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Toxin synergism is a complex biochemical phenomenon, where different animal venom
proteins interact either directly or indirectly to potentiate toxicity to a level that is above the
sum of the toxicities of the individual toxins. This provides the animals possessing venoms
with synergistically enhanced toxicity with a metabolic advantage, since less venom is
needed to inflict potent toxic effects in prey and predators. Among the toxins that are
known for interacting synergistically are cytotoxins from snake venoms, phospholipases
A2 from snake and bee venoms, and melittin from bee venom. These toxins may derive a
synergistically enhanced toxicity via formation of toxin complexes by hetero-
oligomerization. Using a human keratinocyte assay mimicking human epidermis in vitro,
we demonstrate and quantify the level of synergistically enhanced toxicity for 12 cytotoxin/
melittin-PLA2 combinations using toxins from elapids, vipers, and bees. Moreover, by
utilizing an interaction-based assay and by including a wealth of information obtained via a
thorough literature review, we speculate and propose a mechanistic model for how toxin
synergism in relation to cytotoxicity may be mediated by cytotoxin/melittin and PLA2

complex formation.

Keywords: toxin synergism, phospholipase A2, toxin complexes, cytotoxins, melittin, cytotoxicity, toxin
interactions, venom
INTRODUCTION

The venomous animals that pose a threat to human health are classified in six major groups:
cnidarians, venomous fish, scorpions, spiders, hymenopterans, and snakes (Ericsson et al., 2006).
Their venoms are complex cocktails of toxic proteins, peptides, and small organic and inorganic
molecules. In general, venoms derive their toxicity from proteins known as toxins. These toxins are
in.org May 2020 | Volume 11 | Article 6111
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in themselves a diverse and complex group, including smaller
neurotoxic peptides, larger phospholipases, and venom
proteases, along with many other protein families (Ducancel,
2016). In fact, it is estimated that between 19,000 and 25,000
snake toxins, 100,000 scorpion toxins, more than 10 million
spider toxins, and a large unknown number of toxins from other
venomous creatures exist (Laustsen et al., 2016a; Laustsen
et al., 2016b).

Venoms are produced for defensive and/or predatory
purposes to provide a survival benefit to the species possessing
them. However, the production and replenishment of these
venoms come with a metabolic cost for the venomous animals
(Morgenstern and King, 2013). This metabolic cost has forced
venomous animals to evolve mechanisms for minimizing venom
expenditure, such as the venom optimization hypothesis (Wigger
et al., 2002) and toxin synergism (Laustsen, 2016). Indeed, snakes
(Strydom, 1976; Mora-Obando et al., 2014; Lauridsen et al.,
2016), spiders (Chan et al., 1975; Wullschleger, 2005), scorpions
(Lazarovici et al., 1984), and bees (Mingarro et al., 1995) have
evolved to produce venoms with potencies that are larger than
the sum of the individual toxins (toxin synergism). One of the
most prominent examples of this phenomenon is the synergy
between cytotoxins and phospholipases, which was reported for
the first time more than half a century ago (Condrea et al., 1964).
Cytotoxins from snakes belong to the three-finger toxin (3FTx)
superfamily of proteins and share a common scaffold of three
loops of b-strands extending from a central globular core
reticulated by four highly conserved disulphide bridges
(Kessler et al., 2017). Researchers have used different names for
categorizing these toxins, including membrane-active
polypeptides, membrane-disruptive polypeptides, membrane
toxins, membranotoxins, cardiotoxins (Harvey, 2018), direct
lytic factors (DLF) (Slotta and Vick, 1969), and cobramines
(Wolff et al., 1968). However, in 1988, Dufton and Hider
adopted the name “cytotoxin,” which underlines the fact that
this group of toxins can kill different cell types by interacting
with and disrupting their membranes (Dufton and Hider, 1988).
The term “cytotoxin” has since then been more widely adopted
in the literature and will be the term used in this study. Melittin,
the main toxic component of bee venoms, was also first identified
as a DLF, and as its mechanism closely resembles that of
cytotoxins (Dempsey, 1990), it may be considered as a
“cytotoxin-like” peptide.

While snake cytotoxins are mainly found in the genera Naja
and Hemachatus (Dufton and Hider, 1988), snake venom
phospholipases A2 (svPLA2s) are found in all venomous snake
families (i.e., Viperidae, Elapidae, Atractaspididae, and
Colubridae) (Kini, 1997; Xiao et al., 2017). Catalytically active
svPLA2s hydrolyze membrane glycerophospholipids at the sn-2
site of these molecules (Xiao et al., 2017), however, many
svPLA2s have over the course of evolution lost their catalytic
activity, yet retain toxicity via other functions, such as an ability
to disrupt cellular membranes very selectively (Arni and Ward,
1996; Kini, 2003). Based on their molecular structure, svPLA2s
can be classified into three groups. 1) Group IA contains seven
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disulfide bridges and a characteristic surface loop between
residues 63 and 67, called the elapidic loop. This group is
primarily found in Elapidae, although some have also been
reported for Colubridae. 2) Group IIA contains a seven-residue
C-terminal extension and seven conserved disulfide bonds and is
found in Viperidae. 3) Group IIB has a six-residue C-terminal
extension and only six disulfide bridges, which means it lacks an
otherwise universally conserved 61–95 disulfide bond. This
group of svPLA2s is found in vipers (Six and Dennis, 2000). A
different group of phospholipases A2, group III, can be found in
lizard and bee venoms. Group III PLA2s have molecular masses
that are higher than the molecular masses of PLA2s from snakes
(15–18 kDa compared to 13–15 kDa, respectively) and contain
eight disulfide bridges (Dennis et al., 2011).

The first synergistic effect between PLA2s and cytotoxins was
reported by Condrea and Mager in 1964. Their study (Condrea
et al., 1964) demonstrated, using erythrocytes, that when lower
concentrations of Naja naja PLA2 causing no significant hemolysis
or phospholipid hydrolysis (3.3% hemolysis, 0% phospholipid
hydrolysis) were combined with a cobra cytotoxin with no
phospholipase activity, significant hemolysis and phospholipid
hydrolysis was observed (86.5% hemolysis, 77% phospholipid
hydrolysis) (Condrea et al., 1964). In a later study (Klibansky
et al., 1968), it was shown that synergism also occurred between
PLA2s from Vipera palestinae and cytotoxins from cobras, implying
that synergism was not restricted to toxins from the same animal. In
1995, the occurrence of synergism between cytotoxin P4 from N.
nigricollis and homologous PLA2s along with many heterologous
PLA2s was investigated using melanoma tumor cells. Here, sublytic
concentrations of cytotoxin P4 combined with non-lytic
concentrations of PLA2s from N. nigricollis, N. atra, N.
melanoleuca, Walterinnesia aegyptia, Bitis arietans, and
Pseudocerastes persicus, along with porcine pancreas and bee
venom, were demonstrated to cause 100% cell lysis (Chaim-
Matyas et al., 1995). For bees, similar examples have been
reported, where PLA2 from bee venom (bvPLA2) has been shown
to synergistically increase the lytic effect of melittin (Yunes et al.,
1977; Frangieh et al., 2019; Pucca et al., 2019).

Despite the considerable amount of research that has been
performed in the field of toxinology, little is still known about the
phenomenon of toxin synergism. In particular, the synergistic effects
between cytotoxins and PLA2s, as well as other toxin-toxin
combinations, remain understudied, and the molecular mode of
interaction between many of these toxins, as well as their combined
mechanism of action, are yet to be completely elucidated. In this
study, we demonstrate how several different combinations between
all three PLA2 groups (I, II, and III) and different cytotoxins fromN.
nigricollis, N. mossambica, N. melanoleuca, as well as melittin from
bee venom interact synergistically using a cytotoxicity assay
involving immortalized human keratinocytes. Based on the
synergistically enhanced cytotoxic effects observed on the
keratinocytes, an interaction-based assay, and a thorough
literature review, this study also proposes a mechanistic model for
how cell lysis is synergistically enhanced by cytotoxin and PLA2

complex formation.
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MATERIALS AND METHODS

Toxins
Venoms of N. nigricollis (the black-necked spitting cobra), N.
melanoleuca (the forest cobra), and N. mossambica (the
Mozambique spitting cobra) were purchased from Latoxan
(Valence, France). Melittin (P01501) and bvPLA2 (P00630)
were purchased from Sigma-Aldrich (Cotia, SP, Brazil, and St
Louis, MO, USA, respectively). Bothrops aspermyotoxin II (MII,
lacking PLA2 activity, P24605) was isolated as previously
described (Lomonte and Gutiérrez, 1989). Venoms of N.
nigricollis, N. melanoleuca , and N. mossambica were
fractionated by reversed-phase high-performance liquid
chromatography (RP-HPLC) as described elsewhere (Lauridsen
et al., 2017), and peaks were numbered according to (Petras et al.,
2011; Lauridsen et al., 2017; Dehli, 2018), respectively. In order
to evaluate toxin purities, the fractionated toxins were sent to the
Proteomics Core at the Technical University of Denmark where
De Novo sequencing was performed. The subsequent peptide
spectra were screened against the Uniprot database using N. naja
or B. asper as the identifier species. The snake cytotoxins were
screened against N. naja and MII was screened against Bothrops
asper. The cytotoxin and phospholipase A2 purities are shown in
Supplementary Table 1 and Supplementary Figure 1.
Cell Culture and Synergy Assessment
An immortalized human keratinocyte cell line (N/TERT) (kindly
provided by Edel O’Toole from the Queen Mary University of
London) (Dickson et al., 2000) was cultured in Dulbecco’s
modified Eagle’s medium (DMEM:F12; Grand Island, NY,
USA) supplemented with 10% (v/v) fetal bovine serum (FBS),
1% (v/v) penicillin-streptomycin (Sigma, St. Louis, MO, USA),
and 1 × RMplus supplement (McGeoghan, 2017), under
standard conditions (37°C, 5% CO2, and 85% humidity). Sub-
culturing was performed by incubating with 0.05% Trypsin-
EDTA (Life technologies, Grand Island, NY, USA) for 5 to 10
min at 37°C to detach adherent cells. The cell suspension was
diluted 1:1 with medium to neutralize the trypsin, and then
centrifuged at 1,300g for 5 min. Approximately 4×103 cells
diluted in 100 µl of medium were seeded per well in 96-well
polystyrene black opaque-plates (Thermo Fisher Scientific,
Roskilde, DK) and incubated overnight under the standard
conditions. The medium was aspirated and replaced by media
(100 µl per well) containing different combinations of PLA2s
(bvPLA2, MII, or Nmo12) and cytotoxins (fraction 18 from N.
nigricollis (Nn18), fraction 20 from N. nigricollis (Nn20), fraction
17 from N. melanoleuca (Nm17), fraction 9 from N. mossambica
(Nmo9)) or melittin, which had been co-incubated for 30 min at
37°C before addition. Controls consisted of wells without cells,
cells incubated without addition of toxins, and cells incubated
with only individual toxins. The plates were incubated under the
standard conditions for 24 h. Cytotoxicity was evaluated by the
CellTiter-Glo luminescent cell viability assay (Promega,
Madison, WI, USA) which uses adenosine triphosphate (ATP)
Frontiers in Pharmacology | www.frontiersin.org 3
levels to measure living cells (Riss et al., 2011). The
manufacturer’s protocol was followed. Experiments were
performed in triplicate with two technical replicates for each
combination, and results were expressed as mean ± SD. Data
were evaluated through an analysis of variance (ANOVA) test
followed by a Bonferroni post-test, and a significance level of p <
0.05 was used for statistical testing. All statistical analyses were
performed using GraphPad-Prism 6 software (GraphPad-Prism
Software Inc., San Diego, CA, USA).
Combination Index
The Coefficient of Drug Interaction or Combination of Drug
Index (CDI) (Zhao et al., 2014), here named Combination
of Toxin Index (CTI), was calculated by the equation
CTI = (E)1,2/E1 × E2, where (E)1,2 is the measured effect of the
combination effect; E1 and E2 are the individual effects of
each toxin. Thus, CTI values of <1, =1, or >1 indicate that the
toxin–toxin interactions are synergistic, additive, or
antagonistic, respectively.
Toxin Biotinylation and Protein-Complex
Isolation
The toxins MII, Nm17, and melittin were biotinylated using
PEG4-conjugated biotin (EZ-Link™ NHS-PEG4-Biotin, Thermo
Fisher Scientific, Rockford, IL, USA) with 1:1.5 molar ratio (toxin/
biotin), as described elsewhere (Laustsen et al., 2017). In order to
evaluate if the synergistically-acting toxins interact with each other
and generate complexes, a pull-down assay was performed.
Different combinations of toxins were used: biotinylated MII
(bio-MII) + Nm17, biotinylated Nm17 (bio-Nm17) + bvPLA2,
and biotinylated melittin (bio-melittin) + bvPLA2. The mixtures
containing 5 µg of each toxin diluted in phosphate-buffered saline
(PBS) pH 7.2 (final volume, 100 µl) were co-incubated for 1 h at
37°C and transferred to 30 µl of Dynabeads M-280 Streptavidin
(Invitrogen, Trondheim, Norway). Beads and mixtures were
incubated for 30 min at room temperature and mixed gently
each 10 mins. As control, the same combinations were used with
non-biotinylated toxins. Magnetic separation was used to collect
the beads. The beads were washed three times with 200 µl of PBS
pH 7.2. For elution of the toxins, 30 µl of PBS pH 7.2 containing
lithium dodecyl sulphate loading buffer (NuPAGE LDS, Thermo
Fisher Scientific, Rockford, IL, USA), and 0.1 M of dithiothreitol
(DTT, Thermo Fisher Scientific, Rockford, IL, USA) were added to
the beads and incubated 10 min at 70°C, after which the toxins
were recovered from the supernatant. The samples obtained from
the pull-down assay were analyzed through electrophoresis for low
molecular weight proteins according to the method of Schagger
and von Jagow (Schägger and von Jagow, 1987). Samples were run
on a 16% Tris-Tricine SDS-PAGE gel (Novex Tricine Gels,
Invitrogen, Carlsbad, CA, USA) at 149 V and 150 mA. The gel
was stained with silver (SilverXpress, Life Technologies, Carlsbad,
CA, USA).
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RESULTS

Cytotoxic Effects of Cross-Species
Synergistic Combinations of Toxins
Immortalized human keratinocytes (N/TERTs) were challenged
with individual cytotoxins in different concentrations and
analyzed for cell survival (data not shown). Based on these
experiments, doses resulting in low cytotoxicity (0–20%), were
used for challenging N/TERT cells. The isolated cytotoxins
(Nn18, Nm17, Nn20, Nmo9) and melittin, as well as these
cytotoxins in combination with three PLA2s (Nmo12, MII, and
bvPLA2) from different species were added to the culture
medium of the N/TERT cells and incubated for 24 h (Figure
1). Exposure of N/TERT cells to Naja spp. cytotoxins showed an
average of seven-fold higher cytotoxic activity in combination
with MII (~62%), five-fold higher in combination with Nmo12
(~50%), and four-fold higher when combined to bvPLA2 (~45%)
(Figure 1). In contrast, melittin showed the highest cytotoxic
Frontiers in Pharmacology | www.frontiersin.org 4
effect in combination with bvPLA2, with five-fold higher
cytotoxicity (~90%), and a three-fold higher cytotoxicity when
combined with MII (~60%) and Nmo12 (~55%).

To provide evidence of the synergistically potentiated effects
of the toxins in combination compared to the effects obtained by
the single toxins, the CTI was calculated. All 12 cytotoxin/
melittin-PLA2 combinations demonstrated a strong synergistic
effect (CTI < 0.5). Moreover, three of the combinations (melittin
+ bvPLA2, Nn18 + MII, and Nn20 + MII) presented very strong
synergism (CTI < 0.2) (Figure 2).

Evidence of Formation of Phospholipase
A2-Cytotoxin Complex
To investigate the possible occurrence of cytotoxin-PLA2

complexes, a pull-down assay was performed. The results
indicated that formation of a complex took place between
cytotoxins and PLA2s independent of the tested toxin
combination (Figure 3). Thus, these data demonstrate that
A

B

FIGURE 1 | Synergistically enhanced lytic effects of combinations of cytotoxins and PLA2s from the same and different species. (A) Low lytic concentrations of
cytotoxins (Nn18: 8 µg/ml, Nm17: 6 µg/ml, Nn20: 20 µg/ml, Nmo9: 1 µg/ml, and melittin: 5 µg/ml) were mixed with sublytic concentrations of PLA2s (Nmo12: 50
µg/ml, bvPLA2: 50 µg/ml, and MII: 12 µg/ml) and the combinations were added to human keratinocytes (N/TERT). Controls were performed with N/TERT cells not
subjected to the toxins. Synergistically enhanced cytotoxicity was examined after 24 h of incubation by determination of adenosine triphosphate (ATP) levels through
a luminescent cell viability assay. Experiments were performed in triplicates with two replicates for each combination, and results are expressed as mean ± SD. Data
was analyzed by an analysis of variance (ANOVA) test followed by a Bonferroni post-test. (*p < 0.001 compared to the respective effect with the individual cytotoxin).
(B) Representative morphological features of N/TERT cells captured by Evo XL imaging system using a 4× objective lens. (a-c) Standard N/TERT cell cultures
forming islands of adherent and flattened keratinocytes, indicating viable cells: a: control; b: bvPLA2, and c: Nn18. (d-f) N/TERT cell cultures forming separated
clusters of keratinocytes (fragmentation) and presenting several rounded cells, indicating cell damage and lysis: d: Nn18 + bvPLA2; e: Nn18 + Nmo12, and f: Nn18 +
MII. Similar patterns were seen for other toxins.
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cytotoxins and PLA2s from the same and different species can
form complexes, and that these complexes could be responsible
for the synergistically enhanced cytotoxic effects observed on
keratinocyte bilayer membranes. The hypothesized mechanism
of hetero-oligomer complex interaction with membranes and
complex-induced lytic effect is represented in Figure 4.
DISCUSSION

Toxin synergism between groups of toxins is a vast field of study
that remains largely unexplored, since most toxin-toxin
interactions are yet to be studied. However, cytotoxins, PLA2s,
snake venom metalloproteinases (SVMPs), and snake venom
serine proteases (SVSPs) are among the toxin families that
possess the ability to interact synergistically with other toxins,
which has been investigated in previous studies (Xiong and
Huang, 2018). For instance, it has been demonstrated that a
combination of acidic and basic svPLA2s (including Asp49 and
Lys49 subtypes) can be found in a single snake species (Angulo
and Lomonte, 2009), having synergistic effects (Mora-Obando
et al., 2014; Bustillo et al., 2019). This is in agreement with the
belief that toxin synergism can be identified whenever
predominant protein families of snake venoms are co-
administered (Xiong and Huang, 2018). In this relation, cobra
snake venoms are known to be dominated by cytotoxins and
PLA2s. In fact, around 95% of N. nigricollis and N. mossambica
venom is composed of cytotoxins (72.8% and 67.7%,
respectively) and PLA2s (21.9% and 27.1%, respectively)
(Petras et al., 2011). Bee venom is also dominated by melittin
(50%) and PLA2 (15%) toxins (Prado et al., 2010). Thus, due to
the high abundance in venoms of cytotoxins and PLA2s, their
interactions have been studied for decades and are considered
great examples of protein complementation serving to potentiate
biological activity (Gasanov et al., 2014). However, the
mechanism behind this synergism phenomenon has not
been elucidated.

Toxin synergism can be achieved through several
mechanisms, mainly divided into intermolecular synergism,
where toxins act on different targets or processes causing
increased toxicity, or through supramolecular synergism, where
toxins either interact with the same target or associate into a
complex with increased toxicity (Laustsen, 2016). Gasanov et al.
dedicated many efforts to propose a model for cytotoxin-PLA2

interaction (Gasanov et al., 1995; Gasanov et al., 1997; Gasanov
et al., 2014). Moreover, methods like chromatography (gel
filtration) (Mukherjee, 2010), ELISA (Saini et al., 1997), and
functional assays (Louw and Visser, 1978; Chaim-Matyas et al.,
1995) have been used successfully to prove that formation of
non-covalent complexes between cytotoxins and PLA2 occurs.
Here, we demonstrate that MII, a basic Lys49 PLA2 from B. asper
with no enzymatic activity, produced a strong or very strong
synergistic effect with different cytotoxins (Nn18, Nm17, Nn20,
Nmo9) and melittin. The interaction of cytotoxins with this type
of viper PLA2 has never been studied before. Our data with non-
enzymatic MII are also supported by a recent study, which
demonstrated that Asp49 and Lys49 PLA2s from Bothrops
FIGURE 2 | Combination effect of cytotoxins and PLA2s. The Combination of
Toxin Index (CTI) was calculated for 12 different combinations of melittin/
cytotoxins and PLA2s. The X axis shows the level of cytotoxicity, where 0 =
100% of viable cells, and 1 = 0% of viable cells. The Y axis shows the CTI
values, where values <1, =1, or >1 indicate that the toxins act synergistically,
additively, or antagonistically, respectively. CTI <0.5 indicates strong
synergism, and CTI <0.2 very strong synergism. Triangles, diamonds, and
circles represent melittin/cytotoxin combinations with PLA2s from group I
(Nmo12), II (MII), and III (bvPLA2), respectively.
FIGURE 3 | Electrophoresis profiles of toxins and toxin complexes isolated in
a pull-down experiment. Different combinations of cytotoxins and PLA2s (5 µg
of each and one of them biotinylated) were co-incubated for 1 h at 37°C. This
was followed by a pull-down experiment using Dynabeads M280 Streptavidin.
Toxins were eluted with lithium dodecyl sulphate (LDS) and dithiothreitol (DTT)
and heated at 70°C for 10 min. Eluted toxins were evaluated using a Tris-
Tricine SDS-PAGE 16% and silver staining. Lane 1: Ladder; Lane 2: bio-MII +
Nm17; Lane 3: bio-Nm17 + bvPLA2; Lane 4: bio-melittin + bvPLA2; Lane 5:
MII; Lane 6: melittin (control); Lane 7: bvPLA2 (control); Lane 8: Nm17
(control). No protein band was seen when combinations with non-biotinylated
toxins were used (data not shown). Strep. means streptavidin.
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A

B

C

D

E

FIGURE 4 | Hypothetical phenomena of synergistically enhanced cell lysis mediated by cytotoxin-PLA2 or melittin-PLA2 hetero-oligomers on phospholipid bilayer
membranes. (A) Cytotoxins (monomers or oligomers) likely bind to anionic extracellular proteins or carbohydrates (Harvey, 2018), which may lead to further
oligomerization and formation of membrane pores, leading to cell lysis (Forouhar et al., 2003; Konshina et al., 2011). (B) When combined with PLA2s, cytotoxins are
more likely to easily bind to the neutral outer membrane on the lipid binding surface of the molecule (Singer et al., 2002; Burke and Dennis, 2009), resulting in
synergistically enhanced lysis. (C) Different to cytotoxins, which are proteins of predominantly beta sheet structure, the helical structure of melittin provides better
opportunities for melittin interaction with neutral membranes (Dempsey, 1990; Kleinschmidt et al., 1997), which is possibly mediated via electrostatic attraction
between basic amino acid residues of melittin and the phosphate group of phosphatidylcholine (Dempsey, 1990; Kleinschmidt et al., 1997). The melittin-phospholipid
binding enables melittin oligomerization, formation of membrane pores, and lysis (Yang et al., 2001; Pucca et al., 2019). (D) As for cytotoxins, PLA2s can also
facilitate melittin binding in the cell membrane, resulting in synergistically enhanced lysis. (E) PLA2-induced hydrolysis also affects membrane integrity through the
detergent action of the hydrolytic products of phospholipids, which may also contribute to the lytic effects (Lomonte and Gutiérrez, 2011). The last hypothetical
phenomenon is unlikely to account for the synergistic effects observed for MII, since this toxin lacks enzymatic activity.
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diporus venom present synergistic effects, and that the Lys49
variant (lacking enzymatic activity) has greater myotoxicity,
cytotoxicity, anti-adhesion activity, and causes stronger
inhibition of cell migration (Bustillo et al., 2019). In addition,
to the best of our knowledge, it is the first time that the presence
of supramolecular synergistic interaction between cytotoxins and
PLA2 is demonstrated using a pull-down assay. In this study we
demonstrate that independently of the animal species from
which the tested venom toxin is derived, cytotoxins and PLA2s
interacted and formed hetero-oligomers. Hence, we speculate
that cytotoxin-PLA2 oligomers are generated in the venom gland
and their cytotoxic effect is synergistically enhanced by this
formation of hetero-oligomers. To support our hypothesis, a
literature review was performed.

Due to their cationic nature, cytotoxins are likely to have no
or very weak electrostatic interaction with phospholipids on the
outer membrane leaflet of a mammalian cell, mostly composed
of neutral components, unfavorable for interacting with the
cytotoxins (Harvey, 1985). Since most of the negatively
charged lipids are located in inner membrane leaflet
(cytoplasmic face), cytotoxins likely first bind to anionic
extracellular proteins or carbohydrates (e.g., oligosaccharides)
(Harvey, 2018). Thus, cytotoxins (monomers or oligomers) seek
and interact with unknown membrane anionic moieties through
their basic electrostatic field. The cytotoxin–protein binding may
enable cytotoxins to penetrate the membrane through their
hydrophobic first loop and interact with negatively charged
lipids from the inner membrane leaflet, which may lead to
further oligomerization and formation of membrane pores,
leading to cell lysis (Forouhar et al., 2003; Konshina et al.,
2011). The cytotoxin-mediated mechanism of pore formation
is like the perforin polymerization used by cytotoxic effector cells
(Natural Killer cells and cytotoxic T lymphocytes) (Abbas et al.,
2016). No specific protein targets have yet been identified for
cytotoxins (Gasanov et al., 2014).

Different from cytotoxins, all three groups of PLA2s tested
(IA, IIA, and III) bind readily to the neutral outer membrane
through interactions with a group of hydrophobic residues on
the lipid binding surface of the molecule (Singer et al., 2002;
Burke and Dennis, 2009). Moreover, in case of MII, it was
demonstrated that the toxin can also bind to fifteen different
proteins, including nucleolin (Massimino et al., 2018). Thus,
within the complex formation, PLA2s likely facilitate cytotoxin
binding and penetration into the membrane, thereby enhancing
the cytotoxin activity, which results in synergistically enhanced
lysis. Supporting the synergistic activity, most PLA2s hydrolyze
the ester bond of glycerophospholipids located at position two
(sn-2), resulting in a structural change of the cell membrane and
lysis. Although the composition of glycerophospholipids is
diverse among mammalian cells and their distribution is
different in the inner or outer plasma membrane leaflets
(Hishikawa et al., 2014), PLA2-induced hydrolysis also affects
membrane integrity through the detergent action of the
hydrolytic products of phospholipids (i.e., lysophospholipids
and fatty acids) contributing to the lytic effect as well
Frontiers in Pharmacology | www.frontiersin.org 7
(Lomonte and Gutiérrez, 2011). In addition, the augmentation
of lysophospholipids facilitates flip-flopping of phospholipids
and better exposure of acidic lipids to cytotoxins on the outer
membrane leaflet (Gasanov et al., 1997).

Chaim-Matyas and co-authors have shown that among all
different combinations of the P4 cytotoxin from N. nigricollis and
PLA2s from different origins, the highest synergistic activity is
seen between P4 and one of the basic PLA2s found in the same
venom (Chaim-Matyas et al., 1995). Very strong synergism
between intraspecies toxins was also observed in our study,
where melittin and bvPLA2 combinations exhibited the highest
cytotoxicity in N/TERT cells (>90% cytotoxicity and CTI <0.2).
Interspecies toxin combinations were also tested, and
interestingly, for snakes, we found that Nmo12, an acidic PLA2

from N. mossambica, exhibited less synergistic effects when
combined with Naja spp. cytotoxins, compared to when it was
combined with MII from the B. asper pit viper. Although more
studies must be conducted for the evaluation of interfamily
synergism, our results might indicate that synergism is not
solely dependent on the toxins co-evolving within the same
genus but may be a more universal feature co-evolving across
genera and families. On the other hand, combinations employing
cobra cytotoxins and bvPLA2 resulted in lower synergism
compared to combinations with cobra cytotoxins and snake-
derived PLA2s. This observation is not surprising, as it is to be
expected that PLA2s and cytotoxins originating from snakes have
co-evolved to result in the highest level of toxicity, just as the case
is for PLA2s and melittin from bees. All in all, our data from 12
cross-species combinations indicate that synergistic effects of
toxin-toxin combinations may be less dependent on species and
more related to the fundamental structural and biochemical
characteristics of the proteins themselves. Notably, in this
study, not all toxins were isolated in high purity upon venom
fractionation. Some of the cytotoxins and phospholipases were
observed to have co-eluted in some fractions. However,
synergistic effects were still observed when either fractionated
or purified toxins were combined.

This is the first study that evaluates the cytotoxic effects of co-
administration of cytotoxins and PLA2s on human keratinocytes.
Many other cell types have been used for assessment of cytotoxic
effects of venom cytotoxins and/or PLA2s, including
erythrocytes, lymphocytes, cardiac myocytes, spleen cells,
endothelial cells, skeletal muscle myoblasts/myotubes, and
various tumor cells (Chaim-Matyas et al., 1991; Gasanov et al.,
1997; Gasanov et al., 2014). However, to the best of our
knowledge, there exists no studies reporting the effect of these
individual toxins (or in combination) on human keratinocytes,
which are among the most affected cells in cases of cobra bite-
induced dermonecrosis (Rivel et al., 2016) or skin necrosis
caused by bee venom (Palm and Medzhitov, 2013). The lack of
studies using human keratinocyte cell lines could be justified by
the limited availability of primary keratinocytes to generate
epidermal models. Here, we demonstrate that N/TERT cells
can be a biologically relevant target for in vitro studies with
toxins (Smits et al., 2017).
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CONCLUSION AND FINAL REMARKS

This study demonstrates how cytotoxins and PLA2s from
different species (elapids, vipers, and bees) may interact
synergistically to enhance cell lysis, explored via the use of a
human keratinocyte assay mimicking human skin in vitro. The
results indicate that strong to very strong synergism may result
from the hetero-oligomerization of cytotoxins and PLA2s to
potentiated toxin complexes, which are speculated to be better
posed to interact with and disrupt cellular membranes. Finally,
based on the results obtained in this work combined with
findings extracted from prior art, we propose a mechanistic
model for how cytotoxin and PLA2 complex formation may
possibly mediate synergistically enhanced cell lysis. We further
demonstrate that toxin synergism between cytotoxins, cytotoxin-
like toxins, and PLA2s may occur across snake genera, snake
families, and even entirely different species (snakes and bees) due
to the fundamental structural and biochemical characteristics of
the toxins themselves.
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MP, SA, FÇ, TS, and ES performed experiments and analyzed
results. UK and FM provided the cell line and FM helped with
the cell culture experiments. SA, CS, and BL purified and
biotinylated the toxins. FAC performed the figure illustration.
MP, SA, LL, and AL wrote the paper. BL, UK, EA, and FÇ gave
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SUPPLEMENTARY TABLE 1 | Toxin purities. Snake cytotoxin (CTx) and
phospholipase A2 (PLA2) purities were evaluated using De Novo sequencing. The
abundance results received were filtered to exclude results with low reliability.
Results with less than two peptide matches and lower than 30% sequence
coverage were removed from the dataset. In order to obtain purities, the abundance
results for each fraction were summed and divided by each respective protein that
matched the peptide sequences from the screen. The cytotoxin and phospholipase
A2 purities from each fraction were grouped to determine the purities relative to their
toxin families. The Uniprot IDs listed made up the primary abundances for each
fraction when screened from the Uniprot database during De Novo sequencing.
Melittin and honeybee phospholipase A2 (bvPLA2) were purchased from Sigma-
Aldrich and are displayed with their listed purities.

SUPPLEMENTARY FIGURE 1 | Electrophoretic profiles of toxins. Toxins (Nn18,
Nn20, Nn25, Nn17, Nmo9, Nmo12, melittin, Bee-PLA2, and M-II – 2 µg) were
evaluated using Tris-Tricine SDS-PAGE 16% under reducing conditions using
Coomassie blue staining.
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