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Quantum phase transition is one of the most interesting aspects in quantum many-body systems. Recently,
geometric quantum discord has been introduced to signature the critical behavior of various quantum
systems. However, it is well-known that topological quantum phase transition can not be described by the
conventional Landau’s symmetry breaking theory, and thus it is unknown that whether previous study can
be applicable in this case. Here, we study the topological quantum phase transition in Kitaev’s 1D p-wave
spinless quantum wire model in terms of its ground state geometric quantum discord. The derivative of
geometric quantum discord is nonanalytic at the critical point, in both zero temperature and finite
temperature cases. The scaling behavior and the universality are verified numerically. Therefore, our results
clearly show that all the key ingredients of the topological phase transition can be captured by the nearest
neighbor and long-range geometric quantum discord.

I
n recent years topological phases have been intensively studied in condensed-matter systems. Their under-
standing is relevant to topological quantum computation, which provides the paradigm to store and manip-
ulate information in topologically nontrivial systems. The topological states are immune to local noise due to

their nonlocal topological nature1,2. The progress was impeded by the fact that non-Abelian anyons are known to
appear in p-wave superconductors3,4. Recently, it has been realized that the p-wave pairing can be emulated with s-
wave pairing provided with spin-orbit coupling and Zeeman splitting5,6. Especially, this provide the possibility of
direct simulation7,8 of Kitaev’s 1D p-wave spinless quantum wire model4, which lead to elementary experimental
evidence9 for the existence of Majorana fermions. Therefore, these progresses have greatly advanced the field. In
addition, The analytic eigenspectra in the 1D Kitaev model have been obtained, and it was shown that this model
has one gapless topological phase. But the characters of the topological phase from quantum information
approach have never been well studied previously.

Quantum phase transition (QPT), originates from the quantum fluctuations at zero temperature, is character-
ized by nonanalytical changes in the physical properties of the ground state of a many-body system governed by
the variation of a parameter of the system’s Hamiltonian10. Quantum discord (QD)11 is defined by the difference
between two quantum analogues of two classically equivalent expressions of mutual information. The QD has
been introduced to analyze the QPT of the spin XY model12 and much effort has been devoted to various quantum
critical systems13,14. It is worth to note that other approaches to characterize QPT have also been put forward, such
as entanglement15,16, quantum fidelity17, fidelity susceptibility18, geometric phase19,20 and Loschmidt Echo21. Since
the calculation of quantum discord is based on numerical maximization procedure, it does not guarantee exact
results and in the literature there are few analytical expressions including special cases. To avoid this difficulty,
Dakic et al.22 introduced geometric measure of quantum discord (GMQD) which measures the quantum correla-
tions through the minimum Hilbert-Schmidt distance between the given state and zero discord state. Although
quantum discord around a QPT for a fermionic lattice hamiltonian has been studied, they only consider the
magnetic phase transition in the transformed picture instead of the physical picture. The Kitaev model is related
by the Jordan-Wigner transformation to the transverse field Ising model, however, the Jordan-Wigner trans-
formation is fundamentally non local, the information is not robust to local perturbations in the experimental
system. This is because the Jordan-Wigner transformed local perturbations become exactly the non-local sort of
term that can mess up topologically protected states. The geometric quantum discord of the ground state is
naturally expected to shed some light on the understanding of topological QPT.

Traditionally, QPT can be understood in the frame of Landau’s continuous phase transitions paradigm with
local order parameter and long range correlations. However, it has been found that the local order parameters
cannot describe all possible orders23. Therefore, it is interesting to investigate whether this success, describe QPT
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with geometric quantum discord (GQD) DG, can be extended to the
purely topological QPT cases. Here, we explore this question taking
the topological QPT in Kitaev’s quantum wire model4 as a example.
The present work aims to provide a more general understanding of
geometric quantum discord in topological phase transitions. The
reason why geometric quantum discord can describe topological
phases or determine their boundaries is due to the fact that they
depend only on the properties of the ground state of the system.
We analyze zero temperature and finite-temperature scaling para-
meters, extracted from the DG of ground state. First, it is found that,
in the thermodynamic limit, the derivative of ground-state DG is
nonanalytic at the critical point. A finite size scaling analysis is car-
ried out for model with different lattice sites, and the scaling behavior
is confirmed numerically. This allows us to extract the correlation
length critical exponent. To confirm the universality, we also per-
form a finite-temperature scaling analysis for this model, aiming at
extracting the correlation length critical exponent from the scaling
behaviors of thermal-state DG. The finite-temperature scaling is
manifested when the temperature approaches zero, in analogy with
finite-size scaling.

Results
The model and topological phase transition. We consider the
typical lattice model of the 1D p-wave superconductor, which is
described by the L-site Hamiltonian

H~
XL

i~1

mc{i ci{
XL{1

i~1

tc{i ciz1zDc{i c{iz1zh:c:
� �

: ð1Þ

where m is the on-site chemical potential, t is the nearest-neighbor
hopping amplitude, D is the p-wave superconducting gap, and c{i and
ci are fermionic operators that satisfy the anticommutation relations

c{n,cm
� �

~dnm, cn,cmf g~ c{n,c{m
� �

~0. The model has two distinct
phases, i.e., topologically trivial and nontrivial phases. Under open
boundary condition, the two phases can be distinguished by the
presence or absence of zero-energy Majorana bound states at the
ends. It is well known that the topologically non-trivial phase of
the model is best illustrated for the choice of parametersfor u/t , 2
for any D? 0. Without loss of generality, we assume t and D are both
real and set m 5 2. Therefore, our choice makes the model possess a
critical point at t 5 1 for any D ? 0.

GQD close to the phase transition. To illustrate the intrinsic relation
between the geometric quantum discord of ground-state and
quantum phase transition in this model. We plot GQD DG and its
derivative dDG/dt as a function of the Hamiltonian parameters t. As
shown in Fig. 1(a), given the value of D, the GQD increases with
increasing the nearest-neighbor hopping strength t. Meanwhile, it is
shown in Fig. 1(b) that the derivatives of GQD (dDG/dt) exhibit sharp
peaks around the critical points tc 5 1. First, these sharp peaks
manifest the nonanalytic property of the GQD at the critical point.
Second, this also verified the assertion made by kitaev4 that the critical
point will not change with the changing of D. This means the GQD of
the ground state can signature the criticality in this model, as in the
conventional QPT cases.

Finite size scaling. In quantum critical phenomena, the most impor-
tant themes are scaling and universality. In a finite lattice model, it is
expected that the anomalies will become clearer and clearer as the
size of the lattice increases. The relevant study is the so-called finite-
size scaling. The critical features are characterized in term of a critical
exponent n defined by j 5 (t 2 tc)2n with j representing the
correlation length. To further understand the relation between
GQD and quantum criticality, we calculate the derivative of GQD
dDG/dt for D 5 1 and different lattice sizes around the critical point,
as shown in Fig. 2(a). For simplicity, we first look at the case ofD5 1,
and we will discuss the properties of the family of D ? 1 later. In fact,
there is no real divergence for finite L, but the curves exhibit marked
anomalies and the height of which increases with lattice size. The

Figure 1 | GQD DG of the ground state (a) and its derivatives dDG/dt (b)
as a function of t around the critical point tc 5 1 for different
superconducting gap D. The lattice size L 5 1001.

Figure 2 | (a)The derivatives of GQD dDG/dt as a function of t near the critical point tc 5 1 for different system sizes L 5 51, 101, 201, 401, 801, ‘.

With increasing the system sizes, the maximum becomes more pronounced. (b) The position of maximum approaches the critical point tc 5 1 as

tm , L21.46.
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position of the peak tm can be regarded as a pseudo-critical point
which changes and tends as L21.46 towards the critical point and
clearly approaches tc as L R ‘. This scaling behavior of dDG/dt is
also clearly shown in in Fig. 2(b).

We now further going to deal with the critical exponent that
governs divergence of the correlation length. As shown in Fig. 3(a),
the singular behavior of dDG/dl for the infinite chain can be analyzed
in the vicinity of the quantum criticality, and we find the asymptotic
behavior as

dDG

dt
<k1 ln t{tcj jz const:, ð2Þ

where k1 5 20.0638. On the other hand, As shown in Fig. 3(b), the
value of dDG/dt at the point tm diverges logarithmically with increas-
ing lattice size as:

dDG

dt
jtm

<k2 ln Lzconst:, ð3Þ

where k2 5 0.0601. According to the scaling ansatz, the ratio jk1/k2j
gives the exponent n. Therefore, n , 1 is obtained in our numerical
calculation for the 1D p-wave superconductor model. Furthermore,
by proper scaling and taking into account the distance of the max-
imum of DG from the critical point, it is possible to make all the data

for the value of F~103 1{ exp dDG=dt{dDG=dtjtm

� �h i
as a func-

tion of L1/n(t 2 tc) for different L collapse onto a single curve. The
result for several typical lattice sizes is shown in Fig. 3(c), where we
can also extract the critical exponent n 5 1, in the vicinity of the
critical point.

Universality. As is well known, 1D p-wave superconductor with
nearest neighbor hopping belongs to the same quantum
universality class for non-zero D, with the same critical exponents
n 5 1. To confirm the universality principle in this model, we need to
check the scaling behaviors for different values of the parameter D.
For instance, from Fig. 3(a) and Fig. 3(b) we get k1 5 0.0716 and k2 5

20.0699 forD5 0.8. Moreover, we also verify that, by proper scaling,
all data for different L but a specific D and a critical point tc 5 1 can
collapse onto a single curve. The data for D 5 0.8 are show in
Fig. 3(c). We can extract the same critical exponent n 5 1 from all
the above results.

Extended to finite temperatures. We would like to further study the
relation between the thermal-state DG and quantum phase
transitions at a finite temperature. The derivative of GQD dDG/dt
as a function of t at different temperatures T (including zero
temperature) are presented in Fig. 4(a). At zero temperature the

Figure 3 | (a) Plot of dDG/dt against ln | t 2 tc | for evaluating the thermodynamic approaching to the critical point tc 5 1. The line slope close to the

critical point is 20.0638(20.0716) for D 5 1.0 (D 5 0.8). (b) The maximum value of the derivative dDG=dtjt~tm
at the pseudocritical point tm as a

function of lattice sizes. The line slope close to the critical point tc 5 1 is 0.0601 (0.0699) for D 5 1.0 (D 5 0.8). The critical exponent n for

the correlation length is determined by the two slopes in (a) and (b) for a fixed D. (c) A finite size scaling analysis is carried out for the value of

F~103 1{ exp dDG=dt{dDG=dtjt~tm

� ��
as a function of L(t 2 tm) for different lattice sizes. All the data from L 5 51 up to L 5 401 for a fixed

parameter D collapse on a single curve. This shows that the system at the critical point is scaling invariant and that the correlation length critical exponent

n 5 1.
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derivative of DG shows a singularity at tc 5 1, but at nonzero
temperature, there are no real divergence. Nevertheless, there are
clear anomalies at low temperature, and the height of which
increases with the decrease of the temperature. This can be
regarded as the precursors of the QPT. What is more, the position
of the maximum derivative (pseudocritical point) tm changes and
tends as T1.44 and clearly approaches tc when T R 0, as shown in
Fig. 4(b). Meanwhile, the maximum value of dDG/dt at the
pseudocritical point tm diverges logarithmically with the decrease
of the temperature

dDG

dt
jtm

<k3 ln Tzconst: ð4Þ

Our numerical results, as shown in Fig. 4(c), give k3 5 0.0611. The
ratio of the two slopes (k1/k3) for a fixed parameter D is equal to the
critical exponent n 5 1. Moreover, we also verify that by proper
scaling, all data for different temperatures T but a specific D will
collapse onto the same curve. The data for D 5 0.8 and D 5 1.0
near the critical points tc 5 1 are shown in Fig. 4(d). The numerical
results agree with the finite-size scaling ansatz and the universality of
the above results.

It has also been noted that unlike pairwise entanglement, which is
typically short ranged, quantum discord does not vanish even for

distant lattice pairs. Fig. 5 shows that quantum discord provides the
expected long-range behavior of quantum correlations LDG, L 5 15
for 1D Kitaev model exhibiting QPTs. In a topological nontrivial
case, one can observe stronger quantum discord. The critical expo-
nent n 5 1 for the correlation length is determined by the two slopes
in Fig. 5(c) and Fig. 5(d) for a fixed D. Such a behavior close to
topological QPT is remarkable, even though quantum discord has
been shown to be non-vanishing. Concerning QPTs, long-range
quantum discord has been considered as an indicator of the critical
point of topological QPT in several systems, having succeeded in this
task even in situations where entanglement fails, which may shed
some light on the understanding of topological phase transition for
the other more complex systems from the view of quantum discord.
Finally further numerical calculation of the quantum discord shows
that for 2D Kitaev model exhibiting topological QPTs in the range of
tx 1 ty 5 1, critical exponent n also gives exactly the same results with
the theoretical results z 5 2, n 5 1/2.

Discussion
Topological states that are protected from local perturbations need
to be supported by quantitative calculations, in particular working
with quantum systems of finite sizes. To study the experimental
feasibility, we add a random defect perturbation to each hopping
amplitude to check the robustness of the topological QPT under the
perturbation. Taking the system defects with parameters as given in
Fig. 6, the numerical results indicated that the scaling and the
critical point of topological QPT are robust against defects. We
find topological QPT located in the boundary is robust even the
defect amplitude takes d 5 0.1. In summary, we have performed a
finite size scaling analysis, whose analytical expression has been
extracted from the DG corresponding to different values of the
control parameter near the critical point. This makes it possible
to extract the correlation length critical exponent. Finally, our study
establishes the connection between the DG and topological QPT at
both zero temperature and nonzero temperature. All key features of
the quantum criticality, such as scaling, critical exponent, the uni-
versality are presented. We also would like to point out that the
results obtained in this paper does not depend on the model. An
interesting question is that when added with next-neighbor tunnel-

ing, i.e., H2~l2 c{i ciz2zDcic2zh:c:
� �

, new critical points will

appear and this needs further study.

Added note. In the revise manuscript we find for the same question,
Luo etal24 also investigate the fidelity susceptibility (FS) and the
topological phase transition in a two-dimensional spin-orbit
coupled (SOC) Fermi superfluid.

Methods
Diagonalization of the model hamiltonian. Under the open boundary condition,
the Hamiltonian can be immediately diagonalized

H~
XL

n~1

ln ĝ{
nĝn{1=2

� �
, ð5Þ

by introducing a Bogoliubov-de Gennes (BdG) transformation

ĝn~
XL{1

i~0
un,i ĉizvn,i ĉ

{
i

� �
, where ln denotes the quasi-particle energy, and un,i and

vn,i can be obtained by solving the corresponding BdG equations. the Bogoliubovde

Gennes matrix is written in blocks as HBDG~
ĥ D̂

{D̂ {ĥ

� 	
with

ĥi,j~di,jmi{tdi,jz1{tdi,j{1 and D̂i,j~di,j{1D{di,jz1D. In order to obtain the DG in
the following, we need to calculate the ground-state correlation functions

C0,0
i,j ~ ĉi ĉj


 �
, C0,1

i,j ~ ĉi ĉ
{
j

D E
, C1,0

i,j ~ ĉ{i ĉj

D E
and C1,1

i,j ~ ĉ{i ĉ{j
D E

, written in terms of the

amplitude of the BdG transformation as

Figure 4 | (a) The derivatives of GQD dDG/dt as a function of the

parameter t. The curve corresponds to different temperatures T 5 0, 0.01,

0.02, and 0.04. With the decrease of the temperature, the maximum gets

pronounced, and the pseudopoint tm changes and tends as T1.44 towards the

critical point tc 5 1 (b). (c)The maximum value of dDG/dt at the

pseudocritical point tm of this model as a function of temperature T. The

slope of the line is 20.0611 (20.0717) for D5 1(D5 0.8). (d) The value of

F~102 1{exp dDG=dt{dDG=dt t~tmjð Þð Þ as a function of (t 2 tm)/T for

different temperature.
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Figure 5 | (a)(b) Long-range quantum discord LDG and its derivatives dLDG/dt as a function of the parameter t. (c) dLDG/dt against ln | t 2 tc |
for evaluating the thermodynamic approaching to the critical point tc 5 1. (d) The maximum value of the derivative dLDG=dt t~tmj at the

pseudocritical point tm as a function of lattice sizes. The critical exponent n for the correlation length is determined by the two slopes in (c) and (d) for a

fixed D.

Figure 6 | (a)(b)A random defect to each hopping amplitude to check the robustness of the topological QPT under the perturbation in Ising model and
1D Kitaev model.
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C0,0
i,j ~

PL
n~1

vn,iun,j, C0,1
i,j ~

PL
n~1

vn,ivn,j,

C1,0
i,j ~

PL
n~1

un,iun,j, C1,1
i,j ~

PL
n~1

un,ivn,j:

ð6Þ

Computation of DG. An arbitrary two-qubit state can be written in Bloch
representation:

r~
1
4

Iz
X3

i

xisi6IzyiI6sið Þz
X3

i,j~1

Rijsi6sj

" #
ð7Þ

where xi 5 Trr(si fl I), yi 5 Trr(I fl si) are components of the local Bloch vectors,
si, i g {1, 2, 3} are the three Pauli matrices, and Rij 5 Trr(si fl sj) are components of
the correlation tensor. For two-qubit case, Then a analytic expression of the DG is
given by22

DG rð Þ~ 1
4

xk k2
z Rk k2

{kmax
� �

ð8Þ

where x 5 (x1, x2, x3)T and kmax is the largest eigenvalue of matrix K 5 xxT 1 RRT.
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