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Time-to-event data in medical studies may involve some patients who are cured
and will never experience the event of interest. In practice, those cured patients
are right censored. However, when data contain a cured fraction, standard sur-
vival methods such as Cox proportional hazards models can produce biased
results and therefore misleading interpretations. In addition, for some outcomes,
the exact time of an event is not known; instead an interval of time in which the
event occurred is recorded. This article proposes a new computational approach
that can deal with both the cured fraction issues and the interval censoring
challenge. To do so, we extend the traditional mixture cure Cox model to accom-
modate data with partly interval censoring for the observed event times. The
traditional method for estimation of the model parameters is based on the
expectation-maximization (EM) algorithm, where the log-likelihood is maxi-
mized through an indirect complete data log-likelihood function. We propose
in this article an alternative algorithm that directly optimizes the log-likelihood
function. Extensive Monte Carlo simulations are conducted to demonstrate the
performance of the new method over the EM algorithm. The main advantage of
the new algorithm is the generation of asymptotic variance matrices for all the
estimated parameters. The new method is applied to a thin melanoma dataset to
predict melanoma recurrence. Various inferences, including survival and hazard
function plots with point-wise confidence intervals, are presented. An R package
is now available at Github and will be uploaded to R CRAN.
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1 INTRODUCTION

The prognosis of patients diagnosed with thin primary cutaneous melanomas, defined as a Breslow tumor thickness
≤1.0 mm, is generally excellent. The 10-year melanoma-specific survival rates range between 82% and 98%. Based on the
presence of a large number of long-term survivors in published Kaplan-Meier survival curves, one can reasonably consider
that some individuals will never experience cancer recurrence and therefore are cured.1,2 Being able to identify cured
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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and non-cured patients is of high importance to thin melanoma patients for their management decisions and appropriate
follow-up schedules.

Multiple studies have analyzed death due to melanoma to evaluate the prognosis or predictive value of patient and
tumor characteristics at the time of diagnosis. However, very few studies have analyzed time to melanoma recurrence in
this context. To our view, one reason for why time to recurrence is underused is because the exact time of recurrence is
challenging to determine (interval-censored). To alleviate this issue, the time at which recurrence is diagnosed is usually
analyzed instead, but the interpretation is still made in terms of the time to recurrence. Alternative methods that model the
recurrence time need to be developed and made accessible to the community for more accurate prognospis and predictive
analyses.

In standard survival analysis, patients who do not experience the event of interest (eg, death or recurrence) during
the follow-up time are simply right censored. However, in some circumstances, some individuals might be cured and
therefore would never experience the event no matter the length of follow-up. Those patients constitute a cured fraction
and should be considered as such. In general, a cured fraction is never observed directly; its information is contained in
the right-censored times of a dataset. A common feature for a dataset having a cured fraction is the presence of a group
of long-term survivors. Ignoring the cured fraction, and thus treating all the observed right censored times as true right
censoring of event times, may lead to biased inferences.

The most popular approach to deal with a cured fraction is called the mixture cure model, and was first proposed
by Farewell.3 This model considers the population of interest to be a mixture of two sub-populations, one of which is
susceptible to the event of interest, and another which is cured. Models for these two components are called latency and
incidence models, respectively. The incidence is most commonly modeled using a logistic regression as in Reference 3.
For the latency there has been consideration of parametric survival models, as well as much focus on the use of
semi-parametric survival models such as the Cox model.4-8 Such a model is appropriate in cases where there is evidence
of a possible cured fraction in the data, based on biological feasibility and the presence of a large number of long-term
survivors in the sample even after a lengthy follow-up time (see discussion in, for instance, Reference 9). When fitted to
a sample without a cured fraction, the mixture cure model reduces to a standard Cox proportional hazards model.

In this article, we propose to extend the mixture cure Cox model to accommodate data with a more general partly
interval censoring scheme that consists of exact event times and left, interval and right censoring times. We will develop a
maximum penalized likelihood (MPL) method to estimate the model parameters, including the logistic regression param-
eters, the Cox regression coefficients and nonparametric baseline hazard. A penalty function is used for a smooth estimate
of the baseline hazard.

Parameter estimation for a mixture cure Cox model is difficult to carry out using Cox’s partial likelihood. A variety of
mixture cure Cox model estimation methods for event times with right censoring have been proposed, including Refer-
ences 10-12. In more recent work, there has also been consideration of interval censoring.13-18 Previous research on this
topic has only rarely considered a smooth estimate of the baseline hazard function. The method in Reference 18 allows
for a piecewise linear approximation to the cumulative baseline hazard of a mixture cure model for interval-censored
data. Alternatively, Corbière et al19 consider a smooth estimate of the baseline hazard function directly via the use of a
penalized likelihood, but was limited to right censored samples only.

This article sits within a wider body of research concerning penalized likelihood estimation of proportional hazards
models.20-22 Generally, this approach introduces a roughness penalty term to the likelihood to produce a smooth baseline
hazard function estimate that is approximated using a set of non-negative basis functions. Ma et al23 demonstrate that a
MPL approach can easily incorporate partly interval censored data. To date, there has been extremely limited consider-
ation of methods for fitting a proportional hazards mixture cure model to partly interval censored data that provides a
smooth estimate of the baseline hazard function. This article aims to address this gap by drawing on the MPL method for
fitting a proportional hazards model to partly interval censored data.

The rest of this article is organized as follows. In Section 2, the mixture cure Cox model is introduced. It also explains
an approximation of the baseline hazard function using M-spline basis functions, and presents the penalized likeli-
hood function. In Section 3, we lay out the simultaneous estimation of the regression parameters and baseline hazard
function using an alternating algorithm for the constrained MPL estimation. An automatic smoothing parameter esti-
mation procedure is also presented in this section. Section 4 details the asymptotic properties of the estimates. These
asymptotic results enable inferences on both regression parameters and survival quantities without computationally
intensive methods such as bootstrapping. In Section 5, we report and discuss the results of two simulation studies,
and in Section 6, an application to the thin melanoma study is illustrated. Finally, concluding remarks are included
in Section 7.
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2 MIXTURE CURE COX MODELS AND PENALIZED LIKELIHOOD

Let Yi be a random variable denoting the time to the event of interest of individual i (i = 1, … ,n), where it is possible that
some individuals are not susceptible to experiencing the event. Under a scenario of partly interval censored survival data,
we may observe event times and also right, left and interval censoring times. In this article, the recorded survival time
for each individual i will be denoted as a random vector Ti = (TL

i ,T
R
i )

T containing Yi, where TR
i ≥ TL

i ≥ 0, and we may
have TR

i = +∞ for a right-censored time and TL
i = 0 for a left-censored time. If the event time Yi is observed directly, then

we have TL
i = TR

i . Let Ui be an unobserved random variable where Ui = 1 indicates that individual i is susceptible to the
event or is non-cured (ie, patient will experience the event of interest given a sufficient follow-up), and Ui = 0 indicates
otherwise (ie, patient is cured after treatment and will never experience the event of interest regardless of the length of
his/her follow-up). Using a Cox proportional hazards regression model, we can denote the hazard function of Yi in the
non-cured fraction as

h(t|Ui = 1, xi) = h0(t) exp{xT
i 𝜸}, (1)

where h0(t) is an unknown baseline hazard function, xi is a vector for the values of of covariates, and 𝜸 is a
q-vector of proportional hazards regression parameters. We may denote h(t|Ui = 1, xi) simply as h(t|xi) when there
is no confusion. Additionally, we can model the probability of having Ui = 1 using a logistic regression model,
such that

𝜋(zi) =
exp{zT

i 𝜷}
1 + exp{zT

i 𝜷}
, (2)

where 𝜋(zi) = P(Ui = 1|zi) is the probability of being non-cured, zi is a set of covariates that may be identical to, or be
completely different from xi. It is also possible that zi share some components with xi. In (2), 𝜷 is a p-vector for the logistic
regression parameters.

Now, we can specify the survival function for the whole population, consisting of both the cured and non-cured
fractions, as

Spop(t|xi, zi) = 𝜋(zi)S(t|Ui = 1, xi) + (1 − 𝜋(zi)). (3)

Clearly, when 𝜋(zi) = 1 (ie, all members of the population are susceptible to the event and there is no cured fraction) the
above survival function reduces to that of a standard Cox model. Also, we may denote the conditional survival function
S(t|Ui = 1, xi) simply as S(t|xi) when its meaning is clear in the context.

For our derivations, it is convenient to denote the information of event, left, right, and interval censoring times using a
set of indicator values for each i. Let 𝛿i, 𝛿

L
i , 𝛿

R
i , and 𝛿I

i be, respectively, the indicators for event time, left, right, and interval
censoring time for i. Thus, for each i, the set of observed information available is (tL

i , t
R
i , x

T
i , z

T
i , 𝛿i, 𝛿

R
i , 𝛿

L
i , 𝛿

I
i ). Note that for

the survival times corresponding to event, left or interval censoring we have Ui = 1. Conversely, for the right-censored
times their Ui values are unknown.

Similar to the method of sieves (eg, Reference 24), the nonparametric baseline hazard function h0(t) can be approxi-
mated using some m non-negative basis functions, where m is a positive integer, such that

h0(t) =
m∑

u=1
𝜃u𝜓u(t), (4)

where each coefficient 𝜃u ≥ 0 and each𝜓u(t) is a non-negative basis function. Let the vector of 𝜃u be denoted by𝜽. Here, the
baseline hazard function will be approximated using cubic M-splines, following from previous work on MPL estimation
of a proportional hazards model such as References 20 and 23.

One convenience of using M-splines to approximate h0(t) is that ensuring the estimate of the baseline hazard func-
tion is non-negative requires only that the spline coefficient vector 𝜽 be non-negative. Another benefit is that it makes
the computation of the cumulative baseline hazard function H0(t) straightforward: H0(t) =

∑m
u=1𝜃uΨu(t), where Ψu(t)

are I-splines.25 M-splines and their corresponding I-splines are readily available in, for example, the R splines2
package.
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The proposed method in this article is to estimate the three parameter vectors, 𝜷, 𝜸, and 𝜽 simultaneously by
maximizing a penalized likelihood function. Let 𝜼 = (𝜷, 𝜸,𝜽).

Under independent interval censoring (eg, Reference 26), the log-likelihood is given by

l(𝜼) =
n∑

i=1

{

𝛿i

[

ln𝜋(zi) + ln h0(t) + xT
i 𝜸 + ln S(ti|x)

]

+ 𝛿R
i ln(1 − 𝜋(zi) + 𝜋(zi)S(ti|xi))

+ 𝛿L
i

[

ln𝜋(zi) + ln(1 − S(ti|xi))
]

+ 𝛿I
i

[

ln𝜋(zi) + ln(S(tL
i |xi) − S(tR

i |xi))
]}

. (5)

Direct maximization of l(𝜼) for estimation of 𝜽 is not ideal. This is because: (1) h0(t) is usually a smooth func-
tion and this information should be incorporated into the estimation of 𝜽; and (2) it is possible that knots selected to
approximate h0(t) may not be optimal, where particularly some knots may be unnecessary so that their correspond-
ing 𝜃u’s should be zero. We use a penalized log-likelihood to obtain a smooth estimate for h0(t) and to force the
unnecessary 𝜃u’s close to zero. We adopt a roughness quadratic penalty function and the penalized likelihood is now
given by

Φ(𝜼) = l(𝜼) − 𝜆J(𝜼), (6)

where J(𝜼) is a roughness penalty function and 𝜆 ≥ 0 is a smoothing parameter. The roughness penalty is given by
∫ h′′0 (v)

2dv. Given h0(t) is now given by (4), we can conveniently express this roughness penalty as J(𝜼) = 𝜽TR𝜽, where R
is an m ×m matrix with the (u, v)th element given by ru,v = ∫ 𝜓 ′′u (t)𝜓 ′′v (t)dt.

We comment that in general the above roughness penalty is effective for imposing smoothness on h0(t) but less ideal
for constraining unnecessary 𝜃u to zero. A composite penalty employing both quadratic and l1-norm (equivalent to lasso)
penalty could be more efficient. Further investigations are necessary to explore this option.

3 PENALIZED LIKELIHOOD ESTIMATION

3.1 A constrained optimization algorithm

The MPL estimate of 𝜼, denoted by 𝜼̂, is obtained by

𝜼̂ = max
𝜽≥0

Φ(𝜼). (7)

Given the constraint that 𝜽 ≥ 0, we have the following Karush-Kuhn-Tucker (KKT) conditions for a constrained optimal
solution:

𝜕Φ(𝜼)
𝜕𝛽t

= 0,
𝜕Φ(𝜼)
𝜕𝛾j

= 0;

𝜕Φ(𝜼)
𝜕𝜃u

= 0 if 𝜃u > 0,
𝜕Φ(𝜼)
𝜕𝜃u

< 0 if 𝜃u = 0.

These conditions are solved iteratively using an algorithm similar to the Newton-MI algorithm of Reference 23. This
algorithm requires the score vector and the Hessian matrix for 𝜷 and 𝜸, but for 𝜽 it only demands its score vector. Details
of score vectors and Hessian matrices can be found in the Supplementary Materials.

Before describing this algorithm we first introduce some notations. Let 𝜷(k), 𝜸(k), and 𝜽(k) be, respectively, the estimates
of 𝜷, 𝜸, and 𝜽 at iteration k. Also, for any function a(x), we let a(x)+ and a(x)− be respective the positive and negative
components of a(x), so that a(x)+ − a(x)− = a(x). Iteration k + 1 of our algorithm is obtained in a three-step process as
follows. First, obtain 𝜷 (k+1) using a modified Newton algorithm:

𝜷
(k+1) = 𝜷(k) + 𝜔(k)1

⎡
⎢
⎢
⎢
⎣

−
𝜕

2Φ
(

𝜷
(k)
, 𝜸
(k)
,𝜽

(k)
)

𝜕𝜷𝜕𝜷
T

⎤
⎥
⎥
⎥
⎦

−1
⎡
⎢
⎢
⎢
⎣

𝜕Φ
(

𝜷
(k)
, 𝜸
(k)
,𝜽

(k)
)

𝜕𝜷

⎤
⎥
⎥
⎥
⎦

, (8)
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where 𝜔1 ∈ (0, 1] is the line search step size used to ensure that Φ(𝜷 (k+1)
, 𝜸
(k)
,𝜽

(k)) ≥ Φ(𝜷(k), 𝜸(k),𝜽(k)). The value of the
line search step size can be determined by using, for instance, Armijo’s rule.27 Second, we compute 𝜸(k+1) using again a
modified Newton algorithm:

𝜸
(k+1) = 𝜸(k) + 𝜔(k)2

⎡
⎢
⎢
⎢
⎣

−
𝜕

2Φ
(

𝜷
(k+1)

, 𝜸
(k)
,𝜽

(k)
)

𝜕𝜸𝜕𝜸T

⎤
⎥
⎥
⎥
⎦

−1
⎡
⎢
⎢
⎢
⎣

𝜕Φ
(

𝜷
(k+1)

, 𝜸
(k)
,𝜽

(k)
)

𝜕𝜸

⎤
⎥
⎥
⎥
⎦

, (9)

where 𝜔2 is defined similarly to 𝜔1. Finally, we get the update 𝜽(k+1) using the multiplicative-iterative algorithm:

𝜽
(k+1) = 𝜽(k) + 𝜔(k)3 D(k)

𝜕Φ
(

𝜷
(k+1)

, 𝜸
(k+1)

,𝜽
(k)
)

𝜕𝜽
, (10)

where 𝜔3 is defined similarly to 𝜔1 and 𝜔2 and D(k) is a diagonal m ×m matrix with elements 𝜃(k)u ∕d(k)u for u = 1, … ,m,
and where

du =
[
𝜕l(𝜷, 𝜸,𝜽)
𝜕𝜃u

]−

+ 𝜆
[
𝜕J(𝜽)
𝜕𝜃u

]+

+ 𝜉.

Referring to the Supplementary Materials for the score vector of 𝜽, we can see that for the problem considered in this
article, du becomes

du = 𝛿iΨu(ti)exT
i 𝜸 + 𝛿R

i
𝜋(zi)S(ti|xi)Ψu(ti)

1 − 𝜋(zi) + 𝜋(zi)S(ti|xi)
exT

i 𝜸

+ 𝛿I
i

S(tL
i |xi)Ψu(tL

i )
S(tL

i |xi) − S(tR
i |xi)

exT
i 𝜸 + 𝜆

[
𝜕J(𝜽)
𝜕𝜃u

]+

+ 𝜉u.

Note that 𝜉u ≥ 0 is a small constant included simply to avoid the numerical issue of a zero denominator in the calculation
of D(k) and this value does not have any impact on the final solution for 𝜽.

3.2 Estimation of the smoothing parameter

A marginal likelihood method for the automatic selection of the smoothing parameter, previously outlined in, for example,
References 23 and 28, can be implemented to the model of this article. In this method, the penalty function J(𝜼) = 𝜆𝜽TR𝜽
is related to a normal prior distribution for the vector 𝜽 with 𝜽 ∼ N(0m×1, 𝜎

2
𝜽
R−1), where 𝜎2

𝜽
= 1∕2𝜆. We can then obtain

the log-posterior:

lp(𝜷, 𝜸,𝜽) = −
m
2

log 𝜎2
𝜽
+ l(𝜷, 𝜸,𝜽) − 1

2𝜎2
𝜽

𝜽
TR𝜽. (11)

The marginal likelihood for 𝜎2
𝜽

may be difficult to obtain directly, and as such we can approximate it using Laplace’s
method. Applying the Laplace approximation and substituting in the MPL estimates of 𝜷, 𝜸, and 𝜽, we can obtain the
approximated log-marginal likelihood for 𝜎2

𝜽
:

lm(𝜎2
𝜽
) ≈ −m

2
log 𝜎2

𝜽
+ l( ̂𝜷, 𝜸̂, ̂𝜽) − 1

2𝜎2
𝜽

̂𝜽
TR ̂𝜽 − 1

2
log | ̂G +Q(𝜎2

𝜽
)|, (12)

where ̂G is the negative Hessian matrix from l(𝜷, 𝜸,𝜽) evaluated at the MPL estimates ̂𝜷, 𝜸̂, and ̂𝜽, and

Q(𝜎2
𝜽
) =

⎡
⎢
⎢
⎣

0 0
0 1

𝜎

2
𝜽

R

⎤
⎥
⎥
⎦

.
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An approximate maximum marginal likelihood solution for 𝜎2
𝜽

is:

𝜎̂

2
𝜽
=
̂𝜽

TR ̂𝜽
m − 𝜈

, (13)

where 𝜈 = tr{( ̂G +Q(𝜎̂2
𝜽
))−1Q(𝜎̂2

𝜽
)}, which can be considered as equivalent to the model degrees of freedom. Given that

the estimates of 𝜷, 𝜸, and 𝜽 depend on 𝜎2
𝜽
, this approximate solution for 𝜎2

𝜽
allows for the development of an iterative

procedure with two steps. First, with a current 𝜎2
𝜽
, the corresponding MPL estimates for 𝜷, 𝜸, and 𝜽 are obtained. Then,

𝜎

2
𝜽

is updated using the current 𝜎̂2
𝜽
, and the just obtained ̂𝜷, 𝜸̂, and ̂𝜽 on the right-hand side of (13). These two steps are

repeated until 𝜈 is stabilized, such as the difference between two consecutive 𝜈 values is less than 1.

4 ASYMPTOTIC PROPERTIES AND INFERENCE

Development of the asymptotic properties of the proposed model allows for large sample inference to be conducted with-
out reliance on bootstrapping or other computationally intensive methods. Following from Reference 23, it is possible to
demonstrate asymptotic consistency for the MPL estimates of both sets of regression parameters, 𝜷 and 𝜸, and the baseline
hazard function h0(t). We adopt 𝜷0, 𝜸0, and h00(t) to denote the true model parameters (ie, the parameters that gave rise to
the observed data). Theorem 1 states this asymptotic property; the proofs can be found in the Supplementary Materials.

Theorem 1. Assume that conditions B1 to B4 (see the Supplementary Materials) hold. Assume that h0(t) is bounded and
has some number r ≥ 1 derivatives over the interval [a, b]. Assume that m = nv, where 0 < v < 1. Then, when n → ∞,

1. || ̂𝜷 − 𝜷0||→ 0 almost surely,
2. ||𝜸̂ − 𝜸0||→ 0 almost surely, and
3. supt∈[a,b] |

̂h0(t) − h00(t)|→ 0 almost surely.

Additionally, it is desirable to develop asymptotic normality results for all three parameters, 𝜷, 𝜸, and 𝜽 as this allows
for inference to be made not only on regression parameters but also on other quantities, such as survival probabilities. In
order to develop these results, however, it is necessary to restrict m to be a finite number, similar to References 23 and 29.
Note that this fixed m is not predetermined as it depends on the given sample size n. Usually, a practical guide for m is
m = n1∕3

0 . where n0 denotes the non-right censored samples size.
Another issue we face when developing asymptotic normality results is that we must take into account the possibility

of encountering active constraints in the estimation of 𝜽 ≥ 0. This is particularly likely to occur when the number of knots
is larger than strictly necessary, or some knots are placed at non-important locations. The penalty function will push the
corresponding 𝜃u to zero.23 Ignoring active constraints often leads to undesirable results, such as negative variances.

Recall that we have defined the parameter vector 𝜼 = (𝜷, 𝜸,𝜽), which has a length of p + q +m, and that we can express
the penalized likelihood function in terms of 𝜼 such that

Φ(𝜼) = l(𝜼) − 𝜆J(𝜼).

Let 𝜼̂ be the MPL estimate of 𝜼. Let the true value of 𝜼 be represented by 𝜼0. Without loss of generality, we assume that
the estimates of first r elements of 𝜽 are zero, and so that they are actively constrained. Define

U =
[
0(m−r+p+q)×r, I(m−r+p+q)×(m−r+p+q)

]T
, (14)

where 0 is a matrix of zeros, I is an identity matrix. Clearly, UTU = I(m−r+p+q)×(m−r+p+q) is satisfied. Theorem 2 states the
asymptotic normality results, with relevant proofs in the Supplementary Materials.

Theorem 2. Let 𝜇n = 𝜆∕n. Assume that 𝜇n = o(n1∕2) and that we have the first r active constraints in the MPL estimate of
𝜽. Define matrix U as above. Let

F(𝜼) = −E𝜼0

[

lim
n→∞

n−1 𝜕
2l(𝜼)
𝜕𝜼𝜕𝜼T

]

,
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where matrix U is defined in (14). Under these conditions, when n → ∞,
√

n(𝜼̂ − 𝜼0) converges in distribution to
 (0, ̃F(𝜼0)−1), where ̃F(𝜼0)−1 = U(UTF(𝜼)U)−1UT .

In order to implement the result of Theorem 2, it is necessary to define a method for identifying active constraints when
they arise in the MPL estimation of 𝜽. The method used here follows that proposed by Ma et al.23 Active constraints can
be identified by inspecting both the value of ̂𝜃u and the corresponding gradient for each u. After the Newton-MI algorithm
has reached convergence, some ̂

𝜃u may be exactly zero with negative gradients, and thus are clearly subject to an active
constraint. Furthermore, there may be some ̂𝜃u that are very close to, but not exactly, zero. For these ̂𝜃u, a corresponding
negative gradient value is indicative that they are also subject to an active constraint. In practice, active constraints are
defined where, for a given u, ̂𝜃u < 10−3 and the corresponding gradient is less than −𝜀, where 𝜀 is a positive threshold
value such as 10−2. After the indices associated with active constraints are identified, obtaining the matrix ̃F(𝜼0)−1 is a
very straightforward computation. The matrix UTF(𝜼)U is obtained by removing the rows and columns of F(𝜼) associated
with the active constraints. The result is then inverted, and then padded with zeros in the deleted rows and columns to
obtain ̃F(𝜼0)−1.

To make use of these asymptotic results for inference on finite samples, it is necessary to approximate the distribution
for 𝜼̂ when n is large. Doing so also incorporates nonzero values for the smoothing parameter 𝜆 into the inference on the
parameter estimates. The necessary results are presented below in Corollary 1.

Corollary 1. Assume that the smoothing parameter 𝜆 ≪ n. Define

A(𝜼̂)−1 = U
(

UT
(
𝜕

2l(𝜼̂)
𝜕𝜼𝜕𝜼T + 𝜆

𝜕

2J(𝜼̂)
𝜕𝜼𝜕𝜼T

)

U
)−1

UT
.

Then, when n is large, the distribution for the MPL estimate 𝜼̂ − 𝜼0 can be approximated by a multivariate normal distribution
having mean zero and covariance matrix

v̂ar(𝜼̂) = A(𝜼̂)−1 𝜕
2l(𝜼̂)
𝜕𝜼𝜕𝜼T A(𝜼̂)−1

.

These results allow for inferences to be made not only on both sets of regression parameters but also on quantities
associated with the baseline hazard function; see the results report in Section 5.

5 SIMULATION STUDIES

The performance of the proposed method is illustrated via two Monte Carlo experiments. The first simulation study
evaluates the performance of our proposed MPL method for partly interval censored data with a comparison to the
generalized odds rate mixture cure model proposed by Zhou et al,17 implemented in the GORCure R package, which
includes the mixture cure Cox model as a special case. This method uses an expectation-maximization (EM) algorithm
with a gamma-Poisson data augmentation for the regression parameters, and a spline approximation to a transformed
cumulative hazard function. The second simulation study compares the EM based method of Reference 12 with our
approach as the former is already implemented in the R package smcure. This method uses an EM algorithm for
both Cox and logistic regression parameter estimation and a Breslow estimator for the baseline survival function. How-
ever, smcure can only be implemented to right-censored survival datasets, so this simulation considers only right
censoring.

5.1 Simulation study design and data generation

In order to generate event or censoring time(s) for individual i, we first computed the non-cured fraction probability 𝜋(zi)
given by the following logistic model:

𝜋(zi) =
exp(𝛽0 + zi1𝛽1 + zi2𝛽2)

1 + exp(𝛽0 + zi1𝛽1 + zi2𝛽2)
,
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where zi1 and zi2 are logistic regression covariates. Note that the value of 𝜷 controls the size of the cured fraction in the
sample. Then, the cured indicator value ui was obtained according to

ui =

{
0 if Ui > 𝜋(zi);
1 if Ui ≤ 𝜋(zi),

where Ui ∼ unif(0, 1). Note that ui = 1 means individual i was in the non-cured fraction (those who will experience the
event of interest), and otherwise was in the cured fraction.

For ui = 1 in either study, we first simulated a follow-up time Ci1 ∼ unif(0.5, 𝜏), where 𝜏 could be adjusted to control
the extent of right censoring. Afterward, we simulated an event time Yi from a specified distribution. In Study 1, event
times were drawn from one of three possible distributions (Weibull, exponential, and log-logistic). In the smaller Study 2,
only a Weibull distribution was considered. For ui = 0, we simulated a follow-up time Ci2 ∼ unif(0.5, 𝜏), where 𝜏 has been
defined before. Afterwards, an observed survival time, denoted by Ti, was simulated using the procedure described below.

For ui = 0, we took Ti = Ci2 and recorded it as a right censoring time. For ui = 1, Ti was generated depending on Study
1 or Study 2. In Study 2 (right censoring), Ti was simply generated using Ti = min{Yi,Ci1}. In Study 1 (partly interval
censoring), Ti was generated based on a sequence of simulated “examination times” as described below. We first generated
a number of “scheduled examinations” from a Poisson(8) (ie, mean 8) distribution, and denote this number by di. Next,
we simulated di uniform random numbers from unif(0.3, 0.7), and denoted these numbers by wi1,wi2, … ,widi . Then, a
series of “scheduled examination” times were then given by: wi1,wi1 + wi2, … ,

∑di
r=1wir. However, the follow-up time Ci1

meant not all of these examination times might be used. In fact, when Ci1 was less than one of the examination times, the
examination process would be terminated at Ci1 and the corresponding final examination times formed time intervals
and we then checked if the simulated Yi fell into one of these time intervals. If yes, then Yi was interval censored and
interval censoring times were given by the two end-points of this interval. If no, Yi could be on the left or right of these
intervals: if on the left then the minimum examination time was a left censoring time; if on the right then the maximum
examination time was a right censoring time. Moreover, for an interval censoring, if the length of the interval was less
than some 𝛿 then we recorded corresponding Yi as an event time rather than an interval-censoring time. Details of all
simulation scenarios considered can be found in Table 1 for Study 1 (partly interval censoring) and Table 2 for Study 2
(right censoring). We will report in this article the simulation results associated with the Weibull distribution with sample
sizes n = 200 and n = 1000 and cured fractions sizes 0.2 and 0.6. Results for other distributions, the other sample size
(n = 50), and the other cured fraction size (0.05) can be found in the Supplementary Materials.

T A B L E 1 Simulation study 1 (partly interval censoring) specifications, and the consequent cured and censoring proportions

Scenario 1 Scenario 2 Scenario 3

Baseline hazard h0(t) = 3t2 h0(t) = t h0(t) = 4.5t∕(1 + t2)

Event times distribution Weibull Exponential Log-logistic

Sample sizes n = 50, 200, 1000 n = 50, 200, 1000 n = 50, 200, 1000

Covariates xi = [xi1, xi2] xi = [xi1, xi2] xi = [xi1, xi2]

zi = [1, zi1, zi2] zi = [1, zi1, zi2] zi = [1, zi1, zi2]

xi1 ∼ Bern(0.5) xi1 ∼ Bern(0.5) xi1 ∼ Bern(0.5)

xi2 ∼ N(0, 1) xi2 ∼ N(0, 1) xi2 ∼ N(0, 1)

zi1 ∼ Bern(0.5) zi1 ∼ Bern(0.5) zi1 ∼ Bern(0.5)

zi2 ∼ N(0, 1) zi2 ∼ N(0, 1) zi2 ∼ N(0, 1)

Parameters 𝛾1 = 0.5, 𝛾2 = 1 𝛾1 = 0.5, 𝛾2 = 1 𝛾1 = 0.5, 𝛾2 = 1

𝛽0 = 3, 1.5,−0.5 𝛽0 = 1.5,−0.5 𝛽0 = 1.5,−0.5

𝛽1 = 1, 𝛽2 = −0.5 𝛽1 = 1, 𝛽2 = −0.5 𝛽1 = 1, 𝛽2 = −0.5

Cured fraction 1 − 𝜋(z) = 0.05, 0.2, 0.6 1 − 𝜋(z) = 0.2, 0.6 1 − 𝜋(z) = 0.2, 0.6

Event proportion in uncured fraction 𝜋

E = 0.65, 0.38, 0.0 𝜋

E = 0.65, 0.38, 0.0 𝜋

E = 0.65, 0.38, 0.0
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T A B L E 2 Simulation study 2 (right censoring) specifications, and the consequent cured and censoring proportions

Scenario 1

Baseline hazard h0(t) = 3t2

Event times distribution Weibull

Sample sizes n = 200, 1000

Covariates xi = [xi1, xi2]

zi = [1, xi1, xi2]

xi1 ∼ Bern(0.5)

xi2 ∼ U(0, 1)

Parameters 𝛾1 = −0.5, 𝛾2 = 1

𝛽0 = 1,−0.5

𝛽1 = 0.5, 𝛽2 = −0.5

Cured fraction 1 − 𝜋(z) = 0.27, 0.61

Event proportion in uncured fraction 𝜋

E = 0.85, 0.5

We adopted cubic M-splines (with some n
𝜅

knots) to approximate the baseline hazard function. Define a and b as the
minimum and maximum observed survival times, respectively. The observed survival times included interval, left, and
right censoring times. External knots for the M-splines were placed at a and b. Define c and d as the respective minimum
and maximum of a set of times (called pseudo times) consisting of event times, the mid-point of any left censoring inter-
vals, and the mid-point of any interval censoring intervals. The internal knots were placed at equal quantiles across the 5th
and 95th percentiles of these pseudo times between c and d. Following Reference 23, we calculated the number of (inter-
nal) knots using a rough guideline of the cubic root of the number non-right censored individuals. Ma et al23 remarked
that the MPL method is fairly robust (due to the penalty function) to the number of knots as long as the smoothing param-
eter 𝜆 is appropriate. The smoothing parameter was selected automatically using the marginal likelihood function laid
out above in Section 3.

Note that we have presented results based on estimates of the marginal (non-cured fraction only) baseline survival
function rather than the marginal baseline hazard function, as quantities of the marginal baseline survival function are
more readily available in the GORCure and smcure packages. Computing the marginal baseline survival function and
associated asymptotic and Monte Carlo standard errors for the MPL method is straightforward. At time t, the MPL esti-
mate of S0(t) can be computed by taking exp(−𝚿(t)T ̂𝜽), where𝚿(t) denotes a vector of I-spline values at t. The asymptotic
variance estimate can be produced using the delta method, such that Var( ̂S0(t)) = [Ψ(t)⊤ ̂S0(t)]⊤Cov( ̂𝜽)[Ψ(t)⊤ ̂S0(t)], where
Ψ(t)⊤ ̂S0(t) is the first derivative of ̂S0(t) with respect to ̂𝜽. The Monte Carlo variance can be obtained simply by replacing
Cov( ̂𝜽) with the Monte Carlo covariance matrix for 𝜽 in the equation for Var( ̂S0(t)).

5.2 Study 1 (partly interval censoring) results

Table 3 shows the results for the estimation of 𝜷 and 𝜸 for Study 1 (partly interval censoring) for sample sizes n = 200 and
n = 1000, for the MPL method and the GOR method, using a Weibull distribution for the baseline hazard. It includes,
for each parameter, the absolute bias, the relative bias (in brackets beneath the absolute bias), the asymptotic standard
error estimate, the Monte Carlo standard error estimate (in brackets beneath the asymptotic standard error), and the
asymptotic 95% coverage probability. The MPL method appears to perform reasonably in a variety of the scenarios con-
sidered, with small biases, good agreement between the asymptotic and Monte Carlo standard errors, and reasonable
coverage probabilities. In particular, when the sample size is small, the MPL estimates for the proportional hazards regres-
sion parameters (𝛾1 and 𝛾2) consistently have smaller biases than the GOR estimates. This is especially noticeable in the
1 − 𝜋(z) = 0.6 scenarios, that is, when there is a larger number of cured individuals in the sample. Additionally, across
all scenarios, the GOR estimate of the 𝛽0 has a large negative bias and has very low coverage probabilities, while the
MPL estimate of that parameter is reasonable. This equates to an overestimation of the cured fraction size by the GOR
method.
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Table 4 shows the results for the estimation of the baseline survival function for Study 1 (partly interval censoring) for
sample sizes n = 200 and n = 1000, for the MPL method and the GOR method, using a Weibull distribution for the base-
line hazard. For the MPL method it reports the bias, asymptotic and (Monte Carlo) standard errors, and asymptotic and
(Monte Carlo) 95% coverage probabilities. For the GOR method, it reports the bias, (Monte Carlo) standard errors and
(Monte Carlo) 95% coverage probabilities, as asymptotic estimates for the standard error are unavailable from the GOR-
Cure package. The ability to make fast and efficient inferences on survival model quantities using asymptotic standard
errors can be considered as a key strength of the proposed MPL method when compared with the existing alternatives.
The estimated survival function was evaluated at three time points, t1, t2, and t3, corresponding to the first, second, and
third quartile of the observed survival times, excluding 0 and∞. Across all scenarios, the bias for the MPL estimate of the
baseline survival function was small. There is a fair agreement between the asymptotic and Monte Carlo standard error
estimates for the MPL method across the scenarios. We note that in some instances, the coverage probabilities produced
by the MPL method are low; specifically, this tends to occur at the later time point t3 where event times are sparser. The
baseline survival function estimates from the GOR method tend to have larger biases than the MPL estimates, particu-
larly when 𝜋E = 0. The Monte Carlo standard errors for the GOR estimates are generally larger than both the asymptotic
and Monte Carlo standard error estimates from the MPL method, indicating that the MPL method is less variable.

We have included in the Supplementary Materials some additional simulation study results for partly interval censored
data. These include results from scenarios where we have used different distributions for the baseline hazard function
(namely, exponential and log-logistic), scenarios where the sample size was very small (n = 50), and scenarios where
the cured fraction was very small (approximately 5% of the sample). The exponential and log-logistic baseline hazard
distribution scenarios have generally produced comparable results to those discussed above. When the sample size is very
small, both methods tend to produce larger biases in the regression parameter estimates. However, biases and coverage
probabilities appear to be more reasonable for the MPL estimates, particularly for the proportional hazards regression
parameter estimates (𝛾1 and 𝛾2) when the cured fraction in the sample is larger. When the cured fraction was very small,
the MPL estimates of regression parameters and the baseline survival function were still reasonable.

5.3 Study 2 (right censoring) results

Table 5 exhibits the results for the estimation of 𝜷 and 𝜸 for Study 2 (right censoring) with n = 200 and n = 1000 for both
the MPL and EM methods. It includes, for each parameter, the absolute bias, relative bias (in brackets below absolute bias),
the average standard error (asymptotic and bootstrap for, respectively, MPL and EM), the Monte Carlo standard error (in
brackets below average SE), and the 95% coverage probability. Note that the EM method in the smcure R package does
not provide directly an asymptotic standard error, instead it provides a computationally intensive bootstrapping standard
error.

The results from Table 5 indicate the two methods appear largely equivalent under the scenario with cured fraction 1 −
𝜋(z) = 0.7 and 𝜋E = 0.85, with both methods producing small biases in the parameter estimates, having good agreement
between the estimated (asymptotic for MPL and bootstrap for EM) and Monte Carlo standard errors, and giving reasonable
coverage probabilities. When the cured fraction is 1 − 𝜋(z) = 0.7 but 𝜋E = 0.5, the bias for most parameter estimates is
fairly large for both methods, although it is generally larger for the EM estimates compared to the MPL estimates, and the
EM coverage probabilities for this scenario are particularly low. However, when the sample size is large, the MPL estimates
for the proportional hazards regression parameters (𝛾1 and 𝛾2) have small biases, while the equivalent estimates for the
EM method produce very large biases. However, for these MPL estimates the coverage probabilities are high, reflecting
the larger asymptotic SE estimates compared to the Monte Carlo estimates. When the simulated data contained a larger
cured fraction, both methods similarly yield little bias in the parameter estimates with the exception of the estimate for
𝛽0. The EM estimate of 𝛽0 has a large negative bias and that is less severe in the MPL estimate. We observe from the results
that in general the MPL standard error matches well the Monte Carlo standard error for the higher censoring scenario,
but less well for the scenario with less censoring, especially for the proportional hazards parameters 𝛾1 and 𝛾2. For a large
sample size (ie, n = 1000), the asymptotic standard error produced by the MPL method are generally close to with the
bootstrap standard errors from the EM method, except 𝛽0. However, computations of MPL asymptotic standard errors are
much faster than the EM bootstrap standard errors.

Table 6 reports the biases, Monte Carlo standard errors and Monte Carlo coverage probabilities for the estimated
baseline survival function ̂S0(t) from both the MPL and EM methods. The estimated survival function was evaluated at
three time points, t1, t2, and t3, corresponding to the first, second, and third quartile of the observed event times, excluding
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T A B L E 5 Study 2 (right censoring): Cox and logistic regression parameters for n = 200 and n = 1000 for MPL and EM methods

1− 𝝅(z) = 0.27 1− 𝝅(z) = 0.61

𝝅
E = 0.85 𝝅

E = 0.5 𝝅
E = 0.85 𝝅

E = 0.5

Bias SE CP Bias SE CP Bias SE CP Bias SE CP

n = 200 𝛽0 MPL 0.046 0.251 0.93 0.080 0.795 0.81 −0.008 0.172 0.94 0.096 0.407 0.94

(0.046) (0.250) (0.080) (0.836) (0.016) (0.181) (0.192) (0.394)

EM 0.029 0.414 0.95 −0.910 0.336 0.28 −0.262 0.194 0.70 −0.265 0.419 0.89

(0.029) (0.430) (0.910) (0.430) (0.524) (0.253) (0.530) (0.469)

𝛽1 MPL 0.042 0.500 0.95 −0.329 0.897 0.94 0.018 0.344 0.96 0.128 0.462 0.94

(0.084) (0.462) (0.658) (1.024) (0.035) (0.360) (0.256) (0.469)

EM 0.019 0.415 0.96 −0.424 0.546 0.90 0.005 0.354 0.96 0.067 0.405 0.95

(0.038) (0.394) (0.847) (0.503) (0.010) (0.358) (0.134) (0.416)

𝛽2 MPL −0.050 0.668 0.95 0.373 0.608 0.68 −0.024 0.193 0.94 −0.093 0.718 0.96

(0.100) (0.714) (0.747) (1.231) (0.048) (0.200) (0.186) (0.731)

EM −0.017 0.695 0.95 0.673 0.353 0.44 −0.001 0.199 0.94 0.060 0.702 0.97

(0.034) (0.684) (1.347) (0.303) (0.003) (0.198) (0.120) (0.677)

𝛾1 MPL −0.013 0.191 0.93 0.164 0.795 0.91 −0.037 0.172 0.76 0.049 0.401 0.93

(0.026) (0.199) (0.329) (0.523) (0.074) (0.288) (0.098) (0.392)

EM −0.020 0.207 0.94 0.157 0.395 0.92 −0.029 0.315 0.96 −0.021 0.366 0.96

(0.040) (0.202) (0.315) (0.402) (0.059) (0.290) (0.042) (0.357)

𝛾2 MPL 0.019 0.332 0.93 −0.193 0.897 0.99 0.015 0.344 1.00 0.103 0.694 0.92

(0.019) (0.358) (0.193) (0.480) (0.015) (0.176) (0.206) (0.694)

EM 0.028 0.365 0.95 −0.280 0.269 0.83 0.010 0.200 0.97 0.033 0.649 0.95

(0.028) (0.363) (0.280) (0.309) (0.010) (0.180) (0.066) (0.640)

n = 1000 𝛽0 MPL 0.013 0.084 0.95 0.132 0.325 0.92 −0.004 0.076 0.94 0.037 0.105 0.94

(0.013) (0.085) (0.132) (0.384) (0.008) (0.079) (0.074) (0.134)

EM 0.001 0.171 0.94 0.803 0.197 0.02 −0.260 0.082 0.14 0.253 0.174 0.66

(0.001) (0.179) (0.803) (0.206) (0.520) (0.109) (0.506) (0.195)

𝛽1 MPL 0.016 0.167 0.93 0.050 0.342 0.91 0.010 0.152 0.94 0.007 0.174 0.96

(0.032) (0.174) (0.099) (0.418) (0.020) (0.153) (0.014) (0.175)

EM 0.014 0.167 0.93 −0.342 0.218 0.57 0.007 0.152 0.92 −0.007 0.167 0.96

(0.028) (0.174) (0.683) (0.255) (0.015) (0.154) (0.014) (0.159)

𝛽2 MPL 0.001 0.287 0.95 −0.041 0.216 0.89 −0.017 0.084 0.94 0.019 0.293 0.94

(0.002) (0.285) (0.083) (0.339) (0.034) (0.091) (0.038) (0.301)

EM 0.006 0.288 0.95 0.545 0.125 0.10 −0.011 0.085 0.94 0.026 0.291 0.93

(0.012) (0.285) (1.090) (0.174) (0.021) (0.091) (0.052) (0.296)

𝛾1 MPL 0.009 0.086 0.94 0.004 0.325 1.00 0.013 0.076 0.74 −0.008 0.159 0.96

(0.018) (0.088) (0.008) (0.157) (0.026) (0.134) (0.016) (0.145)

EM 0.015 0.154 0.93 0.091 0.159 0.90 0.005 0.128 0.94 −0.003 0.259 0.97

(0.030) (0.090) (0.181) (0.159) (0.010) (0.137) (0.006) (0.143)

𝛾2 MPL 0.002 0.149 0.93 0.002 0.339 1.00 −0.007 0.152 1.00 0.025 0.276 0.96

(0.002) (0.158) (0.002) (0.118) (0.007) (0.075) (0.050) (0.258)

EM 0.015 0.154 0.93 −0.173 0.099 0.56 0.005 0.080 0.95 −0.003 0.259 0.97

(0.015) (0.161) (0.173) (0.119) (0.005) (0.078) (0.006) (0.248)

Abbreviations: CP, coverage probability; SE, standard error.



3274 WEBB et al.

T A B L E 6 Study 2 (right censoring): Baseline survival function estimation for n = 200 and n = 1000 for MPL and EM estimation methods

1− 𝝅(z) = 0.2 1− 𝝅(z) = 0.6

𝝅
E = 0.65 𝝅

E = 0.38 𝝅
E = 0.65 𝝅

E = 0.38

Bias SE CP Bias SE CP Bias SE CP Bias SE CP

n = 200 t1 MPL 0.002 0.032 0.94 −0.003 0.015 0.95 −0.002 0.100 1.00 0.013 0.052 0.94

EM 0.049 0.054 0.86 −0.018 0.021 0.85 −0.053 0.120 0.99 0.044 0.085 0.92

t2 MPL 0.002 0.039 0.95 −0.014 0.056 0.95 −0.004 0.126 1.00 0.020 0.074 0.92

EM 0.084 0.080 0.81 −0.106 0.071 0.67 −0.056 0.119 0.98 0.075 0.132 0.91

t3 MPL 0.003 0.036 0.95 −0.016 0.107 0.94 0.001 0.019 0.98 0.027 0.095 0.94

EM 0.088 0.083 0.81 −0.197 0.109 0.55 −0.005 0.013 0.93 0.090 0.147 0.91

n = 1000 t1 MPL −0.001 0.014 0.95 −0.001 0.005 0.94 −0.002 0.088 1.00 0.006 0.023 0.96

EM 0.049 0.024 0.45 0.017 0.010 0.61 −0.070 0.102 1.00 0.050 0.034 0.68

t2 MPL −0.001 0.017 0.96 0.001 0.021 0.96 0.002 0.048 1.00 0.011 0.036 0.96

EM 0.084 0.037 0.38 −0.104 0.033 0.11 −0.027 0.032 0.93 0.084 0.056 0.69

t3 MPL −0.001 0.016 0.95 0.009 0.047 0.94 0.001 0.001 0.99 0.015 0.044 0.96

EM 0.091 0.039 0.34 −0.194 0.049 0.03 −0.001 0.001 0.96 0.091 0.063 0.73

Abbreviations: CP, coverage probability; SE, standard error.

0 and∞. Note that for comparison purposes only the Monte Carlo standard errors and Monte Carlo coverage probabilities
are reported here for both MPL and EM since thesmcure package does not provide asymptotic nor bootstrapped standard
error estimates for the baseline survival function. From Table 6, it is clear that the MPL method provides better estimates
of the survival function in all scenarios than the EM method. MPL gives smaller biases across all the selected time points
regardless of scenarios and samples sizes. Also, MPL provides smaller standard errors and better coverage probabilities
than EM.

6 APPLICATION TO MELANOMA RECURRENCE DATA

Our new method was applied to the real dataset introduced in Section 1. Data from a cohort of 2968 patients diagnosed
with thin melanoma (defined as patients diagnosed with a Breslow thickness≤1 mm) between January 1992 and Decem-
ber 2014 were extracted from the prospectively maintained research database at the Melanoma Institute Australia (MIA).
Information collected included baseline characteristics (age, sex, and body site of lesion), pathological factors (Breslow
thickness, ulceration, and mitoses count), date of follow-up visit, date of diagnosis of first recurrence (either local, regional,
or distant), and survival status of patient at last contact. All patients with known date of recurrence or last survival status
were analyzed. All patients had given consent for use of their de-identified information for research purposes. Ethical
approval was provided by the Sydney Local Health District Ethics Committee.

The primary clinical outcome was time to first melanoma recurrence calculated from the date of the initial primary
diagnosis. Patients who experienced melanoma recurrence were subject to interval censoring, as the exact time of recur-
rence was unknown. The time interval in which the recurrence occurred was denoted (tn, tr) where tn was the preceding
follow-up visit date of the recurrence, also called the last known recurrence free time, and tr was the date recurrence was
first diagnosed. Some patients did not have recorded values of tn and tr, but had a status at their last follow up of either
“alive with melanoma” or “dead, melanoma,” indicating that they had experienced a tumor recurrence at some point and
thus left-censored. These patients therefore had a left censoring interval of (0, tf − td), where td and tf denote, respectively,
the starting and last follow-up time. All other patients were right-censored at the time of their last follow up.

Six categorical covariates were considered in this analysis and coded as: Breslow thickness (≤0.8 mm; >0.8 mm),
tumor ulceration (yes; no), age group (<50;≥50), sex (male; female), tumor mitoses (yes; no), and site of tumor (arm; head
& neck; leg; trunk). Thin melanoma recurrence was rare, with only 6.69% of the sample having experienced the event at
some point during the follow-up time. The remaining individuals were right-censored. This prevalence of right-censored
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T A B L E 7 Model fitting results for the thin melanoma data

MPL mixture cure model GOR mixture cure model Standard Cox model

Covariate OR/HR 95% CI P-value OR/HR 95% CI P-value HR 95% CI P-value

Incidence model

Breslow thickness: >0.8 mm 1.98 (1.12, 3.48) 0.019 - - - - - -

Ulceration: Yes - - - 3.01 (2.34, 3.88) 0.015 - - -

Sex: Male 7.57 (3.76, 15.22) <0.001 - - - - - -

Mitoses: Yes 2.86 (1.66, 4.95) 0.001 - - - - - -

Body site: Leg 0.28 (0.12, 0.62) 0.002 - - - - - -

Body site: Trunk - - - 1.93 (1.27, 2.95) 0.002 - - -

Latency model

Breslow thickness: >0.8 mm - - - 2.24 (1.30, 3.86) 0.004 1.59 (1.05, 2.42) 0.029

Ulceration: Yes 2.38 (1.20, 4.73) 0.014 - - - 2.38 (1.14, 4.97) 0.022

Sex: Male 0.15 (0.09, 0.28) <0.001 - - - - - -

Mitoses: Yes - - - 3.29 (1.95, 5.54) <0.001 2.25 (1.46, 3.47) <0.001

Body site: Head & Neck 2.80 (1.34, 5.86) 0.006 2.92 (1.57, 5.44) <0.001 2.13 (1.23, 3.66) 0.007

Body site: Leg 4.98 (1.94, 12.82) <0.001 - - - - - -

Body site: Trunk 2.46 (1.34, 4.48) 0.003 - - - 1.89 (1.25, 2.86) 0.003

Abbreviations: CI, confidence interval; HR, hazard ratio; OR, odds ratio.

observations suggested that there was likely a cured fraction. A mixture cure Cox model was fitted with all six covariates
in the latency model and the incidence model. The incidence and latency models were then reduced using backwards
step-wise selection with P-values, until all covariates left in the model were significant at the 5% level.

Table 7 shows the odds ratios (from the incidence logistic regression model) and hazard ratios (from the latency pro-
portional hazards model), 95% confidence intervals (CIs) and P-values after implementing our proposed method. Results
from the incidence model indicate that the odds of thin melanoma recurrence increase significantly in patients with
Breslow thickness >0.8 mm, with mitoses, or who are male. Conversely, the odds of thin melanoma recurrence are sig-
nificantly lower in patients who had a tumor on the leg or the trunk, compared to on the arm (the reference category).
The most striking feature of the latency model for non-cured patients was that Breslow thickness was not significantly
associated with recurrence. Tumor ulceration and having a tumor on the head & neck, the leg or the trunk instead of the
arm significantly increased the risk of melanoma recurrence. Sex was also significantly associated with risk of recurrence,
with males in the non-cured population having a significantly lower risk of melanoma recurrence than females. Age was
not significant in either the incidence or the latency model.

Interpretation of the outputs of a mixture cure model demands some extra attention. Particularly, notice should be
paid to the fact that the latency model is a conditional model, only relevant to the non-cured sub-population. For example,
the latency model of this melanoma example suggests that, if we consider at the non-cured (ie, melanoma recurrence)
sub-population, males have lower risk of recurrence than females. However, the results from the incidence model suggest
males have higher odds of being classified into the non-cured sub-population. These two interpretations of sex in the
incidence and latency model do not contradict each other. Corbière et al19 similarly found that some parameter estimates
for the same covariates had different signs between the latency and the incidence models in their analysis of tonsil tumor
recurrence data.

Table 7 also contains the results of fitting a proportional hazards mixture cure model using the GORCure package,
and the Cox model results without a cured fraction (standard Cox model), fitted using the survivalMPL R package.
The same six covariates were considered, and the same backwards step-wise selection was carried out to select significant
covariates. There are substantial differences between the MPL and GOR fitted models. There was no overlap between
the MPL and GOR incidence models in terms of significant predictors of recurrence susceptibility, and only one (body
site: head & neck) shared between the MPL and GOR latency model for risk of recurrence. Notably, according to the
GOR model there was no significant difference between males and females for either incidence or latency, while sex was
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F I G U R E 1 Estimated baseline hazard function for the non-cured population (with point-wise 95% confidence intervals)

F I G U R E 2 Estimated conditional baseline survival function for susceptible sub-population (with point-wise 95% confidence interval)

significant in both the latency and incidence MPL models. It is of interest to compare the results of the standard Cox
model results with the latency model from the mixture cure model. For the standard Cox model, there was no signifi-
cant difference between males and females in terms of melanoma recurrence risk, which contradicts the latency model
result. Also, for the standard Cox model, Breslow thickness and mitoses are significant, but were not significant in the
latency model. The magnitudes of the hazard ratios and the significance of the body site categories also differ between
the latency sub-model and the standard Cox model. Age group was not significant in either the latency or the standard
Cox model.

The estimate of the baseline hazard function for the melanoma recurrence sub-population can be seen in Figure 1.
There is a notably rapid drop in the risk of tumor recurrence over the first 3 to 4 years, after which the risk of
recurrence decreases slowly. Between 20 and 25 years there appears to be a small increase in the risk, although the
point-wise confidence intervals are wide for this time period. Figure 2 exhibits the baseline survival function with
95% point-wise CIs for the melanoma recurrence sub-population. For this group of individuals, their baseline sur-
vival function decreases faster over the first five years, and then more slowly for the remainder of the follow-up
period.

The ability to make predictions based on an estimated mixture cure survival function is a key strength of the method
presented in this article. In fact, values of the mixture cure survival function can be easily computed from our regression
parameter estimates (both incidence and latency) and the estimate for the conditional baseline hazard function. For
example, the estimated probability of a person with a Breslow thickness ≤0.8 mm (all other covariates are fixed at their
mean values) having no recurrence for 5 years is 0.95 (95% CI: 0.93, 0.96), while this probability for a person with a Breslow
thickness >0.8 mm is down to 0.91 (95% CI: 0.86, 0.94). Furthermore, the probabilities of a patient having no recurrence
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F I G U R E 3 Estimated mixture survival functions for Breslow thickness ≤0.8 mm vs >0.8 mm and ulceration vs no ulceration, with
point-wise 95% confidence intervals

for 10 years are 0.93 (95% CI: 0.91, 0.94) and 0.88 (95% CI: 0.82, 0.93), respectively, for Breslow thickness ≤0.8 mm and
>0.8 mm.

Similarly, based on the fitted mixture cure model, we can also easily compute entire predictive survival functions,
and their point-wise CIs. For example, Figure 3 displays mixture cure predictive survival functions illustrating the effect
of Breslow thickness (top panel) and ulceration (bottom panel) with 95% point-wise CIs. These plots explain that, at the
population level, those with a Breslow thickness ≤0.8 mm are more likely to be free of recurrence at any time t than
those with a Breslow thickness >0.8 mm, when all other covariates are set to the sample mean values. Similarly at the
population level, those with no ulceration are more likely to be free of recurrence at any time t than those with ulceration.
However, the survival differences between these groups may not be significantly different, as the associated point-wise
95% CIs slightly overlap.

We calculated again the predicted survival curves using GOR model from GORCure as well as the standard Cox model
(so there was no cured fraction). The mixture cure survival functions from the MPL and GOR models and the standard
Cox survival curves are displayed in Figure 4, comparing again the Breslow thickness groups (top panel) and the ulcera-
tion groups (bottom panel). The estimated survival functions from the GOR model are noticeably higher than their MPL
counterparts. As seen in Section 5, the GOR model produces consistently negative bias in the estimation of the intercept of
the incidence logistic regression model, which is equivalent to over-estimating the size of the cured fraction and underes-
timating the risk of the event in the whole population. As a result, it appears that the survival function estimates produced
by the GOR mixture cure model are too high. There are also clear discrepancies between the Cox and mixture cure pre-
dictive survival functions. Clearly, failing to account for the presence of a cured fraction also leads to an overestimation
of survival probabilities in this thin melanoma example.
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F I G U R E 4 Estimated survival functions for Breslow thickness ≤0.8 mm vs >0.8 mm and ulceration vs no ulceration using the MPL
Cox mixture cure model, GOR Cox mixture cure model, and a standard Cox model

7 DISCUSSION AND CONCLUDING REMARKS

In this article, we propose a new penalized likelihood estimation method for fitting a mixture cure Cox model where
observations are assumed partly interval-censored. Our approach finds the MPL estimation of regression parameters for
the latency and incidence models as well as estimation of the latency baseline hazard function which is approximated
using M-spline basis functions. The baseline hazard estimate is constrained to be non-negative. One advantage of our
method, when compared with the existing EM methods, is that it also yields an asymptotic covariance matrix for all
the parameters, and hence allowing inference on both regression parameters and survival quantities. Another advantage
of our method is that it produces smooth baseline hazard estimates. The results of simulation studies indicate that this
method produces regression parameter and baseline hazard function estimates that perform well in terms of bias, variance
and coverage probability. Our method avoids computationally intensive methods like bootstrapping which is adopted by
the competitor EM-algorithm for computing variances of the estimates. A package to implement the proposed method is
available on Github, and we intend to upload the package to R CRAN in the near future.

Existing methods for checking the diagnostics of mixture cure models are sparse, particularly for cases involving partly
interval censored data. Schoenfeld residuals30 are inappropriate for mixture cure models as the marginal hazards of any
mixture cure model will be nonproportional. Wileyto et al31 developed pseudo-residuals modeled on Schoenfeld to assess
the fit of the latency model in the non-cured fraction, but considered parametric mixture cure models for right censored
data only. Peng and Taylor32 developed a modified martingale residual and a modified Cox-Snell residual appropriate for
checking the latency model of a mixture cure model, but again only considered right censored samples. Scolas et al33

developed a Cox-Snell residual applicable to a parametric mixture cure model for interval censored data, which can be
used to check both the uncured and mixture population survival distributions. These authors also developed a deviance
residual appropriate for checking the linearity of both the incidence and latency parts of the model. However, the methods
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developed by Scolas et al33 are only appropriate for cases where the data is entirely right- or interval-censored. Evidently,
more work is required to derive appropriate residuals for diagnostic checks of the mixture cure Cox model proposed here.

We plan to extend the approach discussed in the article to other mixture cure survival models, particularly mixture cure
additive hazards (AH) models and mixture cure accelerated failure time (AFT) models, where partly interval censoring
times will be adopted. MPL estimations of AH and AFT models from partly interval censored survival times have been
explored by Li and Ma,34,35 and these computational algorithms will be extended to their mixture cure counterparts.
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