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Electronic health records (EHRs) are widely adopted with a great potential to serve
as a rich, integrated source of phenotype information. Computational phenotyping,
which extracts phenotypes from EHR data automatically, can accelerate the adoption
and utilization of phenotype-driven efforts to advance scientific discovery and improve
healthcare delivery. A list of computational phenotyping algorithms has been published
but data fragmentation, i.e., incomplete data within one single data source, has
been raised as an inherent limitation of computational phenotyping. In this study,
we investigated the impact of diverse data sources on two published computational
phenotyping algorithms, rheumatoid arthritis (RA) and type 2 diabetes mellitus (T2DM),
using Mayo EHRs and Rochester Epidemiology Project (REP) which links medical
records from multiple health care systems. Results showed that both RA (less
prevalent) and T2DM (more prevalent) case selections were markedly impacted by data
fragmentation, with positive predictive value (PPV) of 91.4 and 92.4%, false-negative
rate (FNR) of 26.6 and 14% in Mayo data, respectively, PPV of 97.2 and 98.3%, FNR of
5.2 and 3.3% in REP. T2DM controls also contain biases, with PPV of 91.2% and FNR
of 1.2% for Mayo. We further elaborated underlying reasons impacting the performance.

Keywords: phenotyping algorithms, computational phenotyping, rheumatoid arthritis, type 2 diabetes mellitus,
diverse data sources

INTRODUCTION

The increased availability of EHRs fostered by the HITECH Act has a great potential to serve as a
rich, integrated source of phenotype information (Denny et al., 2011; Crawford et al., 2014). Critical
to this effort is computational phenotyping, which identifies patients with certain conditions of
interest from EHR data (Gunasekar et al., 2016). A list of computational phenotyping algorithms

Abbreviations: EHRs, electronic health records; eMERGE, electronic medical records and genomics; FN, false negatives;
FNR, false-negative rate; FP, false positives; HITECH, health information technology for economic and clinical health; PA,
psoriatic arthritis; PheKB, phenotype knowledgebase; PPV, positive predictive value; RA, rheumatoid arthritis; REP, rochester
epidemiology project; SLE, systemic lupus erythematosus; T2DM, type 2 diabetes mellitus; TN, true negatives; TP, true
positives.
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covering over fifty diseases (PheKB, 2019) including RA
(Liao et al., 2010; Partners Phenotyping Group, 2016) and
T2DM are available at the PheKB, primarily developed
through the eMERGE Network. The majority of the eMERGE
phenotyping algorithms were developed to identify cases and
controls of specific medical conditions for use in genome
and phenome-wide association studies (Ritchie et al., 2010).
However, developing research quality EHR-based computational
phenotyping algorithms that categorize disease or traits in
complete populations is not an easy task, as the primary purpose
of EHR data is for healthcare delivery and reimbursement
practices (Wei and Denny, 2015). Case/control EHR algorithms
are powerful tools in research, however, the ability to characterize
real-world clinical patient populations that are comprised of
a mix of primary care patients (i.e., medical home), transient
patients, and referral patients resulting in varying patterns of
depth and detail in EMR data is more challenging. Thus, data
fragmentation, or incomplete data due to patient movement
across healthcare institutions, is an inherent limitation of using
EHR data for research (Robinson et al., 2018), and creates
challenges in validating EHR-based phenotypes in populations
(Newton et al., 2013). While extensive investigations on
computational phenotyping have been performed to improve
algorithm performance and portability (Kullo et al., 2010;
Kurreeman et al., 2011; Newton et al., 2013; Wei and Denny,
2015; Teixeira et al., 2016), the impact of data fragmentation
on computational phenotyping is under investigated. We
identified only one study which evaluated the impact of data
fragmentation on algorithm performance. Using data from two
healthcare institutions, the study demonstrated that running a
T2DM phenotyping algorithm, developed by researchers from
Northwestern University, on data from a single institution missed
almost one third of the T2DM cases (Wei et al., 2012).

Using the Mayo Biobank cohort, we assessed the impact
of data fragmentation on two popular eMERGE phenotyping
algorithms, RA and T2DM, as these two diseases differ greatly in
prevalence. Specifically, the overall prevalence of RA is estimated
at 0.5%(Hunter et al., 2017) while T2DM is a common disease
affecting approximately 8.6% adults in the United States (Bullard
et al., 2018). Additionally, the RA algorithm is regression-based
while the T2DM algorithm is rule-based.

MATERIALS AND METHODS

Data Sources
In this study, we used the Mayo Clinic Biobank cohort (Olson
et al., 2013) with the following self-reported data collected at
the time of consent into the Biobank: general health, self and
first-degree relative family disease history, and demographic
characteristics. The clinical data for the cohort can be retrieved
from two sources: Mayo Clinic EHRs and the REP (Rocca et al.,
2018). The REP is a record linkage system which links and
archives medical records from multiple healthcare providers in
Minnesota and Wisconsin including Mayo Clinic since 2010
(Rocca et al., 2018). All analyses were based on a subset of
the Biobank cohort consisting of 45,183 patients who have at

least one diagnosis code in Mayo Clinic EHRs and at least one
diagnosis code in the REP during 2010 and 2017. We used
diabetes family history from the Biobank self-reported data to
run the T2DM phenotyping algorithm. All patients in the chosen
Biobank cohort consented to have their EHR data used for
research. This study was approved by the Institutional Review
Board of Mayo Clinic.

Phenotyping Algorithms
The eMERGE RA algorithm was created using a machine-
learning penalized logistic regression model trained on a
screen-positive data set with at least one RA diagnosis code
(inclusion cohort) (Figure 1). Among the training set, the
gold standard for model development was built up based
on the 2010 American College of Rheumatology criteria for
classification of RA (Aletaha et al., 2010). In the model, relative
weights for features significantly associated with RA, including
diagnosis of RA, SLE, PA, lab tests for rheumatoid factor, and
total number of encounters (visits) per subject were assigned.
Once the model was created, a threshold value based on a
specificity of 97% was selected to identify cases. We used
an updated version of the algorithm (the Harvard eMERGE
RA Algorithm Document downloaded from https://phekb.org/
phenotype/rheumatoid-arthritis-ra) which incorporates ICD 9
and 10 codes. Comparing to the previous version using only ICD
9 (Carroll et al., 2012), the updated version achieved sensitivity,
PPV, and overall area under the curve of 87, 95, and 95%,
respectively, compared to 65, 90, and 95% previously. Controls
were selected from persons without any RA diagnosis codes and
without any exclusion codes.

As stated above, the eMERGE T2DM algorithm1 was
developed by researchers from Northwestern University in 2012
(Kho et al., 2011). It is a rule-based algorithm based on diabetes
related diagnosis, lab, and medication information, achieving
98 and 100% PPV for T2DM case and control identification,
respectively. In addition to structured EHR data, in this study,
we also extracted physician entered diagnoses from clinical notes
of both Mayo and REP sources leveraging natural language
processing (NLP) techniques. We updated the algorithm to
incorporate ICD 10 codes which have been adopted in late
2015 in the United States (Hirsch et al., 2016). To collect more
complete data, we also added medication extracted by NLP from
clinical notes in both Mayo and REP sources. Figure 2 shows
the flowchart of T2DM case phenotyping algorithm and Figure 3
shows the flowchart of T2DM control phenotyping algorithm.

Analysis
We assessed data fragmentation by evaluating the performance
of the phenotyping algorithms in the cohort. To evaluate
phenotyping errors caused by data fragmentation across health
institutions, we used subjects identified from the combination
of Mayo and REP data as the benchmark. To evaluate the
performance of the phenotyping algorithms, we randomly
selected 50 cases and 50 controls for each algorithm from the
benchmark to perform manual review. We calculated sensitivity,

1https://phekb.org/phenotype/type-2-diabetes-mellitus
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FIGURE 1 | The eMERGE algorithm for identifying RA cases and controls. Adapted from Partners Phenotyping Group (2016).

FIGURE 2 | The eMERGE algorithm for identifying T2DM cases. Adapted from Pacheco and Thompson (2012).

specificity, PPV and FNR based on the number of TP, FP,
TN, and FN against the benchmark (Wei et al., 2012). The
impact of various data sources on quantitative change of features
contributing to phenotyping was analyzed.

RESULTS

Table 1 shows the number of cases and controls identified
by each data source as well as the combination of sources.

Using both Mayo Clinic EHRs and REP data, we identified
620 RA cases (42,319 controls) and 5,215 T2DM cases (6,293
controls) to serve as our benchmark for the analyses. Table 2
shows performance of RA and T2DM phenotyping algorithms
in benchmark against chart reviewed gold standards. PPV of RA
case was 90% compared to 95% in the updated version of the
algorithm. PPVs of T2DM case and control were 82 and 100%
compared to 98 and 100% in the publication (Kho et al., 2011).

Table 3 shows benchmark performance of RA and T2DM
cases and controls using various data sources. Using Mayo
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FIGURE 3 | The eMERGE algorithm for identifying T2DM controls. Adapted from Pacheco and Thompson (2012).

TABLE 1 | Phenotyping results using various data sources.

Phenotyping algorithm Case Control

Mayo+REP REP Mayo Mayo+REP REP Mayo

Rheumatoid Arthritis 620 605 498 4,2319 42,398 43,070

Type 2 diabetes mellitus 5,215 5,124 4,850 6,293 6,482 6,815

TABLE 2 | Performances of RA and T2DM phenotyping algorithms in benchmark (against chart reviewed gold standard).

Phenotyping algorithms TPs FPs TNs FNs Sensitivity
(TP/TP+FN), %

Specificity
[TN/(FP+TN)], %

PPV
[TP/(TP+FP)], %

FNR
[FN/(TP+FN)], %

RA case 45 5 49 1 97.8 90.7 90.0 2.2

RA control 49 1 45 5 90.7 97.8 98.0 9.3

T2DM case 41 9 50 0 1 84.7 82.0 0

T2DM control 50 0 41 9 84.7 1 1 15.3

only data, the RA phenotyping algorithm identified 43 FP
RA case subjects, missed 165 FN RA case subjects (FNR,
26.6%), and identified 751 FP RA control subjects because of
data fragmentation across healthcare institutions. The T2DM
phenotyping algorithm identified 368 FP T2DM case subjects,
missed 733 FN T2DM case subjects (FNR, 14%), identified 597 FP
T2DM control subjects and missed 75 FN T2DM control subjects
(FNR, 1.2%) because of data fragmentation across healthcare
institutions. Fewer errors were resulted using REP only data, the
RA phenotyping algorithm identified 17 FP RA case subjects,
missed 32 FN RA case subjects (FNR, 5.2%), and identified

79 FP RA control subjects because of data fragmentation
across healthcare institutions. The T2DM phenotyping algorithm
identified 91 FP T2DM case subjects, missed 173 FN T2DM case
subjects (FNR, 3.3%), identified 245 FP T2DM control subjects
and missed 56 FN RA control subjects (FNR, 0.9%) because of
data fragmentation across healthcare institutions.

Further analysis showed that the 150 out of 165 RA false
negative cases obtained from the Mayo only data source were
in the Mayo Clinic inclusion cohort (positive-screening set;
Table 3). Among the 32 RA false negative cases in REP data
source, all were in the REP inclusion cohort. Figure 4 presents
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TABLE 3 | Benchmark performance of RA and T2DM cases and controls using various data sources.

Phenotyping
algorithm

Data source TPs FPs TNs FNs Sensitivity
(TP/TP+FN), %

Specificity
[TN/(FP+TN)], %

PPV
[TP/(TP+FP)], %

FNR
[FN/(TP+FN)], %

RA Case Mayo+REP 620 0 44,563 0 100 100 100 0

Mayo 455 43 44,520 165 73.4 99.9 91.4 26.6

REP 588 17 44,546 32 94.8 99.9 97.2 5.2

Control Mayo+REP 42,319 0 2,864 0 100 100 100 0

Mayo 42,319 751 2,113 0 100 73.8 98.3 0

REP 42,319 79 2,785 0 100 100 99.8 0

T2DM Case Mayo+REP 5,215 0 39,968 0 100 100 100 0

Mayo 4,482 368 39,600 733 86.0 99.1 92.4 14.0

REP 5,124 91 39,795 173 96.7 99.8 98.3 3.3

Control Mayo+REP 6,293 0 38,890 0 100 100 100 0

Mayo 6,218 597 38,293 75 98.8 98.5 91.2 1.2

REP 6,237 245 38,645 56 99.1 99.4 96.2 0.9

the RA probabilities of all benchmark cases (620) derived
from Mayo Clinic, REP, and the combination of Mayo and
REP data. Probability estimated from Mayo and REP data
show multiple regression lines, reflecting heterogenicity among
healthcare providers. The red line intercepts the cutoff of 0.632;
probabilities above the red line indicate RA cases. Figure 4 shows
that probabilities of the FN in Mayo or REP sources improved
after combining Mayo data with REP data.

Table 4 shows statistics of features associated with RA
phenotyping in various data sources between 2010 and 2017,
specifically the number of patients with RA, PA, and SLE
diagnosis codes, laboratory tests for rheumatoid factor as well
as total number of encounters for the Mayo Biobank cohort.
The inclusion cohort increased to 2,127 using both Mayo and
REP data, with an increase of 524 compared to Mayo and
69 compared to REP. 15 of the 524 was identified as an RA
case in the combined Mayo and REP data. Supplementary
Figure S1 shows RA case probabilities of the false negative Mayo
inclusion cohort (524 subjects) in the combination of Mayo and
REP data, only several subjects had values close to the cutoff
(0.632). Supplementary Figure S2 shows RA case probabilities
of the false negative REP inclusion cohort (69 subjects) in
the combination of Mayo and REP data, no subject had value
above the cutoff.

The flowcharts (Figures 5, 6) show the comparison of each
step of T2DM case and control phenotyping algorithms among
various data sources, where the number denoting each step
is from Figures 2, 3, respectively. The detailed statistics are
provided in Supplementary Tables S1, S2. Using only Mayo
data, 1 of the 733 FN T2DM cases have been falsely identified
as a control, and 1 benchmark case was falsely identified as
a control among the 597 FP T2DM controls. Table 5 shows
factors that contribute to FP and FN RA case subjects. There
are 751 FP controls from Mayo and 79 FP controls from REP
due to incomplete diagnosis codes in each institution. Table 6
shows factors that contribute to FP and FN T2DM case subjects.
Table 7 shows factors that contribute to FP and FN T2DM
control subjects.

DISCUSSION

Electronic health records have been an asset for studies whose
goal is to define cases and controls with high accuracy. However,
leveraging EHRs for population studies is more challenging.
Inherent data issues and bias (e.g., data fragmentation and
referral bias) of EHRs may result in inaccurate and biased
phenotyping results. RA and T2DM phenotyping algorithms to
define cases and controls have been well studied by researchers
with high performances within separate institutions (Carroll
et al., 2012; Wei et al., 2012). These two diseases have also
been fertile ground for secondary use of EHRs in combination
with DNA samples (Wood et al., 2008; Kurreeman et al., 2011;
Carroll et al., 2015). Therefore, it is worthwhile to investigate and
evaluate the impact of data fragmentation on completeness and
validity of algorithm results. To the best of our knowledge, this
study is the first to evaluate the impact of data fragmentation
on RA phenotyping algorithm. When assessing the impact
of data fragmentation on T2DM, the FNR is 14% in our
current study in comparison to 33% reported previously (Wei
et al., 2012) as we leveraged NLP to extract more complete
diagnosis and medication information from clinical notes. Our
performance metrics of the benchmark against chart reviewed
gold standard are slightly inferior to those metrics published
previously, which is consistent with other studies, primarily
due to the heterogenicity of healthcare systems impacting
algorithm portability (Ostropolets et al., 2020).

As a regression-based algorithm, the sensitivity of the RA
phenotyping depends on the comprehensiveness of the data,
partially due to the complex relationships between autoimmune
disorders. Systemic lupus erythematosus and PA both interfere
with RA diagnosis. Total encounter numbers also exert adverse
effects on RA case identification. Though RA diagnosis and
positive RA lab results were assigned with relatively high positive
weights, SLE, PA, and all encounter numbers were assigned with
negative weights in the algorithm. In our study, 150 out of 165
FN cases in Mayo were already in the Mayo inclusion cohort and
all FN cases in REP were in the REP inclusion cohort.
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FIGURE 4 | Probability of all benchmark cases based on various data sources. The red line intercepts the cutoff of 0.632, probabilities above the red line are
classified as RA cases.

TABLE 4 | Statistics of features associated with RA case phenotyping in various data sources.

Data
sources

# of Cases
meeting

algorithm criteria

# of patients with 1+
RA diagnosis codes

(inclusion cohort)

# of Patients with
1+ PA diagnosis

codes

# of patients with
1+ SLE diagnosis

codes

# of patients with 1+
Lab test for

rheumatoid factor

Total encounter No.
(for the Mayo Clinic

Biobank cohort)

Mayo+REP 620 2,127 83 68 1,293 3,039,483

Mayo 498 1,603 52 53 907 2,850,109

REP 605 2,058 79 64 1,254 2,776,569

RA, rheumatoid arthritis; PA, psoriatic arthritis; SLE, systemic lupus erythematosus.

As a medical record-linkage system, REP captures more
comprehensive diagnosis codes than Mayo EHRs resulting
in fewer benchmark phenotyping errors. Meanwhile, not all
information in Mayo EHRs is included in REP. For example,
REP misses the diagnosis information coming from the Problem
List in Mayo EHRs. Using Mayo only data, the RA phenotyping
algorithm missed 165 FN RA case subjects (FNR = 26.6%) and
the T2DM phenotyping algorithm missed 733 FN T2DM case
subjects (FNR = 14%). All FN and FP cases, FN and FP controls
defined using only Mayo data or only REP data were masked or
falsely identified due to missing or insufficient information.

Although we investigated only two phenotyping algorithms
in this study, the findings would also have implications for
other research that relies on case and control identification
using EMERGE algorithms. Considering the potential impact
of data fragmentation on data quality for genomic research,
clinical researchers should always keep this caveat in mind
when employing a phenotyping algorithm for such studies.
Ideally, adding data from a medical record linkage system
or a comprehensive claims data source (such as the Centers
for Medicare and Medicaid Services) can capture and reuse
clinical information more efficiently. In addition, unstructured

data extracted using NLP techniques could help to decrease
data fragmentation because unstructured clinical notes in
EHRs often record patients’ history of past diseases which
may have been originally diagnosed and treated in other
health institutions. Finally, besides the data fragmentation
issue, temporal issues could also result in incomplete
phenotyping results. Researchers have conducted a related
study on T2DM (Wei et al., 2013), and we also investigated
the dependence of the eMERGE RA algorithm on both RA
and electronic health record (EHR) duration in another
manuscript (Journal of the American Medical Informatics
Association, in press).

The limitation of the study is that we didn’t have fully-
annotated gold standards. Because of the high PPV seen in
previous studies (Kho et al., 2011; Carroll et al., 2012), (95%
for RA case, 98% and 100% for T2DM case and control),
we set the benchmark for evaluation to be the phenotyping
results based on the combination of data from both Mayo and
REP, and only manually reviewed 50 cases and 50 controls for
each algorithm to validate. In addition, the study would have
been more generalizable if data from multiple sites had been
independently collected.
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FIGURE 5 | Quantitative comparison of each step in T2DM case phenotyping among various data sources. The number of each step corresponds to Figure 2, bold
numbers are derived from the combination of Mayo of REP data.

FIGURE 6 | Quantitative comparison of each step in T2DM control phenotyping among various data sources. The number of each step corresponds to Figure 3,
bold numbers are derived from the combination of Mayo of REP data.
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TABLE 5 | Missing information for FN and FP RA case subjects.

Error
type

Data
sources

Total No. of
subjects

No. of subjects with missing information

# of patients with 1+
RA diagnosis codes

(inclusion cohort)

# of Patients with 1+
PA diagnosis codes

# of patients with
1+ SLE diagnosis

codes

# of patients with 1+
Lab test for

rheumatoid factor

Total encounter
No.

FN Mayo 165 15 1 0 14 17,674

REP 32 0 0 0 0 2,654

FP Mayo 43 0 0 0 0 2,112

REP 17 0 0 0 0 1,083

TABLE 6 | Missing information for FN and FP T2DM case subjects.

Error type Data source Total No. of subjects No. of subjects with missing information

T1DM Dx T2DM Dx T1DM drug T2DM drug Abnormal lab T2DM Dx by physician

FN Mayo 733 0 22 36 248 532 0

REP 173 0 46 3 25 8 0

FP Mayo 368 246 17 90 39 25 0

REP 82 0 12 13 7 0 0

TABLE 7 | Missing information for FN and FP T2DM control subjects.

Error type Data source Total No. of subjects No. of subjects with missing information

≥2 in person
physician visits

≥1 glucose
measure

Abnormal
lab

DM
related Dx

DM med or
supplies order

Family Hx
of DM

FN Mayo 75 10 65 0 0 0 0

REP 56 11 45 0 0 0 0

FP Mayo 597 0 0 122 166 362 0

REP 245 0 0 4 236 5 0

CONCLUSION

In this study, we demonstrated that various data sources
may result in different phenotyping results through two case
studies. We also identified underlying reasons for variation in
the algorithm performance. The completeness and validity of
phenotypic and exposure information derived from EHRs are
the foundations for precision medicine and patient care. As
more genomic research makes use of EHR-derived phenotypes,
it is important to understand that data fragmentation may
significantly affect algorithm performance.
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