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Abstract Non-targeted mass spectrometry-based approaches
for detecting novel xenobiotics in biological samples are ham-
pered by the occurrence of naturally fluctuating endogenous
substances, which are difficult to distinguish from environmen-
tal contaminants. Here, we investigate a data reduction strategy
for datasets derived from a biological time series. The objective
is to flag reoccurring peaks in the time series based on increas-
ing peak intensities, thereby reducing peak lists to only those
which may be associated with emerging bioaccumulative con-
taminants. As a result, compounds with increasing concentra-
tions are flagged while compounds displaying random, de-
creasing, or steady-state time trends are removed. As an initial
proof of concept, we created artificial time trends by fortifying
human whole blood samples with isotopically labelled stan-
dards. Different scenarios were investigated: eight model com-
pounds had a continuously increasing trend in the last two to
nine time points, and four model compounds had a trend that
reached steady state after an initial increase. Each time series
was investigated at three fortification levels and one unfortified
series. Following extraction, analysis by ultra performance liq-
uid chromatography high-resolution mass spectrometry, and

data processing, a total of 21,700 aligned peaks were obtained.
Peaks displaying an increasing trend were filtered from ran-
domly fluctuating peaks using time trend ratios and
Spearman’s rank correlation coefficients. The first approach
was successful in flagging model compounds spiked at only
two to three time points, while the latter approach resulted in all
model compounds ranking in the top 11 % of the peak lists.
Compared to initial peak lists, a combination of both ap-
proaches reduced the size of datasets by 80–85 %. Overall,
non-target time trend screening represents a promising data
reduction strategy for identifying emerging bioaccumulative
contaminants in biological samples.
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Introduction

Most approaches for screening environmental contaminants
target individual chemicals or chemical classes using highly
specific analytical methods. Despite their utility for low-level
detection and quantification, these methods often overlook
novel contaminants or transformation products which may
pose a risk to humans and wildlife. Recent advances in mass
spectrometry and chemometrics have addressed this limitation
through development of non-targeted screening approaches,
in which samples are analyzed without a priori knowledge of
the contaminants of interest [1]. Non-targeted methods in-
volve broad sample extraction procedures combined with
gas or liquid chromatography high-resolution mass spectrom-
etry (GC- or LC-HRMS, respectively), advanced data
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processing tools, and identification by comparison with mass
spectral libraries and structure elucidation.

Among the principal challenges of a purely non-targeted
screening approach is the number of peaks present in datasets,
which can be on the order of several thousands per sample [2,
3]. Therefore, processing of non-targeted datasets is time inten-
sive, making it advantageous to reduce the number of relevant
peaks prior to attempting compound identification. Current
strategies for data reduction include flagging peaks with chlo-
rine and bromine isotopes or retention time homologues, and
statistical comparisons, in which peaks absent in controls are
selected for further investigation. While demonstrating great
potential for screening water [2, 4–7] and sediment samples
[8], applications to biological matrices are less common
[9–11]. This is likely due to the ubiquity of endogenous sub-
stances (i.e., metabolites), which are not easily differentiated
from xenobiotics [3] and are present at substantially higher
concentrations in blood samples compared to xenobiotics [12].

An alternative data filtering strategy—specific to chro-
nological datasets—involves flagging important chromato-
graphic peaks based on their systematic (i.e., non-random)
fluctuation over time. This approach was applied for
narrowing down transformation products and metabolites
in river sediments [13], and a similar feature is offered
through the software package SIEVE (Thermo Fisher
Scientific Inc., USA), which can allow the user to assess
data based on intensity or trend ratios. Despite showing
considerable potential for identifying important features
in a chronological dataset, these approaches rely on visual
assessment of trends, which is not practical for filtering the
thousands of peaks obtained from non-targeted analysis of
biological samples. A more automated, statistically based
approach was reported by Peters et al. [14] in which curve
fitting and autocorrelation algorithms were applied to de-
tect non-random variation in metabolite levels, resulting in
a >98 % data reduction. While showing great promise for
metabolomics (where both increasing and decreasing
trends are important), this approach may not be appropriate
for emerging bioaccumulative contaminants, which are ex-
pected to only display increasing time trends.

In the present work, we investigated an automated, statis-
tically based data reduction strategy for identifying emerging
bioaccumulative contaminants using increasing peak intensi-
ties over time. Decreasing trends were not included since they
are less relevant to emerging contaminants, but could be in-
vestigated simply by reversing the sample order. As an initial
proof of principle, human whole blood samples were fortified
with isotopically labelled xenobiotics to create different time
trends. Following extraction, analysis by ultra performance
liquid chromatography (UPLC)-HRMS, and peak alignment,
two statistical approaches were employed. The extent of data
reduction was assessed, as well as the efficacy of each method
for filtering model compounds.

Materials and methods

Standards and reagents

Standards of caffeine-d9, sulfamethoxazole-d4, bezafibrate-d5,
diflufenican-d3, metoprolol-d7, sotalol-d6, propranolol-d7, flu-
oxetine-d5, diatrizoic acid-d6, glimepiride-d5, ranitidine-d6,
and acetaminophen-d4 were obtained from Toronto Research
Chemicals (Toronto, Canada). Labelled standards were cho-
sen due to availability and their suitability towards the analyt-
ical method. Human whole blood samples from nine anony-
mous individuals were obtained from Karolinska Institutet
(Stockholm, Sweden) in accordance with ethical guidelines
set by the Swedish ethics committee.

Sample preparation

Spiking scenarios represented either increasing trends starting
at different time points using caffeine-d9, sulfamethoxazole-
d4, bezafibrate-d5, diflufenican-d3, metoprolol-d7, sotalol-d6,
propranolol-d7, and fluoxetine-d5 or trends which increased
initially and then plateaued using diatrizoic acid-d6,
glimepiride-d5, ranitidine-d6, and acetaminophen-d4.
Concentrations increased by a factor of two to ten over the
course of the time trend. In order to introduce variability into
the dataset, each of the nine individual blood samples were
used as a different time point (arbitrary time trend increments
of 1 to 9 [unitless]). The number of samples in the time series
was selected in order to have a sufficient number of time
points to generate a robust time trend, but so as not to generate
an excessively large peak list. Of the nine samples, three arti-
ficial time trends were prepared by fortifying blood samples
(1 mL each) with labelled standards at high (10–100 ng/mL),
medium (2–20 ng/mL), and low (0.2–2 ng/mL) concentration
ranges. An additional series was prepared without fortification
with labelled standards (blank series). Spiked trends normal-
ized to 100 % of the highest concentration are presented in
Fig. 1, and exact fortification levels can be found in Table S1
in the Electronic Supplementary Material (ESM).

The blood samples were extracted according to a previous-
ly tested method [15] which involved liquid-liquid extraction
with 2 mL of acetonitrile (ACN), 0.4 g ofMgSO4, and 0.1 g of
NaCl. Three stainless steel beads (3.2 mm diameter) were
added, and the mixture was placed into a bead blender (1600
MiniG®, SPEX SamplePrep, USA) for 30 s at 1500 rpm,
followed by centrifugation at 2500 rpm. An aliquot of the
supernatant (1.6 mL) was concentrated to dryness by N2 and
reconstituted in 80 μL of ACN/H2O (1/1).

Instrumental analysis

Analysis was performed using an Acquity UPLC coupled to a
Xevo G2-S quadrupole time-of-flight (QTOF) mass
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spectrometer (Waters) via an electrospray ionization source
operated in positive mode. The instrumental analysis method
was adapted from methods previously used in a collaborative
trial on non-target screening of water [2]. Five microliters of
extract was injected onto an Acquity UPLC HSS C18 SB
column (2.1×100 mm, 1.8 μm) maintained at room temper-
ature. Separation was achieved using a 19-min gradient from
95%H2O (5 mM ammonium formate, 0.01 % formic acid) to
99 % ACN (0.01 % formic acid) with a flow of 0.5 mL/min
(plus a 2-min equilibration time). The mass spectrometer was
operated in full scan (100–1000 Da) with a scan time of 0.25 s
and a collision energy of 4 eV.

Data processing

Data processing was conducted using the software TracMass2
[16], running under MATLAB (MathWorks®, USA).
Parameters used for peak detection and alignment are listed
in Table S2 (ESM). Peak lists containing aligned peaks were
created for each spike level and one containing all 36 samples.
To reduce the number of false positives, peaks detected in a
single sample were not included. Statistical analysis was con-
ducted in MATLAB and Microsoft Excel.

Two statistical approaches were tested, one based on com-
parison of average intensities in two sample sets and one test-
ing the increasing trend by application of Spearman’s rank
correlation coefficient. For each peak, the following calcula-
tions were performed: First, the average detected intensities at
time points 7–9 were divided by the average detected intensi-
ties at time points 1–6 (+1 to avoid dividing by 0). We defined
this value as the Btime trend ratio (TTR).^ A high TTR—
representing a possible emerging bioaccumulative contami-
nant—is produced by peaks with low intensities in early sam-
ples and high intensities in later samples of the time trend.

Second, Spearman’s rank correlation coefficient was calculat-
ed for all peaks with detections in at least three samples in the
time trend. This results in a value close to 1 for peaks with a
monotonically increasing time trend. Peaks in the full peak
lists were subsequently ranked according to calculated TTR
and Spearman’s rank correlation coefficients (ρ).

Results and discussion

Detection

The nine blood samples were extracted and analyzed four
times each, for a total of 36 analyses. The number of total
aligned peaks detected in each artificial time trend series (de-
tection in ≥2 of 9 samples) was 11,800, 11,400, 12,600, and
12,200 for the high, medium, low, and blank levels, respec-
tively. When aligning all time trend series in one list, a total of
21,700 aligned peaks (detection in ≥2 of 36 samples) were
obtained. The consistency in number of peaks arises from
using the same blood samples for each time trend series.
Following analysis by TracMass2, 11 of 12 spiked com-
pounds (all except diatricoic acid-d6) were detected at the high
and medium spike levels, and 8 were detected at the low spike
level (not detected: diatricoic acid-d6, acetaminophen-d4, caf-
feine-d9, and diflufenican-d3). Spiked compounds were not
detected in the blank series. The spiked and measured time
trend scenarios are plotted in Fig. 1, showing reasonable con-
sistency even at the low spike level.

To assess the distribution of replicate and biological varia-
tion in the dataset, Bayesian ANOVAs [17] were performed.
The relative standard deviation (RSD) of the four replicates
(three spike levels and one blank) was compared to the RSD
of the nine individual samples (biological RSD; see Fig. S2,

Fig. 1 Comparison between spiked time trend scenarios and the
scenarios detected after LC-MS analysis and data processing at three
different spike levels. Each color represents one spiked compound; for

names, see Table 1. The spiked concentrations and the detected intensities
are normalized to 100 % of the maximum value
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ESM). The replicate RSD was on average 21 %, with 90 % of
peaks displaying RSDs of 6–47 %. In contrast, the average
biological RSD was 24 % but showed a much broader range
(1–77 %), indicating that replicate variation in the data is
about the same as the variation between samples from differ-
ent persons. Therefore, for the analysis of real time trend sam-
ples, several replicate analyses should be conducted to reduce
uncertainty in the detected intensities. The use of quality con-
trol samples and internal standards has been described as an-
other means of reducing analytical variability [18].
Additionally, the repeated analysis of pooled samples could
reduce the variability of both the endogenous and exogenous
compounds present at each time point. On the other hand,
pooling samples in a longitudinal study should be conducted
with caution as this can result in a loss of information.

Ranking

Ranking peaks for the entire spiked time trend series accord-
ing to the TTR or ρ values resulted in a high rank for each of
the spiked compounds using at least one of the two methods.
The calculated TTR and ρ values and the resulting ranks for
the spiked compounds at the high spike level can be found in
Table 1, while the data for the other two spike levels are listed
in Table S3 (ESM).

The TTR calculated by comparison of average intensities
was particularly effective at ranking spiked compounds only
present at two to three of the latest time points in the time trend
high on the list, i.e., caffeine-d9 and sulfamethoxazole-d4.
These two compounds showed substantially higher ratios than
other spiked compounds present at more than three time
points. This calculation is thus an efficient method to filter
out substances appearing in recent years (i.e., emerging
bioaccumulative contaminants), which may thus far have not
been discovered. The TTR comparing the latest three with the
first six time points ranks those compounds only present at
one to three of the latest time points high on the list. When
changing the TTR to comparing the latest four time points
with the first five instead, the ranks of the compounds present
at the latest four time points were increased; however, the rank
of caffeine-d9 (present at the two latest time points only) was
decreased. This thus includes more compounds appearing at a
wider time span. Which TTR to use for future applications is
thus dependent on the number of time points and the span of
years that are covered.

Using Spearman’s rank correlation coefficient, ten spiked
compounds received ρ values of ≥0.76 at the high spike level
(≥0.76 and ≥0.72 at the medium and low spike levels, respec-
tively); no value was calculated for caffeine-d9 as it was only
detected in two samples. The magnitude of the concentration

Table 1 Time trend ratios (TTR), Spearman’s ρ, and resulting ranks of spiked compounds in the peak list of the high-spike-level artificial time trend.
The colored names represent the scenarios in the same colors of Fig. 1

nd not detected
a ρ values were only calculated for peaks with more than two detections in the time trend; thus, no value resulted here
b Peaks without a ρ value were sorted after the others according to their m/z values
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increase over the time course did not affect the ρ value since it
was calculated based on ranks. Thus, ρ was solely affected by
how well the increase showed a monotonic trend, as can be
seen by comparing glimepiride-d5 and ranitidine-d6 with acet-
aminophen-d4. Glimepiride-d5 and ranitidine-d6 displayed
random variation over the last five time points resulting in ρ
values of 0.77 and 0.76, respectively, while acetaminophen-d4
displayed only one time point breaking a monotonically in-
creasing trend, resulting in a ρ value of 0.98. When ranking
according to ρ values, all ten compounds were in the top 8 %
of the entire peak list at the high spike level (and in the top 6
and 11 % at the medium and low levels, respectively). Thus,
this rank test appears to be a good test to filter out compounds
when a general increasing trend is present at three or more
time points.

Peak list reduction

The two tested approaches filter out two different types of
trends in the data: those associated with compounds which
are predominantly present at some of the latest time points
(using the TTR) or compounds with a general increasing trend
(ρ). Thus, an assessment including both tests was conducted,
which included all spiked compounds. The extent of data re-
duction based on the rankings using both TTR and ρ was
assessed. All peaks with either a TTR of ≥10 or a ρ≥0.7 were
combined in a separate peak list and duplicates were removed.
This resulted in combined peak lists of 1800, 1700, and 2600
peaks for the high, medium, and low spike levels, respectively.
Compared to the full peak lists, this represented a data reduc-
tion of 85, 85, and 80 %, for high, medium, and low spike
levels, respectively.

Clearly, in a scenario involving real (i.e., unfortified) time
trend samples, greater variability in the dataset may be expect-
ed. However, this variability can be reduced through inclusion
of multiple samples per time point or a pooled sample. Even
with a larger margin of safety, we expect that the number of
peaks in a peak list could be reduced substantially using non-
targeted time trend screening. Future work will apply this ap-
proach to real time trend samples, where pollutants with known
increasing time trends (e.g., perfluoroalkyl acids [19]) can be
used to assess the TTR and ρ values for peak list cutoff.

Despite the peak list reduction, the number of peaks left
after using the non-target time trend approach is still too large
to be identified. Thus, on top of the approach tested here, peak
lists need to be further reduced by assessing isotopic ratios,
adducts, and in-source fragmentation [7], along with checking
peaks against known metabolite databases (e.g., the human
metabolome database [20]) to exclude endogenous com-
pounds from the peak lists [3]. These approaches, combined
with non-targeted time trend screening, have the potential to

significantly reduce non-targeted datasets, allowing greater
resources to be placed on identification using suspect lists,
isotopic or homologue pattern, mass defects, fragmentation
spectra, and finally the comparison with reference standards.
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