c.3010-1G>C) were not detected in our case control samples, in public data-
bases or found with a very low frequency in ExAC. Although a number of similar studies have
identified statistical associations between rare SNVs and SCZ [32,41,42,43], we found no statis-
tically significant association between any of these rare heterozygous PCDH15 SNVs and either
neuropsychiatric disorder.

We find it interesting that all protein-coding SNVs observed in the resequencing cohort
were located within the PCDH15 extracellular domain (Fig 1), which may interact with other
proteins. Of the 15 protein-damaging SNVs, 12 predicted by in silico analysis might change the
biological functions of PCDH15. PCDH15 plays an essential role in maintenance of normal
retinal and cochlear function [39]. Atypical processing of peripheral sensory inputs plays a cru-
cial role in both SCZ and ASD pathology [44,45,46]. Taken together, deleterious protein
changes will induce sensory processing differences contribute to SCZ and ASD symptoms.
Notably, splicing misregulation has been implicated in neuropsychiatric disorders [36,47];
c.3010-1G>C also might be a promising candidate for a causal variant in these disease
etiopathologies.

In this study, all inheritance statuses were either from apparently unaffected parents or of
unknown origin, suggesting variable penetrance (Table 1; S1 Fig). Each candidate variant of
maternal origin was transmitted to an affected son; this finding is similar to previous findings
[48]. While de novo variants have been the focus of research on SCZ and ASD pathogenesis,
inherited variants also contribute substantially to these complex diseases [49]. In addition, evo-
lutionary theory predicts that deleterious alleles are likely to be especially rare because of puri-
fying selection [50,51]. Recent large-scale genetic studies report that ultra-rare, private, and
inherited-truncating variants in conserved genes are highly enriched in patient populations,
especially in genes that closely involved in neurodevelopment [8,17,48,52,53]. The inherited
ultra-rare variants (p.R219K, p.T281A, p.D642N, c.3010-1G>C) within highly conserved
regions (Table 2) could increase susceptibility to development of a neuropsychiatric disorder.

There are several explanations for our inability to find statistical evidence for a causative
role in SCZ and/or ASD for any of these rare PCDH15 SNVs. First, due to extremely low
minor-allele frequencies (< 0.0005) as revealed by the association analysis or to odds ratios
lower than expected, we could neither confirm nor dismiss the significance of rare PCDH15
variants in either neuropsychiatric disorder. Post hoc calculations revealed that a larger, higher-
powered sample should be sought to reveal relationships between neuropsychiatric disorders
and PCDH15 variants. Secondly, we focused on the shared genetic risk to increase the statistical
power in this study. Considering that the burden of rare PCDH15 was statistically greater in
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ASD cases than in SCZ, further research may be needed to provide similarities and differences
between SCZ and ASD. Thirdly, we focused on the ENST00000320301 transcript, but
PCDH15, like many other neuronal proteins, is structurally diversified through the differential
inclusion and exclusion of exons. We did not cover the promoter, untranslated regions, or
intronic regions of PCDH15, which contain potentially disease-relevant regions. Fourthly, the
lack of DNA from a sufficient number of patient family members prevented us from monitor-
ing variant segregation. Finally, although 81% of the SNVs (13/16) identified in this study were
predicted to be protein-disrupting or splicing-altering based on in silico analysis, the exact
molecular mechanisms and networks affected by PCDH15 variants in SCZ and ASD remain
unclear. Useful model systems that can address these questions will be needed to assess the
impact of the SNVs discovered here.

Conclusions
We explored the role of rare PCDH15 SNVs in Japanese SCZ and ASD patients. We found four
ultra-rare variants (p.R219K, p.T281A, p.D642N, c.3010-1G>C) that may increase disease sus-
ceptibility. No statistically significant association between any rare, heterozygous point
PCDH15 variant and neuropsychiatric disorders was detected. A much larger sample size is
needed to elucidate the relevance of rare PCDH15 variants to neuropsychiatric disorders.

Supporting Information
S1 Fig. Brief information and segregation analysis of cases with six novel variants. The
genotypes of the tested individuals are indicated on the lower-side. All comorbidities were
diagnosed by experienced psychiatrists according to Diagnostic and Statistical Manual of Men-
tal Disorders, Fifth Edition (DSM-5) criteria. Note: 1Autism Spectrum Disorder; 2Interectual
Disability; 3Attention-Deficit/Hyperactivity Disorder; 4Tic Disorder; 5Epilepsy; 6Schizophre-
nia.
(PDF)

S1 Table. Primer sequences for validating each variant.
(PDF)

S2 Table. Probe sequences for TaqMan SNP assays. Note: A TaqMan probe consists with a
FAM or VIC dye label on the 5' end, and nonfluorescent quencher (NFQ) on the 3' end.
(PDF)

S3 Table. Association results for each phenotype. Note: Ref, reference; Val, variant. a Based
on ENST00000320301; b homozygous for a minor allele / heterozygote / homozygous for a
major allele; C P values were calculated by one-tailed Fisher’s exact test.
(PDF)
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