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Agomelatine for the treatment of 
generalized anxiety disorder: focus  
on its distinctive mechanism of action
Mark J. Millan

Abstract: Generalized anxiety disorder (GAD), the most frequently diagnosed form of anxiety, 
is usually treated by cognitive-behavioural approaches or medication; in particular, benzodi-
azepines (acutely) and serotonin or serotonin/noradrenaline reuptake inhibitors (long term). 
Efficacy, compliance, and acceptability are, however, far from ideal, reinforcing interest in 
alternative options. Agomelatine, clinically employed in the treatment of major depression, 
expresses anxiolytic properties in rodents and was effective in the treatment of GAD (includ-
ing severely ill patients) in several double-blind, short-term (12 weeks) and relapse-prevention 
(6 months) studies. At active doses, the incidence of adverse effects was no higher than for 
placebo. Agomelatine possesses a unique binding profile, behaving as a melatonin (MT1/MT2) 
receptor agonist and 5-HT2C receptor antagonist, yet recognizing neither monoamine trans-
porters nor GABAA receptors. Extensive evidence supports a role for 5-HT2C receptors in the 
induction of anxious states, and their blockade likely plays a primary role in mediating the anx-
iolytic actions of agomelatine, including populations in the amygdala and bed nucleus of stria 
terminalis, as well as the hippocampus. Recruitment of MT receptors in the suprachiasmatic 
nucleus, thalamic reticular nucleus, and hippocampus appears to fulfil a complimentary role. 
Downstream of 5-HT2C and MT receptors, modulation of stress-sensitive glutamatergic circuits 
and altered release of the anxiogenic neuropeptides, corticotrophin-releasing factor, and vaso-
pressin, may be implicated in the actions of agomelatine. To summarize, agomelatine exerts its 
anxiolytic actions by mechanisms clearly distinct from those of other agents currently employed 
for the management of GAD.
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Plain Language Summary

How agomelatine helps in the treatment of anxiety disorders
Introduction:
•  Anxiety disorders have a significant negative impact on quality of life.
•  The most common type of anxiety disorder, called generalized anxiety disorder (GAD), 

is associated with nervousness and excessive worry.
•  These symptoms can lead to additional symptoms like tiredness, sleeplessness, 

irritability, and poor attention.
•  GAD is generally treated through either cognitive-behavioural therapy or medication. 

However, widely used drugs like benzodiazepines and serotonin reuptake inhibitors 
have adverse effects.

•  Agomelatine, a well-established antidepressant drug, has shown anxiety-lowering 
(‘anxiolytic’) properties in rats and has been shown to effectively treat GAD with 
minimal side effects.
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•  However, exactly how it acts on the brain to manage GAD is not yet clear.
•  Thus, this review aims to shed light on agomelatine’s mechanism of action in treating GAD.
Methods:  
• The authors reviewed studies on how agomelatine treats anxiety in animals.
•  They also looked at clinical studies on the effects of agomelatine in people with GAD.
Results:  
•  The study showed that agomelatine ‘blocks’ a receptor in nerve cells, which plays a role 

in causing anxiety, called the 5-HT2C receptor.
•  Blocking this receptor, especially in specific brain regions such as nerve cells of the 

amygdala, bed nucleus of stria terminalis, and hippocampus, produced the anxiety 
reduction seen during agomelatine treatment.

•  Agomelatine also activates the melatonin (MT) receptor, which is known to keep anxiety 
in check, promote sleep, and maintain the sleep cycle.

•  Agomelatine should thus tackle sleep disturbances commonly seen in patients with GAD.
•  Beyond 5-HT2C and MT receptors, signalling molecules in nerve cells that are known 

to be involved in anxiety disorders (called ‘neurotransmitters’ and ‘neuropeptides’) are 
also affected by agomelatine.

Conclusion:  
•  Agomelatine’s anxiolytic effects are caused by mechanisms that are distinct from those 

of other medications currently used to treat GAD.
• This explains its therapeutic success and minimal adverse side effects.
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Introduction: core features of GAD and its 
current treatment
Anxiety disorders are a diverse assemblage of con-
ditions that have a serious and negative impact on 
quality of life. When diagnosed in children, ado-
lescents, and young adults, they often persist into 
later life. The most common class of anxiety disor-
der is GAD, which unfortunately is becoming 
more prominent amid the current COVID pan-
demic.1 Generalized anxiety disorder (GAD) is 
typically characterized by pervasive anxiety and 
nervousness, disproportionate worry, and over-
generalization of genuine fear to neutral or ambiv-
alent stimuli, sometimes on the basis of previous 
adverse experiences.2–6 Distressing emotions and 
thoughts are difficult to control, persist over 
months, and are associated with symptoms like 
fatigue, insomnia, irritability, poor concentration, 
attentional deficits, and physical complaints. 
Accordingly, GAD disrupts social and familial 
relationships and interferes with work and daily 
activities. Furthermore, GAD is frequently comor-
bid with other anxious states like social phobia 
and also with dysthymia or frank depression.2,5,7

Among a range of potential therapies, benzodiaz-
epines are usually reserved for the immediate and 
acute (hours to days) control of GAD owing to the 

risk of dependence and a withdrawal syndrome, in 
addition to sedation and impairment of cognition.2 
First-line and long-term treatment is mainly ori-
ented around cognitive-behavioural and relaxation 
techniques, as well as the administration of selective 

5-HT2C
AntagonistDual mechanism

of ac�on

MT1/MT2
Agonist

Short and long-term
Anxioly�c Efficacy*

Efficacy in major
depression

Improved sleep
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low dependence poten�al and
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Figure 1. Schematic overview of the dual molecular mechanism of action 
of agomelatine in relation to its influence upon behaviour and its clinical 
properties. Agomelatine was active in several, short-term (12-week) clinical 
GAD trials and in a 6-month relapse-prevention study, displaying good 
tolerance. It is likewise effective in major depression. Based on studies 
in major depression and healthy subjects, Agomelatine should improve 
circadian rhythms and sleep patterns in GAD patients.
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serotonin reuptake inhibitors (SSRIs) and seroto-
nin/noradrenaline reuptake inhibitors (SNRIs).2,8–14 
In certain (rare) cases, the 5-HT1A partial agonist, 
buspirone, is prescribed.2,14 Furthermore, the anti-
epileptic/analgesic and gabapentoid, pregabalin, 
may sometimes be administered. However – espe-
cially in association with recreational drugs and in 
patients with substance-abuse disorders – it presents 
a risk of misuse and addiction, while potential, ion 
channel-mediated toxic actions should also not be 
neglected.15–17 Where treatment-resistance or intol-
erance is encountered with standard medication, 
other agents may be considered such as the antide-
pressants, imipramine, mirtazapine, and trazodone, 
and (usually as adjuncts and in low doses) second-
generation antipsychotics like olanzapine and 
quetiapine.13,18

A broad range of agents acting via contrasting 
molecular substrates is, then, available for the 
control of GAD. However, they all possess dis-
advantages in terms of incomplete efficacy, 
irresponsive patients and undesirable second-
ary actions. For example, some patients cannot 
tolerate SSRIs and SNRIs, and hence do not 
properly comply with their prescription. These 
limitations underlie continuing efforts to find 
improved – and mechanistically distinct – med-
ication for the treatment of GAD.2,13,19–21

The present article focusses on one such agent, 
agomelatine (Figure 1). In the wake of early 
studies documenting its anxiolytic properties in 
rodents, clinical studies have found that agomel-
atine is efficacious in the treatment of GAD. 

Agomelatine possesses a distinctive binding pro-
file/mode of action which can be related both to 
its therapeutic efficacy in GAD and to its com-
paratively good acceptability compared to other 
agents.

Agomelatine as a novel and mechanistically 
distinct option for GAD
In 2009, agomelatine was launched in Europe for 
the treatment of major depressive episodes in adults, 
and it was progressively authorized for use in major 
depression across a suite of countries in Asia, Africa, 
Australasia, and South America. (At that time, the 
parent company Servier was not present in the 
United States: while now represented, the focus is 
on Oncology and Research). Agomelatine was the 
first antidepressant to be licenced that possesses a 
non-monoaminergic component of activity, its 
unique pharmacological profile comprising dual-
antagonist properties at 5-HT2C receptors as well as 
agonist properties at melatonin (MT)1 and MT2 
receptors22–25 (see further below). This pattern of 
binding differs from all other classes of antidepres-
sant currently in use, and it is distinct to the afore-
mentioned agents clinically employed to treat GAD. 
Furthermore, by contrast to benzodiazepines, ago-
melatine does not interact with either ortho or allos-
teric sites on GABAA receptors. In addition, 
agomelatine does not bind to the gabapentin-
responsive alpha2delta subunit of voltage-depend-
ent Ca2+ channels. In contrast to buspirone, it is 
devoid of affinity for 5-HT1A receptors and, in dis-
tinction to SSRIs and SNRIs, agomelatine does not 
recognize monoamine reuptake sites.22,23,25

Table 1. Summary of studies exploring the respective roles of 5-HT2C antagonist versus melatonin agonist 
properties in the anxiolytic actions of agomelatine in rodents.

Model Vogel conflict Geller conflict Social 
interaction

Social defeat Plus maze

Agomelatine alone Yes Yes Yes Yes Yes/No

5-HT2C antagonists Yes Yes Yes Not tested No

Melatonin alone No No No Yes (partial) Yes/No

MT antagonist vs. 
agomelatine

Not blocked Not tested Not blocked Not tested Blocked

MT, melatonin.
Agomelatine was compared to several selective 5-HT2C antagonists and/or to melatonin under identical conditions. The 
activity of agomelatine in the social defeat model was abolished by ablation of the MT1 receptor–rich suprachiasmatic 
nucleus. Variable results have been acquired with both agomelatine and melatonin in the elevated plus maze. In one study 
where agomelatine was effective, its actions were blunted by administration of the melatonin antagonist, S22153. This drug 
was likewise employed in interaction with agomelatine in the Vogel conflict and Social interaction procedures where it was, 
by contrast, inactive. For details, see main text.
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The first indications that agomelatine might be of use 
for the management of GAD (and anxious states in 
general) emerged from experimental work in 
rodents.26 Potential therapeutic efficacy in GAD was 
subsequently assessed within the framework of con-
trolled clinical trials over 2008 to 2018, and these 
observations constitute the basis for a dossier in prep-
aration for submission to the appropriate Health 
Authorities.27,28 These observations are consecutively 
summarized below and then its potential mecha-
nisms of action are considered in greater detail.

Anxiolytic properties of agomelatine: 
actions in animal models
In recent years, considerable efforts have been 
made to ameliorate the validity of animal models 
of anxiety, both for characterization of the under-
lying pathophysiology and for the improved 
detection of novel anxiolytics: in parallel, several 
‘translational’ initiatives have been undertaken 
for the improved appraisal of potential anxiolytic 
activity in human subjects.29–38 Yet no specific ani-
mal model for GAD, a multidimensional and 
complex disorder, has to date been described.

On the contrary, an exaggerated response to fear is 
common in GAD patients3,6 suggesting that condi-
tioned fear procedures in rats may have significant 
construct value for GAD. It is, thus, of note that 
agomelatine robustly reduced the freezing response 
to a conditioned aversive stimulus in rats.39 
Agomelatine has also been evaluated in a suite of 
other paradigms mirroring diverse dimensions of 
anxious states. One example is a Vogel Conflict 
(approach-avoidance) procedure, whereby anxio-
lytic agents release a response for food or water 
suppressed by a mild punishment – independently 
of any potential influence upon appetite or nocic-
eptive thresholds.40 Another example is provided 
by active Social Interaction with an unknown con-
specific:26,41 this is of note because there is increas-
ing interest in overlapping features and cellular 
substrates of GAD and social anxiety.42,43 In these 
and certain other procedures of potential anxio-
lytic properties, agomelatine displayed robust effi-
cacy, though it has not invariably proven active in 
elevated plus maze and conditioned ultrasonic 
vocalization (USV) procedures23,24,26,41,44,45 (Table 
1). Where active, the anxiolytic actions of agomel-
atine are expressed both acutely and upon sus-
tained (several weeks) administration.22,23,26,44

Interestingly, agomelatine also counters anxiety-
related behaviours in several rodent models of 

‘depression’, including pre-natal or chronic 
stress.23,46,47 These observations, together with its 
clinically proven antidepressant properties,22 sup-
port the use of agomelatine for helping patients with 
mixed anxious-depressive states7,48 – a possibility yet 
to be formally addressed in dedicated clinical trials.

Anxiolytic properties of agomelatine: 
actions in clinical studies of GAD
In the wake of the encouraging experimental find-
ings outlined above, clinical efficacy of agomela-
tine (25–50 mg/day) was evaluated in patients 
suffering from GAD. Efficacy versus placebo was 
demonstrated in three independent, double-
blind, ‘short-term’ (12-week) studies that 
employed both the Hamilton Anxiety Scale as 
well as the Sheehan Disability Scale to monitor 
functional impairment.49–51 The positive outcome 
of these respective studies was recently reprised 
by a pooled meta-analysis that underpinned evi-
dence for robust efficacy both in alleviating symp-
toms and in enhancing global patient function.27,28 
Efficacy of agomelatine was comparable to the 
active control, escitalopram (an SSRI), and sec-
ondary analysis supported effectiveness in severe 
GAD (Hamilton Anxiety Scale  > 21).28,49–52 
Although its precise onset of efficacy remains to 
be further characterized, clinical studies suggest 
activity within the 1–3 weeks after commencing 
administration in at least some patients.28,49–52 A 
further study undertaken over 6 months demon-
strated efficacy in preventing relapse.53

Despite concerns from depressed patients about a 
dose-dependent (albeit low) risk of hepatotoxicity 
that necessitates control of liver function,22,54 only a 
small percentage (1.8%) of patients in the short-
term studies of GAD showed potentially significant 
increases in transaminases: there were no cases of 
liver disease and transaminase levels normalized 
after stopping administration in all patients. This 
issue obviously requires close future surveillance, 
but data in GAD are so far reassuring, and recent 
comparative analyses of agomelatine with other 
antidepressants in major depression reinforce this 
conclusion.55–57 Furthermore, tolerance was good 
in GAD patients with no difference in the frequency 
of discontinuation-related adverse effects in the 
agomelatine (headache, nasopharyngitis, and nau-
sea) versus placebo groups (both 2.1%). In addi-
tion, there was no evidence for an agomelatine 
withdrawal syndrome in either the short-term or 
relapse-prevention studies.28,49–53 These observa-
tions are consistent with clinical observations 
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acquired in studies of its antidepressant proper-
ties.22,56 More specifically, they support the notion 
that the distinctive receptor-binding profile of ago-
melatine should not be associated with the risks of 
tolerance, dependence/withdrawal, and recrea-
tional abuse that burden benzodiazepines. 
Agomelatine lacks affinity for the 5-HT trans-
porter,22,23 and clinical work bears out the low risk 
of disrupted sexual function and sleep – or an acute 
exacerbation of anxiety – at the onset of treatment. 
This represents an important gain over SSRIs and 
SNRIs – and may also be an advantage compared 
with buspirone.13,22,23,27,28,57–62

Activation of 5-HT2C receptors, for example, on 
hypothalamic proopiomelanocortin neurons, sup-
presses appetite. Conversely, 5-HT2C receptor block-
ade, in particular when coupled to histaminergic and/
or muscarinic receptor antagonism, is a risk factor for 
increased food consumption, obesity, and metabolic 
dysregulation, as seen with numerous tricyclic anti-
depressants and ‘atypical’ antipsychotics like olan-
zapine.63–68 It is of note, then, that agomelatine does 
not recognize histaminergic, muscarinic, or other 
classes of receptor incriminated in triggering weight 
gain.22,23 In addition, agomelatine is a neutral antago-
nist rather than inverse agonist at 5-HT2C receptors, 
so it is does not decrease 5-HT2C receptor–mediated 
transmission to below ‘normal or default’ levels.69,70 
These characteristics suggest that agomelatine has a 
low risk of metabolic perturbation and obesity, an 
assertion underscored by clinical observations in 
studies of both GAD and major depression.22,28 
There is also a correspondingly low risk of rebound 
anxiety or a discontinuation syndrome at the end of 
treatment.22,28,70,71

To recap, then, the distinctive 5-HT2C antagonist/
MT agonist receptor-binding profile of agomelatine 
can be related both to its therapeutic efficacy in GAD 
and to its good tolerance.13,27,28,58 Its favourable clini-
cal profile was recently underscored in two separate 
meta-analyses of a diversity of agents clinically evalu-
ated for the treatment of GAD.13,58 Nonetheless, for 
a more fine-grained and complete understanding of 
the mechanisms of action of agomelatine in the con-
trol of GAD, it is instructive to consider a suite of 
observations acquired mainly in rodents.

Anxiolytic actions of agomelatine: 5-HT2C 
receptor blockade compared to MT agonist 
properties
As regards the mechanism of action of agomela-
tine in the expression of its anxiolytic actions, the 

primary focus has not surprisingly been on the 
respective role of 5-HT2C as compared to MT 
receptors. Employing agomelatine-responsive 
anxiolytic procedures in rats, comparisons have 
been undertaken both to 5-HT2C antagonists and 
to MT. In addition, interaction studies have been 
performed with the MT1/MT2 receptor antago-
nist, S22153.23 The key observations acquired are 
depicted in Table 1 and briefly outlined below.

In a Vogel conflict procedure undertaken in mildly 
(overnight) water-deprived rats, the ability of ago-
melatine to disinhibit punished (weak electric shock 
on the spout) was mimicked under identical condi-
tions by several different selective 5-HT2C receptor 
antagonists, whereas MT was inactive.26 Similar 
observations have been made employing the related 
Geller (mild food-deprivation) procedure.23 In addi-
tion, S22153 failed to block the anxiolytic actions of 
agomelatine in these paradigms. Comparable results 
were obtained in a model of active social interaction 
between two unfamiliar rats presented to each other 
in an unfamiliar (open-field) environment.26 These 
observations strongly suggest that 5-HT2C receptor 
blockade is necessary and sufficient for the expres-
sion of anxiolytic properties in the above procedures. 
In a separate study, S22153 enhanced (for not 
entirely clear reasons) the suppressive influence of 
agomelatine upon USVs provoked by conditioned 
fear: re-exposure to an environment previously asso-
ciated with an aversive stimulus. Conversely, in a 
study of the elevated plus maze, the anxiolytic actions 
of agomelatine were blunted by S22153.41

Taken together, these findings suggest a major 
role for 5-HT2C receptor blockade in the anxio-
lytic actions of agomelatine. Supporting this 
assertion, its 5-HT2C antagonist properties are 
expressed over a similar dose-range in several 
pharmacological models.23 In addition to this pre-
ponderant role for 5-HT2C receptor antagonist 
properties, there appears to be a complementary 
role for MT receptor agonism in the anxiolytic 
profile of agomelatine. Further evidence under-
pinning the respective roles of 5-HT2C and MT 
receptors is outlined in the following sections.

Key role for 5-HT2C receptors in the 
anxiolytic actions of agomelatine: 
supporting studies in rodents and humans
In the light of the above-discussed evidence that 
5-HT2C receptor antagonism participates in the 
anxiolytic actions of agomelatine, it is instructive 
to evoke studies undertaken in animals and in 
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humans that underpin a role for 5-HT2C receptor 
blockade in the relief of GAD and anxious states.

First, paralleling observations obtained in direct, 
side-by-side comparisons with agomelatine, diverse 
classes of 5-HT2C receptor antagonist exert anxiolytic 
properties across a range of animal models. 
Conversely, 5-HT2C receptor agonists generally dis-
play anxiogenic properties.71–75 Second, in line with 
these findings, 5-HT2C receptor knockout mice dis-
play an ‘anxious’ profile, though this is only seen 
under certain conditions and a tendency for increased 
locomotor activity complicates  interpretation of 
data.64,76,77 Third, indirect, 5-HT-mediated activa-
tion of 5-HT2C receptors mediates the acute anxio-
genic actions of SSRIs in rodents, notably in the 
social interaction procedure in which agomelatine is 
anxiolytic. Conversely, upon long-term exposure, 
this anxiogenic effect fades and 5-HT2C receptor 
desensitization/down-regulation likely contributes to 
the long-term anxiolytic effects of SSRIs: studies of 
hippocampal electroencephalographic activity in rats 

reinforce this interpretation.78–85 Fourth, second-line 
antidepressants and antipsychotics used to treat 
GAD (or their major metabolite in the case of quetia-
pine) share antagonist properties at 5-HT2C recep-
tors.86–90 Finally, while no selective ligand at 5-HT2C 
receptors has yet been authorized for the therapy of 
GAD, the 5-HT2C antagonist ritanserin abrogates 
the exacerbation of anxiety in GAD patients pro-
voked by the prototypical 5-HT2C agonist, ‘mCPP’ 
(meta-chlorophenylpiperazine). Ritanserin also 
blocks the anxiogenic and other effects of mCPP in 
non-anxious (‘normal’) subjects.91–93 Thus, both 
experimental and clinical evidence supports a role for 
5-HT2C receptor antagonism in the attenuation of 
anxious states and the relief of GAD by 
agomelatine.

Before moving on to MT receptors, it should be 
mentioned that agomelatine displays affinity com-
parable to that for 5-HT2C receptors at closely 
related 5-HT2B receptors: mCPP and ritanserin also 
interact with 5-HT2B receptors.23,63,94,95 In contrast 
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Figure 2. Schematic illustration of cerebral structures and neuromediators potentially involved in the anxiolytic 
actions of agomelatine in relation to the localization of 5-HT2C and MT1 receptors. Several interconnected 
structures integrating fear and anxiety are shown. Both the thalamic reticular nucleus (TRN)–via the mediodorsal 
thalamus–as well as the ventral hippocampus project to the frontal cortex (FCX). The FCX itself innervates the 
bed nucleus of the stria terminalis (BNST) and the amygdala, the latter of which also projects to the BNST 
(Adhikari, 2014). The interlinked amygdala and BNST represent key sites for the expression of fear and anxiety. 
5-HT2C and MT1 or MT2 receptors in these regions are likely sites for anxiolytic actions of agomelatine, which 
is thought to act via the neural mechanisms indicated. Other potential sites of action for agomelatine include 
the habenula, the dorsal striatum and the periaqueductal grey (not shown, see main text). Agomelatine may 
also act at MT1 sites in the SCN (directly or via modulation of circadian rhythms) to affect anxious states, and via 
modulation of the secretion of vasopressin/oxytocin from paraventricular/supra-optic nuclei, likely downstream 
of 5-HT2C receptors. This figure represents a work in progress: further study is needed to more precisely 
determine the cellular and neural mechanisms of anxiolytic action of agomelatine in GAD.
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to 5-HT2C receptors, however, there is no evidence 
from either pharmacological or gene knockout stud-
ies that 5-HT2B receptor activation elicits anxious 
states, nor that their inactivation is associated with 
anxiolytic properties. Indeed, as compared to 
5-HT2C receptors, several studies have reported 
that 5-HT2B agonists rather than antagonists display 
anxiolytic actions.48,70,96,97 Accordingly, there is no 
evidence for a role of 5-HT2B blockade in the influ-
ence of agomelatine upon anxiety, and the discus-
sion below focusses on 5-HT2C receptors.

A complementary role for MT receptors 
in the anxiolytic actions of agomelatine: 
supporting studies in rodents and humans
As regards a complementary role for melatonergic 
agonism in the anxiolytic actions of agomelatine, 
supporting data are less broad-based than those for 
5-HT2C receptor blockade. Nonetheless, a few 
studies have reported anxiolytic actions of MT (as a 
function of the procedure and time of light cycle) in 
rodent models like the elevated plus maze and nov-
elty suppressed feeding tests.41,98–103 Most perti-
nently, in a paradigm of social defeat, agomelatine 
abrogated associated anxiety-related behaviours, 
and its actions were partially reproduced by MT 
(5-HT2C antagonists were not unfortunately tested) 
and abolished by lesions of the MT1 receptor–rich 
suprachiasmatic nucleus (SCN).45 Furthermore, 
increases in anxiety have been documented in MT1 
knock mice.104 As regards MT2 receptors, the syn-
thetic MT2 agonist (UCM765) has been reported 
to mimic the anxiolytic properties of MT, and its 
actions were blocked by a selective MT2 receptor 
antagonist.102 In line with this work, male and/or 
female mice genetically deprived of MT2 receptors 
display enhanced anxiety.105–108 As regards human 
subjects, data are very sparse, yet there is fragmen-
tary evidence for anxiolytic effects of MT under spe-
cific conditions, such as pre-operative stress.100,109

Independently of any direct influence of MT ago-
nism on circuits mediating and controlling anxiety, 
MT receptor stimulation by agomelatine should be 
linked to an improvement (advanced onset) of sleep 
and circadian rhythms.110,111 Since sleep is com-
monly perturbed in patients with GAD, this would 
be expected to favour the relief of anxious states.5,7,35

Cerebral loci of action of agomelatine in 
relation to fear-anxiety integrating circuits
The above observations focussed on the signifi-
cance of the primary molecular targets of 

agomelatine, 5-HT2C and MT receptors, in the 
expression of its anxiolytic properties. Two inter-
related questions arise. First, regarding the cere-
bral location of the respective populations of 
receptor involved and, second, concerning the 
roles of various downstream neurotransmitters 
and neuromodulators in mediating the 5-HT2C/
MT receptor–triggered actions of agomelatine. 
Figure 2 presents an overview of our current 
knowledge in this respect which serves as a frame-
work for the discussion below, and for future 
work.

Comparatively, few studies have to date been 
undertaken with agomelatine to specifically iden-
tify its anxiolytic loci of action in the brain. One 
 pragmatic reason for this is the highly lipophilic 
nature of agomelatine, leading to rapid diffusion 
through neural tissue: this renders intracerebral 
microinjection studies problematic. Nonetheless, 
a functional magnetic resonance imaging (fMRI) 
study in rats found that agomelatine blocked the 
‘BOLD’ response to a selective 5-HT2C agonist 
(RO-60,0175) in the mediodorsal thalamus as 
well as the cortex, ventral hippocampus and peri-
aqueductal grey,112 key structures involved in the 
processing of fear and anxiety in animals and 
humans.6,35,113,114 These findings support a role 
for 5-HT2C receptors in the hippocampus in the 
anxiolytic actions of agomelatine. Interestingly, 
systemic administration of agomelatine exerts a 
marked influence on synaptic plasticity, diverse 
intracellular signals, and neuromodulators like 
neural cell adhesion molecule, an emotion-regu-
lating growth factor, in this structure.23,115,116 
Findings with selective 5-HT2C receptor agonists 
and antagonists underscore a role of the hip-
pocampus in the modulation of anxiety, and they 
also provide evidence for roles of 5-HT2C recep-
tors in the amygdala (basolateral and central 
nuclei) and the interconnected bed nucleus of the 
stria terminalis (BNST). For example, activation 
of 5-HT2C receptors in the basolateral amygdala 
underlies the induction of anxiety by stimulation 
of the raphe nucleus.117 These regions comprise 
core elements of a stress-sensitive, fear-integrating 
circuit involved in the induction of  anxious states 
that is modulated by 5-HT2C receptors and, ipso 
facto, one may assume agomelatine48,63,64,84,118–121 
(see also next section).

Like 5-HT2C receptors, both MT1 and MT2 
receptors are localized in the hippocampus (mainly 
dental gyrus and CA3 regions, respectively). The 
former are also highly concentrated in the SCN, 
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whereas the latter are prominent in the thalamic 
reticular nucleus (TRN).122 As mentioned above, 
the approach of discrete brain lesions suggests that 
the integrity of the MT1 receptor-enriched SCN, 
the circadian master regulator, is required for alle-
viation by agomelatine of anxious behaviour fol-
lowing social defeat.45 Agomelatine interacts with 
circadian-rhythm-related genes (like ‘Period-1’) 
in the SCN (and hippocampus): studies are 
undergoing to determine if and how this influence 
relates to specific classes of anxiety disorders.123,124 
On the contrary, the above-mentioned MT2 
receptor agonist UCM765 activates neurons in 
the TRN that project via the dorsal medial thala-
mus to the frontal cortex (FCX), which itself feeds 
into the amygdala-BNST axis to control anxious 
states. Accordingly, it has been proposed that acti-
vation of MT2 receptors in the TRN acts via this 
neural cascade to counter anxiety, and they are a 
potential substrate for the anxiolytic actions of 
agomelatine.102,108,125 This possibility is especially 
interesting bearing in mind the role of the TRN in 
sleep126 and evidence that agomelatine influences 
the activity of neurons in the dorsomedial thala-
mus and FCX downstream of the TRN.23,112 
Finally, a role of either MT1 and/or MT2 recep-
tors in the hippocampus may, by analogy to their 

5-HT2C counterparts, be involved in the response 
to stress and the anxiolytic actions of MT together 
with, by extrapolation, agomelatine.23,100,103,127

Potential neurochemical substrates of 
action involved in the anxiolytic actions of 
agomelatine
As regards neurochemical substrates involved in 
the anxiolytic properties of agomelatine, it is inter-
esting to consider potential roles for glutamate and 
several different classes of neuropeptide.

Both 5-HT2C receptor ligands and SSRIs have been 
found to impact stress-sensitive glutamatergic trans-
mission in structures like the FCX, hippocampus, 
and amygdala.128,129 As regards agomelatine itself, its 
acute administration blunted stress-induced release 
of glutamate in the basolateral and central amygdala 
as well as the hippocampus. In the past, the tendency 
has been to automatically relate this modulation of 
glutamatergic pathways (and other neurochemical 
effects of agomelatine) to its antidepressant actions. 
However, these effects might more compellingly be 
interlinked with its anxiolytic properties in view of 
the pivotal role of the amygdala and hippocampus in 
the regulation of fear and anxiety.35,46–48,113,114

Serotonergic
neuron

5-HT

5-HT

GABAA

Glutamatergic
neuron

5-HT2C

Benzodiazepine

GABAA receptor ac�va�on
inhibits 5-HT release

Agomela�ne

Directly blocks
5-HT2C receptors

SSRI/SNRI

« Excess » ac�vity
linked to anxiety

Suppression of 5-HT reuptake increases levels in synap�c cle�:
Sustained increases cause 5-HT2C receptor desensi�za�on

Dorsal Raphe Nucleus Post-synap�c structures

-

-

-
5-HT

SERT, 5-HT Transporter

SSRI, 5-HT reuptake inhibitor
SNRI, 5-HT and NA reuptake inhibitor

SERT

Figure 3. Schematic depiction of the influence of agomelatine compared to several other classes of anxiolytic 
upon serotonergic/5-HT2C receptor-mediated neurotransmission. A prototypical serotonergic neuron is shown, 
projecting onto a post-synaptic glutamatergic neuron in, for example, the hippocampus. Over-activation 
of 5-HT2C receptors contributes to anxious states. Benzodiazepine’s recruit GABAA receptors to reduce the 
release of 5-HT, yet these GABAA receptors rapidly desensitize. Agents that block the reuptake of 5-HT by 
terminal-localized transporters (SERT) initially increase synaptic levels of 5-HT to stimulate 5-HT2C receptors: 
upon long-term administration, in the face of sustained and high levels of 5-HT, 5-HT2C receptors desensitize. 
agomelatine, by contrast, directly blocks 5-HT2C receptors in both the short and long term.
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Modulation of the activity of the anxiogenic pep-
tide, corticotrophin-releasing factor (CRF) in the 
amygdala and the BNST35,130,131 has been impli-
cated in the influence of 5-HT2C receptors – and, 
by extension, agomelatine – upon anxious sta
tes.35,82,117,121,132 Of particular interest, serotonergic 
pathways projecting to the BNST from the dorsal 
raphe act via 5-HT2C receptors to engage a CRF 
circuit that inhibits the anxiolytic influence of a 
BNST projection to the lateral hypothalamus and 
ventrotegmental area. Activation of these 5-HT2C 
receptors by SSRIs is thought to underlie their 
aversive/anxiogenic effects at the onset of treat-
ment. Agomelatine would act oppositely to SSRIs 
in blocking BNST-located 5-HT2C sites and mod-
erating CRF output, contributing to the expression 
of its anxiolytic properties in the absence of an early 
phase of aggravated anxiety.2,13,28,121 CRF may not 
be the only neuropeptide potentially implicated in 
the actions of agomelatine. Post-weaning isolation 
in rats is associated with heightened anxiety in 
adults, together with reduced plasma levels of oxy-
tocin (which possesses anxiolytic properties) and 
elevated levels of vasopressin (‘anxiogenic’).35 Sub-
chronic (2 weeks) administration of agomelatine 
moderated anxiety as well as reversing the increases 
in vasopressin levels, and (albeit only in females) it 
also attenuated the fall in levels of oxytocin.33 These 
effects were specific since, despite the above-
described influence on CRF in the BNST, there 
was no apparent influence on corticosterone levels 
downstream of the hypothalamic–pituitary–adrenal 
axis.133 Intriguingly, there is evidence that 5-HT2C 
receptors physically associate with and blunt signal-
ling at oxytocin receptors and that oxytocin hypo-
activity is countered by 5-HT2C antagonists 
including, at least in theory, agomelatine.134

Serotonergic projections are subject to the inhibi-
tory control of GABAergic interneurons expressed 
both at the level of terminals and of cell bodies in 
raphe nuclei. Accordingly, benzodiazepines sup-
press (‘excess’) release of 5-HT by activation of 
GABAA receptors presynaptic to serotonergic neu-
rons in the dorsal raphe nucleus, hippocampus, 
amygdala, and other regions, actions that contrib-
ute to their anxiolytic properties.2,8,26,35,78,135 
Interestingly, at least in rodents, 5-HT2C receptors 
are expressed by raphe-localized GABAergic 
interneurons targeting serotonergic pathways pro-
jecting to the basolateral amygdala.135 Under condi-
tions of acute stress, 5-HT2C agonists attenuate the 
activity of ascending serotonergic pathways136,137 
This action, and some – albeit inconsistent – evi-
dence for anxiolytic properties of 5-HT2C agonists, 

likely reflect recruitment of GABAergic interneu-
rons upstream of serotonergic pathways.26,35,138,139 
Nonetheless, presumably reflecting the low tonic 
activity of 5-HT2C receptors on GABAergic neu-
rons, as assessed by dialysis in freely moving rats 
and at anxiolytic doses, agomelatine did not modify 
extracellular levels of 5-HT in the hippocampus or 
other structures5,26 (Figure 3). This lack of impact 
on extracellular levels of 5-HT mimics selective 
5-HT2C antagonists and distinguishes agomelatine 
both to benzodiazepines (decreased release of 
5-HT)26,78,140 and to SSRIs and SNRIs which ele-
vate synaptic levels of 5-HT by blocking 5-HT 
reuptake sites on serotonergic terminals: increases 
are seen both acutely and upon long-term admin-
istration.62,89 Agomelatine may also be contrasted 
in this respect to buspirone, which decreases extra-
cellular levels of 5-HT in corticolimbic territories 
by recruitment of 5-HT1A autoreceptors on raphe 
cell bodies.35,140 In contrast to other classes of anxi-
olytic, then, agomelatine exerts its anxiolytic prop-
erties in the apparent absence of alterations in the 
release of 5-HT.

Relationship of the anxiolytic properties of 
agomelatine to its antidepressant actions
Blockade of 5-HT2C receptors and activation of 
MT receptors are the core mechanisms of action 
harnessed by agomelatine both in the treatment of 
GAD and, as amply discussed elsewhere, in the 
management of major depression.22,23 Clearly, 
then, the anxiolytic and antidepressant actions of 
agomelatine are fully compatible, and they are 
expressed over similar dose-ranges in patients with 
GAD and major depression, respectively. Under 
conditions of comorbid GAD and depression, 
antidepressant and anxiolytic properties may 
mutually reinforce each other. Interestingly, fur-
thermore, relief of anxious states may help hinder 
the course to major depression.141 Although formal 
trials remain to be performed, these elements, com-
bined with the ability of agomelatine to counteract 
the anxiety associated with chronic stress in rats 
(vide supra) suggest that it should relieve ‘mixed’ 
anxio-depressive conditions in patients.7,22,48

Noting interconnections between the anxiolytic 
and antidepressant actions of agomelatine is not, 
however, to contend that the same populations of 
5-HT2C and MT receptors and the same down-
stream substrates are implicated. Indeed, the 
above-discussed neural mechanisms engaged by 
agomelatine in the relief of anxious states are 
unlikely to mediate its impact on major depression. 
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Conversely, pivotal to the antidepressant actions of 
agomelatine is its enhancement of the activity of 
dopaminergic and adrenergic pathways projecting 
to the FCX. This effect is unrelated to the anxio-
lytic properties of agomelatine, despite a possible 
role for 5-HT2C receptors in the FCX – intercon-
nected with the amygdala-BNST.35,113,142,143

General discussion: open questions and 
perspectives
Finally, additional study should provide further 
insights into the mechanisms of action of agomel-
atine in the treatment of GAD.

First, at the cellular level, by analogy to 5-HT2C 
receptor-Oxytocin receptor heterodimers (vide 
supra), a physical interaction between 5-HT2C and 
MT2 receptors has been demonstrated both in cel-
lular expression systems, as well as the hippocampus 
and cortex of rats.144,145 5-HT2C-MT2 functional 
heterodimers possess ligand recognition and cou-
pling properties that differ from the constituent 
monomers and dimers. Since agomelatine potently 
recognizes these heterodimers, it has been specu-
lated that they may be involved in the clinical actions 
of agomelatine in depression. The same might be 
contended for GAD. However, while there is 
increasing evidence for the relevance of heteromeric 
G-protein-coupled receptor (GPCR) complexes to 
central nervous sytem (CNS) disorders,146,147 it is 
not yet known whether 5-HT2C-MT2 heterodimers 
are affected in the brain of GAD patients, nor 
whether their activity is altered under conditions of 
stress. Furthermore, ligands highly selective for 
5-HT2C-MT2 heterodimers versus constituent mon-
omers would be needed to rigorously evaluate their 
functional significance. Such agents are being sought 
but have not yet been described.145

Second, at the neurochemical and network level, it 
would be interesting to determine whether other 
neuromediators interlinked with 5-HT2C recep-
tors and known to influence anxious states, like 
cannabinoids and Neuropeptide Y, are involved in 
the actions of agomelatine.148–150 Furthermore, 
induction of brain-derived neurotrophic factor 
(and neurogenesis) in the hippocampus and FCX 
has been related to the antidepressant actions of 
agomelatine – and many other antidepressants – 
and it may be more generally involved in the 
response to stress and anxious states.23,115,150–152. 
Interestingly, 5-HT2C receptor knockout mice 
reveal increased expression of brain-derived neu-
rotrophic factor in the hippocampus.153 It would 

also be insightful to acquire a clearer picture of the 
neural structures where agomelatine exerts its 
actions, exploiting both animal models and human 
subjects. In addition to the amygdala-BNST, the 
hippocampus and the FCX (Figure 2), other 
structures warrant investigation such as the GAD-
implicated habenula.3 In this MT receptor–rich 
structure,123 5-HT2C receptors play a role in the 
control of anxiety.122,154,155 5-HT2C receptors 
localized in the dorsal striatum also participate in 
the induction of anxious states.118,156 A final struc-
ture worth citing that possesses both MT recep-
tors and 5-HT2C receptors is the periaqueductal 
grey: this midbrain region is involved in the trig-
gering of anxiety and has been identified as a site 
of action of 5-HT2C antagonists.6,122,157,158 In 
addition to animal studies, clarification of neural 
circuits involved in the anxiolytic actions of ago-
melatine could be attempted in human subjects. 
This enterprise is however complicated – notwith-
standing the sustained efforts of many laboratories 
– by the lack of specific positron emission tomog-
raphy (PET)-imaging ligands.159 An alternative 
approach, highlighted by work in rodents, would 
be fMRI and electroencephalographic strategies 
for exploring circuits involved in the relief of GAD 
by agomelatine in comparison to other classes of 
agent.85,108,112,160

Third, the anxiolytic effects of agomelatine are 
expressed principally via 5-HT2C receptors and 
‘directly’ in interaction with corticolimbic and other 
subcortical circuits controlling anxious states. 
Nonetheless, in a clinical context, a beneficial influ-
ence of agomelatine on sleep patterns quality and 
circadian rhythms would be helpful in the relief of 
GAD and the improvement of quality of life. The 
influence of agomelatine upon sleep onset and 
rhythms is mainly melatonergic (MT receptor stim-
ulation) in nature,161–163 but a contribution of 
5-HT2C receptor blockade should not be neglec
ted.85,110,111,164 In fact, blockade of 5-HT2C receptors 
likely contributes to the short-term improvement by 
antidepressants like trazodone and mirtazapine of 
sleep, although their sedative properties – due to his-
tamine H1 antagonism – become problematic in 
some patients.48,165,166 Conversely, an influence 
upon sleep of agomelatine (which possesses neither 
affinity for H1 receptors nor marked sedative proper-
ties) does not play a major role in its antidepressant 
properties.22,110,165,166 Hence, to answer the question 
of whether – and by which mechanisms – a positive 
influence of agomelatine upon sleep and daily cycles 
putatively contributes to its relief of GAD, dedicated 
studies in patients will be required.22,28,165,167
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Fourth, since agomelatine has only been evaluated 
in adult populations for the relief of GAD, it would 
be of interest to examine its potentially beneficial 
influence on GAD in specific populations like the 
young, including children and adolescents. Finally, 
in view of positive results in tests of social interaction 
in rodents48 and the social dimension of GAD,164 
clinical studies of Social Anxiety Disorder and spe-
cific types of social phobia would be of interest

Finally, agomelatine is currently the only clinically 
authorized compound to possess a co-joint 5-HT2C 
receptor antagonist plus MT1/MT2 agonist profile. 
Nonetheless, at least one new agent (GW117) with 
a comparable binding profile has recently been 
documented.168 Furthermore, it would be interest-
ing to explore complementary ‘multi-target’ classes 
of agent articulated around 5-HT2C receptor 
antagonist and/or MT agonist profiles for their 
potential utility in the improved treatment of GAD 
and other classes of anxiety disorder.

Concluding comments
In conclusion, agomelatine expresses its thera-
peutic efficacy in GAD principally via its antago-
nist properties at 5-HT2C receptors with MT1/
MT2 agonism providing complementary anxio-
lytic properties. Its actions at these receptors are 
distributed across several brain structures like the 
hippocampus, amygdala-BNST, SCN, and TRN, 
and they are expressed in interaction with a suite 
of neurotransmitters and neuropeptides like glu-
tamate, CRF, and vasopressin, but the precise 
underlying substrates await further clarification. 
Agomelatine displays a novel and fundamentally 
different mechanism of anxiolytic action as com-
pared to all other classes of medication used to 
treat GAD, accounting for its clinical efficacy in 
the relative absence of deleterious actions.
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