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Abstract

Objectives: The human oral microbiome is potentially related to diverse health conditions and high-throughput technology
provides the possibility of surveying microbial community structure at high resolution. We compared two oral microbiome
survey methods: broad-based microbiome identification by 16S rRNA gene sequencing and targeted characterization of
microbes by custom DNA microarray.

Methods: Oral wash samples were collected from 20 individuals at Memorial Sloan-Kettering Cancer Center. 16S rRNA gene
survey was performed by 454 pyrosequencing of the V3–V5 region (450 bp). Targeted identification by DNA microarray was
carried out with the Human Oral Microbe Identification Microarray (HOMIM). Correlations and relative abundance were
compared at phylum and genus level, between 16S rRNA sequence read ratio and HOMIM hybridization intensity.

Results: The major phyla, Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria were identified with
high correlation by the two methods (r = 0.70,0.86). 16S rRNA gene pyrosequencing identified 77 genera and HOMIM
identified 49, with 37 genera detected by both methods; more than 98% of classified bacteria were assigned in these 37
genera. Concordance by the two assays (presence/absence) and correlations were high for common genera (Streptococcus,
Veillonella, Leptotrichia, Prevotella, and Haemophilus; Correlation = 0.70–0.84).

Conclusion: Microbiome community profiles assessed by 16S rRNA pyrosequencing and HOMIM were highly correlated at
the phylum level and, when comparing the more commonly detected taxa, also at the genus level. Both methods are
currently suitable for high-throughput epidemiologic investigations relating identified and more common oral microbial
taxa to disease risk; yet, pyrosequencing may provide a broader spectrum of taxa identification, a distinct sequence-read
record, and greater detection sensitivity.
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Introduction

The NIH Human Microbiome Project, launched as part of the

NIH Common Fund’s Roadmap for Medical Research, pointed to

the need to accelerate our understanding of how our bodies and

microorganisms interact to influence health and disease [1]. The

oral microbiome plays a critical role in the maintenance of a normal

oral physiological environment and in development of oral diseases,

including periodontal disease [2] and tooth loss [3]. Although little

studied, the oral microbiome may be important in cancer and other

chronic diseases, through direct metabolism of chemical carcino-

gens and through systemic inflammatory effects [4].

With the characterization of microbial genetic profiles,

molecular technologies can elucidate microbial community

structure, including the identification and quantification of

culturable and non-culturable organisms, at a much higher

resolution than was previously possible with culture-based

methods. Complete genetic sequencing of complex microbial

ecosystems in humans have been accomplished [5], however,

higher-throughput methods are needed for larger-scale epidemi-

ologic investigations relating microbiome profiles to disease risk.

The major approaches to cost-efficient high-throughput charac-

terization of the human microbiome exploit the high variability in

microbial 16S ribosomal RNA (rRNA) gene sequence, uniquely

found in prokaryotes and considered as a barcode that can be used

to identify specific microbes, characterizing the broad spectrum of

both culturable and non-culturable organisms. The development

of these methods has opened the possibility of conducting large
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population-based studies of human microbiome, providing insight

into the diversity and community structure of the human

microbiome in relation to health and disease. Our interest is in

the 16S rRNA gene pyrosequencing assay [6] and the Human

Oral Microbe Identification Microarray (HOMIM) hybridization

assay [7], two well-validated methods for microbiome profiling by

assessment of microbial 16S rRNA gene diversity in human

samples, with pyrosequencing selected as a broad-based approach

applicable generally to the microbiome and HOMIM focused

specifically on the oral microbiome.

16S rRNA gene pyrosequencing has been applied in a wide

range of human microbiome studies. Briefly, DNA primers to

highly conserved regions in the 16SrRNA gene are designed for

PCR amplification of DNA product, followed by DNA sequencing

for characterization of microbial communities, including non-

identifiable types, based on DNA sequence in the highly variable

inter-primer regions. We (LY and ZP) have designed and validated

a 16S rRNA pyrosequencing assay for the V3–V5 region of the

gene and reported that 347F/803R is the most suitable pair of

primers for classification of the foregut microbiome [6].

The Human Oral Microbe Identification Microarray (HO-

MIM) is a custom array-based approach developed by one of us

(BP) and others at the Forsyth Institute (Cambridge, MA), using

specially designed probes to detect ,300 of the most prevalent

oral bacterial species, initially identified from Sanger sequencing

(http://mim.forsyth.org/). The approach is based on 16S rRNA

gene sequence hybridization and has been extensively validated

[3,8]. Since this method is based on a pre-constructed microarray,

the community structure identified is for the specific hybridization

probes selected for previously identified bacteria.

Here, we quantitatively compare the two oral microbiome

survey methods: broad-based16S rRNA gene pyrosequencing and

custom 16S rRNA hybridization (HOMIM) as methods for

microbiome characterization suitable for epidemiologic investiga-

tions.

Results

With 16S rRNA gene pyrosequencing, we recovered ,79,000

sequences from the 20 oral wash samples (Table S1), with 11

bacterial phyla detected (Table 1), including Firmicutes, Proteo-

bacteria, Bacteroidetes, Actinobacteria, and Fusobacteria as the

major phyla accounting for 99.83% of the distribution. Although

pyrosequencing additionally detected SR1, TM7, Cyanobacteria,

Spirochaetes, Tenericutes, and Synergistetes, the sum of these

comprise only 0.16% of the total sample.

HOMIM assay detected 7 phyla. As with pyrosequencing,

Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and

Fusobacteria were the major phyla identified by HOMIM,

accounting for 96.5% of the distribution. No phyla were detected

by HOMIM that were undetected in pyrosequencing, with the

relative distribution being similar by the two methods (Chi square

p value = 0.65). Correlations for abundance, comparing continu-

ous level 16S rRNA sequence read ratio and HOMIM relative

intensity, for the five major phyla ranged from r = 0.70 to r = 0.86.

Relative abundance of phyla from pyrosequencing and HOMIM

assay are shown for each individual in Figure 1.

The 16S rRNA gene pyrosequencing detected 77 genera

(Table 2). In addition, 17.5% of the pyrosequencing reads were

assigned by RDPII as unclassified taxa. HOMIM detected 49

genera, including 37 detected by both methods. As shown in

Table 2 (and Table S2), .98% of classifiable bacteria in the

subject samples were assigned in these 37 genera by both methods.

Although 16S rRNA sequencing detected an additional 40

classifiable genera not identified by HOMIM microarray, most

of these are found at very low densities (1.6% of identified

bacteria), after exclusion of 17.5% unclassified taxa. Similarly, an

additional 12 genera were detected only by HOMIM; their

contribution to the overall percentage was also small (1.9%), yet

this may represent false positives on the HOMIM due to cross

hybridization on short prove reads. This could also be due to the

misidentification or incorrect nomenclature from the RDP

database.

We compared concordance and correlations of genera detected

by the both assay methods. Streptococcus, Veillonella, and Leptotrichia,

were positive by pyrosequencing and HOMIM in most study

subjects (20 positive for Streptococcus and Veillonella; 19 positive for

Leptotrichia) with 100% concordance (Table 3) and high correla-

tions for relative abundance (r = 0.71–0.80). Concordance of

Prevotella, Haemophilus, Capnocytophaga, Granulicatella, Lactococcus,

Camplylobacter, Gemella, Neisseria, Fusobacterium, Parvimonas, Kingella,

and Mycoplasma were 85% or higher. For less common genera,

including Atopobium, Slakia, and Filifactor, concordance and

correlations were low or modest. As expected, relatively uncom-

mon genera were more likely to be positive in pyrosequencing

methods, but to be negative in HOMIM which was designed to

identify the more common bacterial forms.

Discussion

We found that community profiles assessed by 16S rRNA

pyrosequencing and HOMIM were highly correlated at the

phylum level and, when comparing the more commonly detected

taxa, also at the genus level. However, concordance of less

common genera was weaker. While the number of genera detected

in 16S rRNA pyrosequencing was greater than with HOMIM, the

relative contribution of these additionally detected genera was

minor, consistent with the fundamental design of the two assays:

the 16S rRNA pyrosequencing assay is designed to detect broad-

ranged microbiome profiles, while the custom-designed HOMIM

Table 1. The relative abundance correlation of phyla: data
from 16S rRNA gene pyrosequencing and Human Oral
Microbe Identification Microarray (HOMIM) assay.

Relative Distribution (%)* Correlation

Phylum Pyrosequencing HOMIM

Firmicutes 52.30 45.69 0.80

Proteobacteria 19.67 16.38 0.80

Bacteroidetes 15.63 18.10 0.86

Actinobacteria 7.27 10.34 0.70

Fusobacteria 4.96 6.03 0.76

SR1 0.07 0.00 ND**

TM7 0.06 0.86 ND

Cyanobacteria 0.01 0.00 ND

Spirochaetes 0.01 2.59 ND

Tenericutes 0.01 0.00 ND

Synergistetes 0.0001 0.00 ND

Total 100.0 100.0

*Relative Distribution was calculated after exclusion of 3.2% unclassified
bacteria.
**ND: non determined.
Note: P value for chi-square test of the relative abundance distribution = 0.65.
doi:10.1371/journal.pone.0022788.t001

Oral Microbiome Assay Comparison
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was developed to specifically capture the major oral microbiome

species.

Despite the fundamental technological differences in these

approaches, it was possible to correlate number of reads in the 16S

rRNA pyrosequencing data with probe intensity levels in HOMIM

at the phylum and genus levels. However, due to one-to-many and

many-to-one relationships between the two grouping schemes, it

was not possible to accurately compare genus-level assignments.

Nonetheless, we found that community profiles assessed by 16S

rRNA pyrosequencing and HOMIM were highly correlated at the

phylum level, and when comparing the more commonly detected

taxa, at the genus level. The overall high correlation between these

two high-throughput methods suggests the relative robustness of

both methods.

Microarrays detect only taxa that are covered by the reference

sequences. As expected, we detected greater numbers of genera

with 16S rRNA pyrosequencing, compared to HOMIM, which

uses pre-constructed probes designed to detect the most common

bacteria in the oral cavity. In contrast, broad based 16S rRNA

sequencing was able to comprehensively detect a wider range of

species, particularly in rarer taxa.

At low prevalence rates, 454 pyrosequencing is more sensitive

than HOMIM DNA hybridization (Unpublished data, Dr. Paster).

Moderate correlations in rarer taxa could also be due to the

different quantitative estimation methods: HOMIM was based on

discrete numbers in an intensity scale and 16S rRNA sequencing

was based on sequence reads on a continuous scale. Furthermore,

laboratory assay error (i.e., cross-hybridization between probes in

HOMIM and annealing bias, cloning bias and RDP misclassifi-

cation [9] in 16S rRNA sequencing) could also have contributed to

the discrepancies. Our findings of high correlation at the phylum

level and for common genera, with relatively lower correlations for

the overall genera level, are consistent with two smaller studies

reporting quantitative comparisons of gut microbiome profiles

using similar methods [10,11].

In Table 4, we summarize the strengths and limitations of both

assays, with respect to types of bacteria identifiable, quantification

approach and ease of use. For microbiome discovery, the

pyrosequencing approach has the distinct advantage of broader-

spectrum identifications, although the costs and labor involved are

currently somewhat greater. The approaches may, however, be

similar in utility for epidemiologic investigations relating the oral

microbiome to disease status. The great majority of genera are

identified by both methods and epidemiologic investigations,

unless very large, may not be powered to adequately investigate

risk differentials related to the rarer taxa uniquely identified by

pyrosequencing. For the same reasons, the capacity to find

sequence reads for a large variety of rarer unclassified taxa may be

of little importance at least in the earlier stages of epidemiologic

investigations. Currently, these approaches provide a similar level

Figure 1. The relative abundance of phyla for each subject (n = 20). P indicates 16S rRNA gene pyrosequencing results and H indicates
Human Oral Microbe Identification Microarray (HOMIM) assay results. Unclassified bacteria in 16S rRNA gene pyrosequencing are excluded.
doi:10.1371/journal.pone.0022788.g001

Table 2. Number and relative distribution of known genera
detected by 16S rRNA gene pyrosequencing and Human Oral
Microbe Identification Microarray (HOMIM) assay.

Pyrosequencing HOMIM

Genera detected by both
pyrosequencing and HOMIM

N = 37 (98.4%)* N = 37 (98.1%)

Genera detected only by
pyrosequencing

N = 40 (1.6%)* NA

Genera detected only by HOMIM NA N = 12 (1.9%)

*Percentages of relative distribution were calculated after exclusion of 17.5%
unclassified taxa from RDPII.
doi:10.1371/journal.pone.0022788.t002

Oral Microbiome Assay Comparison
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of information for identifying etiologic associations in epidemio-

logic studies. Pyrosequencing does, however, provide a broader

spectrum of taxa identification, has a distinct sequence-read

record, may have greater detection sensitivity and, as costs and

analytic complexity decrease, will likely prove in the near-term to

be the method of choice for high-throughput epidemiologic

investigations of the oral microbiome, at least until capacity

develops for cost-effective metagenomic analysis of entire genomic

ecosystems.

In summary, we found that community profiles assessed by 16S

rRNA pyrosequencing and HOMIM were highly correlated at the

phylum level and for the more common taxa at the genus level and

Table 3. Concordance and correlation of 37 genera detected from 16S rRNA gene pyrosequencing and Human Oral Microbe
Identification Microarray (HOMIM) assay.

% concordant
ratea Concordant Discordant Correlationb

HOMIM positive HOMIM Negative HOMIM Negative HOMIM Positive

Pyrosequencing
Positive

Pyrosequencing
Negative

Pyrosequencing
Positive

Pyrosequencing
Negative

Streptococcus 100 20 0 0 0 0.80

Veillonella 100 20 0 0 0 0.71

Leptotrichia 100 19 1 0 0 0.77

Prevotella 95 19 0 1 0 0.84

Haemophilus 95 18 1 0 1 0.70

Capnocytophaga 95 16 3 0 1 0.29

Rothia 90 18 0 2 0 0.67

Granulicatella 90 17 1 2 0 0.31

Lactococcus 90 1 17 2 0 0.01

Camplylobacter 85 17 0 3 0 0.79

Gemella 85 17 0 1 2 0.62

Neisseria 85 16 1 1 2 0.69

Fusobacterium 85 15 2 3 0 0.72

Parvimonas 85 12 5 0 3 0.89

Kingella 85 6 11 2 1 0.52

Mycoplasma 85 1 16 3 0 0.97

Bifidobacterium 80 4 12 1 3 0.52

Scardovia 80 1 15 3 1 0.75

Catonella 75 4 11 5 0 0.94

Lactobacillus 75 3 12 5 0 0.99

Shuttleworthia 75 2 13 4 1 0.28

Tannerella 70 9 5 4 2 0.64

Treponema 70 0 14 3 3 0.15

Porphyromonas 65 8 5 7 0 0.42

Aggregatibacter 65 4 9 7 0 0.79

Abiotrophia 65 1 12 7 0 0.75

Peptostreptococcus 65 1 12 7 0 0.88

Dialister 55 6 5 8 1 0.90

Selenomonas 55 6 5 8 1 0.23

Cardiobacterium 55 3 8 8 1 0.27

Megasphaera 50 8 2 9 1 0.70

Eubacterium 50 6 4 6 4 0.82

Solobacterium 50 3 7 0 10 0.59

Actinomyces 45 8 1 11 0 0.78

Filifactor 35 5 2 13 0 0.48

Slackia 25 4 1 0 15 0.08

Atopobium 5 1 0 19 0 0.22

acalculated by numbers of concordant counts/discordant counts.
bPearson correlation based on relative intensity of HOMIM and rations of RDP classified sequence read for each genus.
doi:10.1371/journal.pone.0022788.t003
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we consider both methods currently suitable for high-throughput

epidemiologic investigations relating the oral microbiome to

disease risk; yet, pyrosequencing may provide a broader spectrum

of taxa identification, a distinct sequence-read record, and greater

detection sensitivity.

Materials and Methods

Study population
20 subjects, ages 19–89 (35% male, 65% female), were recruited

at Memorial Sloan-Kettering Cancer Center, NY, in 2009. Informa-

tion on basic demographic and clinical factors was obtained based

on medical chart abstraction by clinicians (IG and LM). Five

patients had oral cancer, 5 had premalignant oral lesions, and 10

were healthy controls. The study was approved by the institutional

review boards at the Memorial Sloan-Kettering Cancer Center

and NYU School of Medicine, and all participants provided

informed written consent.

Biospecimen collection and DNA extraction
Oral wash saliva samples were obtained using saline from each

subject, and immediately centrifuged to harvest cell pellets. DNA

was extracted from the cell pellets using the QIAampH DNA Mini

Kit (Qiagen, GmbH, Hilden, Germany) according to the

instructions of the manufacturer. The extracts were stored at

220uC until use.

16S rRNA 454 Pyrosequencing
Bacterial 16S rRNA gene amplification, cloning, and sequenc-

ing of the polymerase chain reaction (PCR) products were

performed as previously described [12], at the laboratory of Drs.

Yang and Pei. 16S rRNA genes were amplified using 347F/803R

primers, multiplexed with 10-mer nucleotide barcodes, and

sequenced using 454 technology, that we recently designed for

use in study of the foregut microbiome, targeting V3–V5

hypervariable regions and covering a sequence distance of

,450 bp, showing close to maximum percent accuracy at this

amplicon size [6].

16S rRNA sequence data from pyrosequencing was download-

ed, and multiplexed samples were deconvoluted computationally

using customized Perl scripts, based on the presence of the unique

barcodes assigned to each sample. Initial processing steps included

trimming off the barcodes and primers, and removing sequences of

low quality (,Q20). The sequence reads were binned to phyla and

genera using the Classifier at RDP-II [13]. For classification at the

phylum to genus level, FASTA files were uploaded onto the

RDPII Classifier at 80% confidence threshold and results were

viewed at a display depth of 7 for assignment of data down to the

genus level. The community structure of a sample was calculated

based on the membership and relative abundance, based on

proportion of reads, of taxonomic groups in the sample.

HOMIM Assay
HOMIM hybridization assay [14] was conducted in duplicate

at the laboratory of Dr. Paster, with previously reported protocol

[3,8]. Briefly, 16S rRNA-based, reverse-capture oligonucleotide

probes (typically 18 to 20 bases) were printed on aldehyde-coated

glass slides. Subject sample 16S rRNA genes were PCR amplified

from DNA extracts using 16S rRNA universal forward and reverse

primers and labeled via incorporation of Cy3-dCTP in a second

nested PCR. The labeled 16S amplicons were hybridized

overnight to probes on the slides. After washing, the microarray

slides were scanned using an Axon 4000B scanner and crude data

was extracted using GenePix Pro software. After microarray

scanning the slides, the median background intensity for each

individual feature was subtracted from the median feature

intensity, yielding a normalized ‘‘median intensity score.’’ The

generated files were exported to the HOMIM tool website (http://

bioinformatics.forsyth.org/homim/) to determine the presence or

absence of a particular microorganism, based on specific criteria

set for that individual spot, thus generating microbial profile maps

for each sample.

HOMIM output data were merged to the Human Oral

Microbiome Database taxon table [7]. For each sample, we

derived an estimate of the relative distribution of each taxonomic

group in our phylogenetic tree using an algorithm that ensures that

no species contributes more than once to the estimate of

taxonomic group abundance, and that the downstream probes

(probes that represent distinct subsets of species belonging to that

phylogenetic group) are incorporated into the cumulative group

abundance estimate. Specifically, for each phylogenetic group in

each sample, all of the downstream probes were sorted according

to their microarray-based relative abundance estimates to

calculate the sum relative abundance for all nonoverlapping

probes. As a result, the specific probes added together to represent

a given taxonomic group, depending on which specific probes had

the greatest hybridization signal in that sample. Spot intensities of

HOMIM data were then summarized for all taxa at the phylum

and genus level for each sample.

Comparing Pyrosequencing and HOMIM Assays
Ratios of total sample intensity, from HOMIM, were then

compared with corresponding ratios of numbers of RDP-classified

sequence reads, from pyrosequencing, for the same sample and

taxa, making comparisons at the phylum and genera levels. The

relative abundance of a specific taxonomic group was compared

for the two assay methods by Chi-square test. Pearson coefficients

were calculated as a measure of linear correlation between

sequence and intensity ratios.

Supporting Information

Table S1 Sequences recovered by 454 pyrosequencing
for each subject samples.

(DOC)

Table S2 Genera detected by HOMIM and pyrose-
quencing.

(DOC)

Table 4. Strengths and limitations of 16S rRNA gene
pyrosequencing and Human Oral Microbe Identification
Microarray (HOMIM) assay.

Pyrosequencing HOMIM

Broad range detection
of taxa

Focused detection of common known species

Detection of unclassified
microbes

Custom array based approach, covered by
reference sequences

Quantification based on
sequence reads

Quantification based on relative intensity score

Relatively high assay cost Relatively low assay cost

Relatively more labor
intensive

Relatively less labor intensive

doi:10.1371/journal.pone.0022788.t004
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