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Three-dimensional culture systems that allow generation of monolayered epithelial
cell spheroids are widely used to study epithelial function in vitro. Epithelial spheroid
formation is applied to address cellular consequences of (mono)-genetic disorders,
that is, ciliopathies, in toxicity testing, or to develop treatment options aimed to
restore proper epithelial cell characteristics and function. With the potential of a high-
throughput method, the main obstacle to efficient application of the spheroid formation
assay so far is the laborious, time-consuming, and bias-prone analysis of spheroid
images by individuals. Hundredths of multidimensional fluorescence images are blinded,
rated by three persons, and subsequently, differences in ratings are compared and
discussed. Here, we apply supervised learning and compare strategies based on
machine learning versus deep learning. While deep learning approaches can directly
process raw image data, machine learning requires transformed data of features
extracted from fluorescence images. We verify the accuracy of both strategies on
a validation data set, analyse an experimental data set, and observe that different
strategies can be very accurate. Deep learning, however, is less sensitive to overfitting
and experimental batch-to-batch variations, thus providing a rather powerful and easily
adjustable classification tool.

Keywords: image analysis, epithelial morphogenesis, 3D culture, polarity, spheroids, machine learning, deep
learning, CNN

INTRODUCTION

Epithelia built from sheets of polarised cells line outer and inner surfaces of our body. The epithelial
tissue found in many organs, such as kidneys, liver, lung, and the mammary gland, builds systems
of ducts, tubules, and spherical cysts (O’Brien et al., 2002). These inner epithelia line cavities filled
with fluids or gases, and organ function requires controlled barrier features of the epithelium.

Abbreviations: 2D, two dimensional; 3D, three dimensional; AJ, adherens junction; CI, confidence interval; CNN,
convolutional neural network; CoM, centre of mass; DAPI, 4′,6-diamidin-2-phenylindol; ECM, extracellular matrix; F-actin,
filamentous actin; FBS, foetal bovine serum; gp58, glycoprotein 58 (β-subunit of Na+-K+-ATPase); gp135, glycoprotein 135
(podocalyxin); Iv3, Inception v3 network architecture; IRNv2, InceptionResNet v2 network architecture; MDCK, Madin
Darby canine kidney; MEM, minimal essential medium; NA, numerical aperture; PBS, phosphate-buffered saline; RGB,
Red-Green-Blue colour code; ROI, region of interest; SE, standard error; TJ, tight junction; ZO-1, zona occludens-1 protein.

Frontiers in Genetics | www.frontiersin.org 1 March 2020 | Volume 11 | Article 248

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00248
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.00248
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00248&domain=pdf&date_stamp=2020-03-27
https://www.frontiersin.org/articles/10.3389/fgene.2020.00248/full
http://loop.frontiersin.org/people/867127/overview
http://loop.frontiersin.org/people/58077/overview
http://loop.frontiersin.org/people/882522/overview
http://loop.frontiersin.org/people/867038/overview
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00248 March 26, 2020 Time: 17:30 # 2

Soetje et al. Spheroid Polarity-Classification by Supervised Learning

Epithelial barriers have an intrinsically asymmetric structure
arising from different types of cell junctions. These junctions,
as formed by specialised transmembrane receptor complexes,
determine the physical interaction of cells and the barrier
function of epithelial tissues (Bryant and Mostov, 2008).

Epithelial cells form (i) tight junctions (TJs), which constitute
a barrier that physically separates the apical from the basolateral
membrane compartment of epithelial cells and which also
control paracellular transport across the epithelial sheet. In
addition, (ii) adherens junctions (AJs) formed laterally, connect
to the actin cytoskeleton and contribute to force transmission
in the epithelial sheet (Wang and Margolis, 2007). Control of
cell polarity is central to the establishment and maintenance
of the epithelial barrier. The apical surface of cells is facing
the lumen and acts as exchange interface for secretion and
absorption processes. The junctional complexes (TJs and
AJs) are required to establish and maintain polarisation
and barrier function of epithelia. The basolateral surface
is facing neighbouring cells in the epithelial sheet and
extracellular matrix (ECM) at the outside (Roignot et al., 2013).
Extracellular matrix is connected to the actin cytoskeleton
of epithelial cells via (iii) integrin receptor–based cell–ECM
adhesions. Epithelial lining of lumen is shaped by a fine
spatiotemporal regulation of cell–cell and cell–ECM interactions
(O’Brien et al., 2002).

Dysfunction of epithelia and luminal networks is observed
in multiple tissues, for example, in the endothelium (Datta
et al., 2011; Kovacic et al., 2012), in the intestine (Oshima and
Miwa, 2016), or in the retinal epithelium of the eye (Hartnett,
2010). A further prominent example are ciliopathies, a rather
heterogeneous group of rare inherited disorders, wherein defects
manifest as different, mostly epithelial-derived disturbance of
function such as retinal degeneration, cyst formation in kidney
(and liver), and cerebral anomalies (Waters and Beales, 2011).
To date, therapeutic management of ciliopathies is purely
symptomatic and largely opinion-based (Ware et al., 2011;
Ebner et al., 2015; Slaats et al., 2016). Thus, a better molecular
understanding of the underlying pathomechanisms is crucial
for the development of novel treatment options. Monogenetic
disorders, like many ciliopathies (Hildebrandt et al., 2011), are
proposed to cause cell autonomous defects, which should allow
assessment of disease mechanisms and drug screening in cell
culture–based assays.

In the past two decades, cell culture techniques enormously
improved the understanding of cell and tissue function in a
broad spectrum of research areas, which include developmental
biology, tissue engineering, elucidation of disease mechanisms,
toxicology, and drug discovery. At the same time, awareness of
shortcomings in the ability of culture systems to emulate in vivo
behaviour of cells was rising. Progress in cell culture methods
enabled researchers to develop three-dimensional (3D) culture
techniques, which allow cells to establish tissue-like cell–cell and
cell–ECM interactions and define their 3D microenvironment
and communication networks. These 3D culture conditions come
much closer to a physiological in vivo situation than those
commonly applied in 2D cell culture (Ravi et al., 2015). In 3D
culture, epithelial cells form monolayered spheroids (also termed

spheres, cysts, or acini) (Martin-Belmonte et al., 2008; Rodriguez-
Fraticelli et al., 2012; Ivers et al., 2014; Fessenden et al., 2018), a
miniaturised tissue that represents the simplest epithelial lumen–
containing structure (Datta et al., 2011; Booij et al., 2019).

In parallel to the progress in cell culture techniques, the
requirement for adequate methods of analysis increased. To study
cells cultured in 3D, image data acquisition requires adaptation to
this situation. Especially in fluorescence microscopy techniques,
the extension of images to a stack of z-planes in several
colours led to huge image data sets that require appropriate
processing tools. In addition, cell culture experiments, regardless
of whether in 2D or 3D, increasingly require quantitative,
statistically verified readouts. Thus, it is not feasible to draw
conclusions from a drug treatment condition based on some
10 to 20 cells or spheroids. The demand for reproducible,
spatially defined setups handling large numbers of cells (up
to 100th) can be satisfied by using glass cover slips with
micropatterned adhesion areas, so-called adhesion chips (e.g.,
from CYTOO S.A., Grenoble, France) (Rodriguez-Fraticelli
et al., 2012). These chips provide adhesive micropatterns with
a predefined shape, size, and density. In combination with
a preselected ECM coating and adapted culture media, 3D-
like culture conditions on adhesion chips allow generation
of arrays of spheroids. Starting from separated single cells,
epithelial cell spheroids form in homogenous conditions, cell
type–dependent within 3 to 5 days (Figure 1A). Cell division
is guided by defined ECM coating, spacing, and adhesion area,
as well as Matrigel supplements of culture medium (Rodriguez-
Fraticelli et al., 2012). These spheroids are accessible to high-
resolution fluorescence microscopy for life-cell imaging and fixed
cell approaches. When seeding cells into ECM gels, similar
spheroids form, but it is not possible to define either the spacing
of (groups of) cells or their z-positions, which considerably
complicates image acquisition and statistical analysis of spheroid
formation in gels.

To study epithelial cell function and morphogenesis,
quantitative analysis of spheroid growth and polarity is most
useful. Spheroid growth is employed in high-throughput
approaches that test therapeutic treatment options, for example,
in cyst development assays in polycystic kidney disease (Booij
et al., 2017) or in cancer studies (Monjaret et al., 2016). More
sophisticated analyses of spheroid growth and polarity are
applied to assess consequences of genetic disorders (Hynes
et al., 2014) and protein function (Deevi et al., 2014) and
furthermore in mechanistic analyses of tissue morphogenesis
and polarity establishment (Galvez-Santisteban et al., 2012;
Petridou and Skourides, 2014).

Morphology of epithelial spheroids is classified based on
characteristic features such as the spatial arrangement of cells
and the force balance, observed by nuclei staining and actin
filament bundles, respectively, and the distribution of protein
markers for apical and basolateral surfaces to assess polarity. To
date, analysis of spheroid polarity is performed by individuals
who based on characteristic staining patterns classify spheroid
images in different groups (Rodriguez-Fraticelli et al., 2012;
Yonemura, 2014). First, this “manual” classification is influenced
by personal bias or experience, for example, which distance
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FIGURE 1 | Assignment of epithelial cell spheroids to polarity groups. (A) Generation of spheroids; seeding of single MDCKII epithelial cells on micropattern (or in
ECM gels) leads to spheroid formation within 3 days. Side view and equatorial plane section of spheroid formation on micropattern. (B) Definition of spheroid polarity
groups; 1—correctly polarised, 2—inversely polarised, and 3—aggregates and multiple lumina. Upper panel: side view and equatorial plane of polarised spheroids
showing (i) apical marker (e.g., gp135) or actin cytoskeleton in magenta, (ii) basolateral marker (e.g., gp58) in green, and (iii) nuclei in blue. Lower panel: characteristic
features of polarity groups regarding polarity of membrane compartments, position of actin filament bundles, and 3D structure and lumen formation (for further
description, see section “Results”). (C) Exemplary images of spheroid polarity groups showing apical marker (gp135, magenta), basolateral marker (gp58, green),
and nuclei (blue). Bar: 10 µm.

of nuclei is enough to define a lumen, and second, it is
rather time consuming.

To reduce restrictions and to allow rating for 100th of
spheroids as required, for example, in treatment analysis of cells
with different compounds, supervised learning is the strategy
to automated classification. Supervised learning is achieved
either by classical machine learning or more recently deep

learning strategies. In the past decade, machine learning became
important to the field of image analysis and is efficiently used for
segmentation, feature extraction, and classification of image data
(Sommer and Gerlich, 2013; Caicedo et al., 2017). In contrast
to classical machine learning, which can be applied only to
transformed image data, the benefit of deep learning is its ability
to process raw image data (LeCun et al., 2015; Moen et al., 2019).
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This led to increasing importance of deep learning in biology
and medicine supporting, first, bioinformatics analysis of protein
function and prediction of pathway-related gene function (Le
et al., 2018, 2019; Al-Ajlan and El Allali, 2019) and, second,
diverse image-centred applications, such as segmentation, feature
enhancement and recognition, and classification tasks, for
optimised workflow in medical diagnosis (Esteva et al., 2017;
Kermany et al., 2018; Alom et al., 2019; Tsochatzidis et al., 2019;
Black et al., 2020), as well as reconstruction of superresolutional
fluorescence images (Weigert et al., 2018; Belthangady and Royer,
2019) or cytometric high content analysis and phenotyping
(Scheeder et al., 2018; Yao et al., 2019).

Here, we describe and compare two approaches of supervised
learning based on machine learning and deep learning,
respectively. The machine learning approach uses ImageJ/FIJI
routines (Schindelin et al., 2012; Schindelin et al., 2015) and
MATLAB (The MathWorks, Inc., Natick, MA, United States)
for image preprocessing, feature extraction, and, finally, classifier
training and classification. The deep learning–based approach
using transfer learning of different pretrained CNNs is directly
applied on image data. Performance and usability of the different
supervised learning approaches are validated. While requiring
considerably less time and personnel, these methods do not
compromise the quality of spheroid rating and, in addition,
provide tools to train and adapt the task of classification
to variations in assay conditions, for example, newly arising
spheroid phenotypes.

METHODS

Biological Methods and Image
Acquisition
Cell Culture and Spheroid Assay
Madin Darby canine kidney cells [MDCK II; #00062107,
European Collection of Authenticated Cell Cultures, Salisbury,
United Kingdom] are cultured in MEM (Sigma-Aldrich,
Darmstadt, Germany) containing 5% FBS (Biowest, Nuaillé,
France), 200 mM L-glutamine (Biochrom, Berlin, Germany),
and 1% penicillin/streptomycin (Biochrom) and split every
3 to 4 days in ratios 1:10 to 1:15. Micropatterned chips
(CYTOO S.A.) with disc-shaped micropatterns of 700 and
1600 µm2 are coated with collagen I (20 µg/mL; Sigma-
Aldrich) and washed. There were 6 × 104 cells per chip
(four wells) seeded in MEM containing 2% FBS, 200 mM L-
glutamine, and 1% penicillin/streptomycin. After 4 h, half of
the medium is replaced by MEM containing, in addition, 5%
Matrigel (Matrigel Basement Membrane Matrix, Corning, NY,
United States). Within 3 days, single cells grow to spheroids of
12 to 24 cells. Spheroids are washed twice with 1 × phosphate-
buffered saline (PBS), fixed with 4% paraformaldehyde in PBS
for 15 min, permeabilised with 0.25% Triton-X-100 in PBS for
12 min, blocked for 1 h with 5% normal donkey serum (Merck
Millipore, Darmstadt, Germany) in PBS, stained with antibodies
and dyes (as detailed below), and mounted in Shandon Immu-
Mount (Thermo Fisher Scientific, Waltham, MA, United States).

Antibodies used were as follows: mouse-α-gp58 [β-subunit
of Na+-K+-ATPase (Füllekrug et al., 2006)], mouse-α-gp135-
Atto550-coupled [Podocalyxin; (Meder et al., 2005)], antibody
production (Antibody Facility, TU-Braunschweig, Brunswick,
Germany) purification and custom-labelling (Hypermol EK,
Bielefeld, Germany); secondary antibodies: donkey anti–mouse
IgG (H + L) secondary antibody, Alexa Fluor 488 conjugate
(Invitrogen, Carlsbad, CA, United States); affinity staining: Alexa
Fluor 660 phalloidin (Invitrogen), DAPI (0.25 µg/mL; Sigma-
Aldrich). Details for application sample treatment are provided
in Supplementary Material.

Imaging
Images were acquired on the Zeiss Axio Observer Z1 microscope,
using the 63x Plan-Apochromat (NA 1.4) oil objective, the
AxioCam MRm Rev.3 camera, and the software package
AxioVision version 4.8.2 (all from Zeiss, Göttingen, Germany). In
this setup, the optimal z-plane distance is 0.24 µm. Filter sets and
related staining were as follows: (1) gp58-Alexa Fluor 488—filter
set 38 HE, (2) gp135-Atto550—filter set 43 HE, (3) Phalloidin-
Alexa Fluor 660—filter set 50, and (4) DAPI—filter set 49 (all filter
sets from Zeiss). Summary images of each spheroid were acquired
by fluorescence microscopy in four colours with 50 z-slices per
spheroid and a typical ROI size of 256× 256 pixels (or 512× 512
pixels for large spheroids).

Computational Dependencies
ImageJ/FIJI macros for image preprocessing were developed
using the ImageJ version 2.0.0-rc-59/1.51k (Schindelin et al.,
2015) packaged in the FIJI distribution (Schindelin et al., 2012).
MATLAB (The MathWorks, Inc.) scripts were implemented
in version R2018b (version 9.5.0.944444). For training of the
decision tree and usage of trained classifiers in MATLAB analysis
with Classification Learner App, the “Statistics and Machine
Learning Toolbox (version 11.4)” is required; for deep learning.
the “Deep Learning Toolbox (version 12.0)” and Network
Models (Deep Learning Toolbox Model for Inception-ResNet-
v2 Network version 18.2.0, Deep Learning Toolbox Model for
Inception-v3 Network version 18.2.0) were used.

RESULTS

Spheroid Polarity and Manual Image
Analysis
On micropatterned chips, single cells grow to spheroids of 12
to 24 cells within 3 days (Figure 1A). To stain spheroids for
their polarity markers, we use monoclonal antisera specific for
the apical marker protein gp135/podocalyxin (Meder et al., 2005)
and the basolateral marker protein gp58 (β-subunit of Na+-K+-
ATPase) (Füllekrug et al., 2006), as well as phalloidin and DAPI
to stain F-actin and nuclei, respectively. Images of each spheroid
are acquired by fluorescence microscopy in four colours with 50
z-slices per spheroid.

In our study, we define three groups of polarity: regular
apicobasal polarity (group 1), inverse polarity (group 2), and
aggregates (group 3) (Figures 1B,C). In group 1, the apicobasal
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polarity is characterised by a single central lumen with the apical
surface of the cells facing the lumen and a pronounced apical
actin belt marking the lumen. The basolateral surface is pointing
to the outside. Group 2 shows inverse polarity with a basolateral,
matrix-filled lumen inside, a peripheral actin ring, and the apical
surface facing toward the outside of the spheroid. The aggregates
of group 3 have an undefined polarity and display either no
lumen (Figure 1C, group 3—left column) or multiple lumina
(Figure 1C, group 3—right column). Aggregate or defective
lumen formation results in further phenotypes as summarised
together with related protein defects by Rodriguez-Fraticelli and
Martin-Belmonte (2013).

In our laboratory, classification is performed in a blinded
fashion by at least three persons grading each spheroid by
the following criteria: lumen—3D position of nuclei, polarity—
distribution of apical and basolateral markers, and force
coupling—local enrichment of the actin network. Trained staff
is able to classify approximately 80 to 100 spheroids per hour.
Furthermore, all pictures have to be blinded, and inconsistent
spheroid ratings require comparison and discussion by the group.
Thus, “manual” classification is time consuming and bias-prone,
depending on the training status and experience of the raters.
Especially considering the development of a high-throughput
assay system wherein 1000s of images are generated, a manual
classification is not feasible.

Outline of Automated Analysis
Spheroid polarity is radially symmetric at the equatorial plane.
This feature is used to focus the analysis on a projection of
an equatorial z-stack. We describe two types of supervised
learning strategies, which are based on machine learning and
deep learning, respectively (Figure 2A).

The machine learning–based analysis workflow requires
processing of image data into inputs that are suitable for
machine learning algorithms. Therefore, manually defined
image processing and feature extraction steps are necessary
to examine a number of descriptive shape parameters and
the distributions of different fluorescent marker signals in the
equatorial plane (Figure 2B and Supplementary Figures S1, S2).
Using ImageJ/FIJI scripts, original images are processed, and
shape parameters determined, feeding a set of MATLAB scripts
with all information needed for further feature extraction. After
polar transformation, cumulative signal intensities are plotted
as a function of the radius, and positions and distances of the
markers determined (Supplementary Figures S2A,B). Thereby,
using the “Classification Learner App,” a set of 15 features
for each spheroid is created (Supplementary Figure S2C) and
used for training of a discriminative classifier. A classification
tree is trained on a subset of spheroids, which were manually
classified (at least 10–20 of each polarity group). To train
an optimal classifier, features are analysed for their predictive
power; different feature subsets are tested, and the most
accurate subset is selected and applied for classifier training.
An exemplary decision tree is visualised in Supplementary
Figure S3. Thereafter, the trained classifier, for example, complex
classification tree, can be employed to classify the bulk of
spheroids (Figure 2B).

In contrast, the deep learning approach is based on transfer
learning of open available CNNs trained on natural images,
for example, GoogLeNet, Inception, ResNet, or, more optimal,
a CNN trained for a similar purpose. Different deep CNN
architectures were compared, for example, by Khan et al. (2019)
and Shin et al. (2016). Spheroid’s equatorial plane projections
are reduced to three colours, for example, basolateral surface in
green, nuclei in blue, and actin or apical surface in red/magenta,
and converted to 8-bit RGB images. Human input is limited to
conversion of images to RGB, provision of annotated (classified)
data, and choice of the CNN. Labelled images can be directly
used to retrain one of these CNNs to replace weights and
final classification layers for spheroid classification (Figure 2C).
Within the CNN, depending on the structure of the network,
the image is processed by convolution, applying different
kernels/filters and thereby extracting features. Within the final
classification layers of the network, a label, for example, dog—
for natural images—or in our case, a correctly polarised spheroid
of polarity group 1, is linked to the weights gained within the
convolutional layers. The classification layers of a pretrained
network are replaced by empty ones and retrained to labels such
as polarity groups 1 to 3 (Supplementary Figure S4).

Detailed Workflow for Machine Learning
Part 1—Image Processing and Feature Extraction in
ImageJ/FIJI
The image analysis workflow is optimised for square image
files featuring one spheroid only that is approximately centred
within the xyz space and devoid of artefacts that could influence
correct signal interpretation (Supplementary Figure S1A).
These single-spheroid images can be directly acquired as ROIs
during image acquisition or excised from z-stacks holding several
spheroids in one image. To discriminate polarity, the following
features are stained: (1) gp58 (or basolateral marker), (2) gp135
(or apical marker), (3) actin network, (4) nuclei. To extract
descriptive shape parameters and projections of the equatorial
plane, images are processed based on three functions (Figure 2B
and Supplementary Figure S1): (i) <Midplane_MaxRadius>
calculates the maximum radius, determines descriptive spheroid
shape parameters, and extracts an equatorial plane as projection
of central z-slices; (ii) <Actinbelt> calculates actin shape
parameters on most intense actin signals displaying the
contractile structures; and (iii) <CentreNuclei> extracts
information on nuclear positions.

All shape parameters provided by the functions <Actinbelt>,
<CentreNuclei>, and <Midplane_MaxRadius>, for further
analysis in MATLAB, are summarised in Supplementary
Figures S1C–E and listed in Supplementary Figure S2C.
Equatorial plane images and results are saved.

Part 2—Analysis of Radial Intensity Profiles in
Equatorial Plane Images (MATLAB)
In MATLAB, images of the equatorial plane and the position
of the CoM from part 1 are used to analyse the spatial order
of marker signals.

A stack of four-colour fluorescence images of spheroid
equatorial planes is used for interpretation of marker positions.
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FIGURE 2 | Layout of machine learning and deep learning strategies. (A) Workflow of approaches, showing computational steps as required for machine learning
(upper panel) and deep learning (lower panel). Machine learning requires human input (red) in the steps of image processing and supervised learning to develop a
classifier for spheroid classification. Deep learning requires human input in form of annotated data and a (pretrained) network within network training. Convolution of
images and classification run within the network (CNN). (B) Machine learning comprises initial image processing and feature extraction steps. Equatorial plane
images are processed to generate numerical parameters, which describe shape and/or structure of the spheroids, and radial distribution of fluorescence intensities.
Upon training of a classifier, for example, classification tree, based on a subset of spheroid images, numerical parameters are used to determine the polarity of
additional spheroids. (C) Convolutional neural networks reduce dimensionality applying different filters/kernels over a defined number of layers. This allows extraction
of different local features such as edges in higher dimensional layers up to features of higher spatial distribution in deeper layers. Weights of these features are then
combined in densely connected layers of the network to assign the classification label.

An angle-independent polar transformation (Supplementary
Figure S2A) is performed by calculating the distance between
each pixel (xi, yi) and the CoM of the spheroid and stored as a
variable (Eq. 1).

radius (xi, yi) = round
√

(xi − XCoM)2
+
(
yi − YCoM

)2 (1)

Subsequently, in each channel, intensity values of
corresponding radii are integrated and divided by the number
of pixels at each radius to calculate the mean intensity value per
pixel. These mean intensity values are further normalised by the
sum of all intensity values for that channel. A cumulative intensity
curve is calculated by adding up all intensities up to each radius,
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and the relative radial position is calculated by dividing through
the maximum radius. The localisation of polarity markers
can be visualised by plotting cumulated channel intensities
versus the relative radius (Supplementary Figure S2B). To
determine representative positional information from these
cumulative intensity curves, the radius position at 60% of the
total intensity value is retrieved for each channel/marker. The
radial distance at an intensity of 60% is used as approximated
centre of the linear slope within cumulative marker curves
(Supplementary Figure S2B). The initial increase of the nuclear
signal is approximated by use of the cumulative intensity at 30%
of spheroid radius and calculation of a linear slope. The initial
slope of the nuclear signal is used to report the presence of nuclei
within the expected luminal area (Supplementary Figure S2B).
To increase predictive power of signal’s relative radius positions,
differences of the polarity markers gp58 to gp135 and actin to
gp135 are used. The relative position of gp58, the basolateral
marker, to gp135, the apical marker, is a key feature of apicobasal
polarity. A positive value 1gp58-gp135 indicates regular
apicobasal polarity, whereas a negative value suggests inverse
polarity. The consistency of the polarity assignment is verified
using 1actin-gp135. Distinctly polarised spheroids show high
colocalisation, that is, no or very small difference of actin and
gp135, the apical marker, whereas high differences indicate a
tendency of undefined polarity.

Altogether, 15 numerical parameters/features are generated
from the spheroid images to allow usage of supervised machine
learning algorithms for spheroid polarity classification. The
detailed list of parameters is given in Supplementary Figure S2C.
The most important features with the highest predictive power
are as follows: (1) difference of polarity markers (gp58-gp135), (2)
difference of actin to gp135, (8) circularity of nuclei, (9) average
initial slope of nuclear signal, (10) relative actin area, (11) actin
particle count, (14) distance CoM nuclei to CoM spheroid.

Part 3—Classifier Training and Classification
The MATLAB “Classification Learner App” was applied to an
exemplary data set (n = 120 spheroids) selecting the complex
decision tree algorithm with 20-fold cross validation in order to
avoid overfitting. Other possible algorithms for discriminating
approaches are, for example, support vector machines, nearest
neighbour classifiers, or random forest ensembles (Sommer
and Gerlich, 2013). Estimation of the predictor importance
can be used to define the optimal subset of predictors and
additional usage of the hyperparameter optimisation tool within
the “Classification Learner App” will help to choose the best
parameters for split criteria. In our example, using a subset of
12 from 15 parameters, more consistent and accurate results
are obtained. Reduction of parameters leads to decreased
dimensionality of the classification task and by this to less
complex decisions. The decision tree for the exemplary analysis
is shown in Supplementary Figure S3.

Revealing limitations of a single complex decision tree,
application of this classifier to an exemplary data set of 154
spheroids resulted in a discrepancy of 18% as compared to
the manual assignment, mainly affecting polarity groups 1 and
3. To resolve this discrepancy, a second classification step can
be added, using another subset of features, for example, with

best discriminative power for polarity groups 1 and 3, thus
providing a rationale for the necessity and the outcome of
reclassification. Alternatively, an ensemble of classifiers can be
used. Finally, a table containing all pieces of information—
image names, classification parameters, classification results, and
reclassification decision—is generated.

Detailed Workflow for Deep Learning
Part 1—Image Processing
In contrast to machine learning algorithms, deep neural networks
are able to use images as direct input, performing feature
extraction and classification within the network. For image-based
decisions, the common architecture is a CNN (Figure 2C). In
brief, usage of filters/kernels allows feature extraction from low-
level features with reduced spatial dimensions such as edges
within the first few layers of the network up to specific high-level
features of higher spatial distribution such as overall shape in
the deeper layers. Pooling layers are used to highlight the most
dominant features and reduce required computational power.
Within these convolution steps, general features of spheroids are
recognised. Specific structure and connected layers depend on the
chosen network architecture, which is usually highly complex.
For example, the Inception v3 architecture contains 42 layers
of convolution, pooling, inception modules, grid size reduction,
and auxiliary classifiers, reducing images from a dimensionality
of 299 × 299 × 3 to 8 × 8 × 2048 with final pooling to
1 × 1 × 2048 and classification to 1 × 1 × labels (Szegedy et al.,
2015). The defined input size of the networks chosen for this
analysis, Inception v3 and InceptionResNet v2, requires input of
an RGB or three-channel image. Therefore, original images were
converted to 8-bit RGB input images based on a z-projection of
the equatorial plane. The four-colour fluorescence information
was reduced to gp58 (basolateral marker, green), nuclei (DAPI,
blue), and either gp135 (apical marker, red) or actin (apical ring,
magenta) because of their high correspondence. Images with
more than one spheroid were split, previously.

Part 2—Network Training, Transfer Learning
Training of an efficient and reliable convolutional network from
scratch needs a very high number of labelled training image
data sets. To bypass this obstacle, an efficient and widely used
method is to use “transfer learning” of a network, which should
be trained optimally on similar image data or if not available on
natural images, for example, GoogLeNet, Inception, or ResNet
(Szegedy et al., 2015; Gupta et al., 2019; Moen et al., 2019;
Tang et al., 2019), and to retrain the final layers necessary
for prediction and classification (Supplementary Figure S4).
Most openly available CNNs are validated on the ILSVRC
2012 classification challenge validation set and can be directly
compared. Final layers of the chosen CNNs (Inception v3 and
InceptionResNet v2) are replaced by empty ones, and the network
is retrained iteratively to define the weights and biases of the
neurons, concluding from extracted features to a single class
label (Figure 2C). Training was performed in 15 epochs (full
training cycle with entire training data) with batch size of n = 80
spheroids and a learning rate of 3× 10−3 on a data set of n = 698
spheroids inhomogeneously distributed in four polarity groups.
The number of epochs, the learning rate, and the batch size per
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iteration can be varied. The SGDM (Stochastic Gradient Descent
With Momentum) method was chosen as optimiser. Within the
training, internal validation is integrated to optimise accuracy
and to minimise the “loss function” serving as discrepancy
indicator for correct classification.

Part 3—Validation and Classification
Using the retrained network, classes of a validation data set can be
predicted, and the accuracy of this decision validated. Validation
is an important step, to recognise if, for example, the number of
labels/classes is sufficient or if heterogeneous groups should be
separated in different labels. For example, the group of aggregates
(Figure 1A) was separated in (i) aggregates without lumen and
with undefined polarity and in (ii) aggregates with multiple
lumina. Networks can be retrained again, to accommodate new
class labels or other changes.

Validation of the Classification Method
Using Cohen’s κ
For the validation of mostly diagnostic categorisation systems,
comparison of interrater reliability is a widely used reference
tool to match results across two or more test systems. A rater
can either be an individual or the automated classification
algorithm. As initial estimate, the percent agreement (accuracy)
is an easily accessible, directly interpretable value, calculated
by dividing the count of alike-classified spheroids by the
total number of spheroids. Additionally, recall (sensitivity) and
precision (positive predictive value) for group 1 classification
were calculated. The combination of percentage agreement and
cross-correlation table reveals limitations of the assignment
of chosen classes. A key limitation in use of the percentage
agreement is the possibility of raters to guess the group, which is
not taken into account (McHugh, 2012). Similar to a correlation
coefficient, Jacob Cohen (1960) developed a nominal reliability
coefficient κ, which scores the grade of agreement and provides
an error and confidence interval to describe the coefficient. Values
of κ range from −1 to + 1. Whereas values below 0 represent
disagreement; 0 signifies random agreement, and values greater
than 0 denote increasing levels of agreement. An interpretation of
κ values is suggested as follows: 0.01 to 0.20 as none to slight, 0.21
to 0.40 as fair, 0.41 to 0.60 as moderate, 0.61 to 0.80 as substantial,
and 0.81 to 1.00 as almost perfect agreement (McHugh, 2012).

Statistical calculation of the Cohen’s κ value by the MATLAB
script Cohen’s κ (Cardillo, 2007) was performed after computing
a cross-correlation table for two different raters and three
classification groups based on comparison of the results of
classification for every spheroid. In addition, the correlation
was verified using the web services “ReCal2” for two raters,
that is, two manual classifications or manual versus automated
classification, and “ReCal3” for three or more raters, that is, in
the case of manual classification by more than two individuals
(Freelon, 2010, 2013).

Method Validation and Application
Example
Semiautomated spheroid classification is implemented as a
combination of self-written ImageJ macros and MATLAB scripts

and by using MATLAB “Statistics and Machine Learning
Toolbox,” “Deep Learning Toolbox,” and Network Models
(Inception-ResNet-v2 Network, Inception-v3 Network).

For the machine learning–based approach, altogether n = 120
spheroids or approximately 20 to 40 spheroids of each polarity
group: (1) regular apicobasal polarity, (2) inversed polarity, and
(3) aggregates or multiple lumina (Figure 1B), were used within
the “Classification Learner App.” Initial accuracy of different
algorithms, for example, decision trees, support vector machines,
or nearest neighbour classifiers, was tested, and we decided
for complex decision trees because of a high accuracy and a
high degree of user acceptance caused by interpretability of
decisions. Furthermore, estimation of the predictor importance
was used to define the optimal subset of predictors. As described,
for our data, the complex decision tree algorithm with 20-
fold cross validation and a subset of 12 of 15 parameters
(parameters 1, 2, and 6–15; Supplementary Figure S2C) achieved
the best score. As a result of the classifier training, the complex
decision tree classifier is generated for subsequent classification
(Supplementary Figure S3).

To probe reliability of polarity classification, a set of randomly
selected MDCK II spheroids (n = 351) was analysed using the
(i) manual classification, (ii) a complex decision tree classifier
together with resorting by a set of decision trees, and (iii + iv)
CNNs based on Inception v3 and InceptionResNet v2. Both
CNNs were trained on a bigger data set of n = 531 spheroids.
Based on manual classification by three raters, the distribution of
spheroids was 75.2% (n = 264) of group 1, 10.5% (n = 37) of group
2, and 14.2% (n = 50) of group 3 (Figure 3). The inverse spheroids
of group 2 represent a rare event and lead to uneven group
distribution, revealing limitations of every supervised learning
strategy as these require even distributions of all groups for
optimal function.

Figure 3 provides the detailed comparison of group
assignments by all three methods in respective cross-correlation
tables. With 321 of 351 spheroids classified identically, the
“agreed” manual classification (three raters with discussion of
results) and the machine learning–based classification (with
reclassification) achieve 91.5% of agreement. This value is
substantially higher than the consent between two manual raters
before discussion (80.2%). The value for Cohen’s interrater
agreement is κ = 0.78 [SE κ = 0.038; CI (α = 0.05) = 0.705
to 0.855], revealing substantial agreement of both classification
methods (recall = 0.962; precision = 0.934) (Figure 3A). With
a percentage agreement of 86.3%, the manual classification
and the Inception v3–based CNN also show substantial
agreement of κ = 0.64 [SE κ = 0.049; CI (α = 0.05) = 0.540
to 0.731] (recall = 0.977; precision = 0.925) (Figure 3B).
Classification of the CNN based on InceptionResNet v2 resulted
in moderate agreement of 75.5% with a κ = 0.48 [SE
κ = 0.049; CI (α = 0.05) = 0.383 to 0.574] (recall = 0.960;
precision = 0.814) (Figure 3C).

Application to an Experimental Data Set
To compare accuracy and reliability of both types of supervised
learning strategies directly on more diverse data, an experimental
data set was selected. In brief, consequences of siRNA-mediated
knockdown of Pkhd1 and subsequent treatment, on epithelial

Frontiers in Genetics | www.frontiersin.org 8 March 2020 | Volume 11 | Article 248

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00248 March 26, 2020 Time: 17:30 # 9

Soetje et al. Spheroid Polarity-Classification by Supervised Learning

FIGURE 3 | Comparison of manual to automated classification based on a validation data set. Cross-correlation table of “agreed” manual classification versus
classification predicted by (A) the complex decision tree classifier, (B) the Inception v3-based CNN, or (C) the InceptionResNet v2-based CNN. Cells with identical
classification are highlighted in green. Summary lines indicate overall percentage of agreement and Cohen’s k of interrater agreement.

morphogenesis, were analysed. MDCKII cells were treated with
siControl or siPkhd1 and single cells seeded onto disc-shaped
micropatterns to study their capacity of spheroid formation.
SiPkhd1-treated cells were additionally treated with blebbistatin,
a myosin II inhibitor, either on day 1, 2, or 3 of spheroid growth.
Figure 4 shows results of manual classification compared to
machine learning–based classification by the complex decision
tree with resorting (as described above), a freshly trained
classifier of bagged decision trees and classification by the
two CNNs based on Inception v3 and InceptionResNet v2.
The experimental data set consisted of n = 698 images from
four independent experiments. Images of experiments 1 to
3 (n = 531 images) were used to train the bagged decision
trees and to retrain the two CNNs. The complex decision tree

was trained on a different data set, acquired months before
the experimental data set. Distribution of spheroids in the
experimental data set was as follows: 153 spheroids of group
1, 121 spheroids of group 2, and 257 spheroids of group 3
(226 aggregates and 31 multilumen). Experiment 4 (n = 193
images) was used to validate and compare performance of
the four different methods. The distribution of spheroids in
the validation data of experiment 4 was as follows: 51.8%
(n = 100) of group 1, 6.7% (n = 13) of group 2, and 42.5%
of group 3 (n = 80 with 60 aggregates and 20 spheroids with
multiple lumina).

Figure 4A illustrates the classification results of the entire
experimental data set (experiments 1–4), wherein bars with
dotted line indicate manual classification. Symbols represent
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FIGURE 4 | Classification of an experimental data set comparing cross-correlation tables of manual versus automated group assignment. (A) Classification results
on experimental data determined manually (bars and dotted line), by complex decision tree classifier (diamond), bagged decision tree classifier (circle), Inception
v3-based CNN (triangle), and InceptionResNet v2-based CNN (square). MDCKII Pkhd1 knockdown cells (siPkhd1) and controls (siControl) were seeded individually
to allow spheroid morphogenesis for 3 days and treated with blebbistatin either on day 1, 2, or 3 or kept untreated during this period of time. Colours indicate
treatment groups. Data were generated in four independent experiments (n = 698 spheroids; 122–182 spheroids per condition). Cross-correlation table of “agreed”
manual classification versus classification predicted by (B) complex decision tree classifier, (C) bagged decision tree, (D) Inception v3-based CNN, or
(E) InceptionResNet v2-based CNN. Cells with identical classification are highlighted in green. Summary lines indicate percentage of agreement and Cohen’s k
interrater agreement.

classification by the different supervised learning algorithms,
and colours specify treatment of cells. In spheroids of group
1, classification of the bagged decision tree (circle) and the

Inception v3–based network 1 (triangle) show the highest
agreement. Classification of group 2 spheroids is well-represented
by bagged decision tree (circle) followed by the Inception
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v3–based network 1 (triangle) and InceptionResNet v2 based
network 2 (square). Group 3 spheroids classification seems to
be similarly accurate in complex decision tree (diamond) and
bagged decision tree (circle), followed by the Inception v3–based
network 1 (triangle). Analysing the sum of absolute percentage
differences, that is, disagreement from manual classification as
ground truth for all three polarity groups and treatments, results
are very high for the complex classification tree classifier (359%).
The bagged classification tree shows the lowest difference (31%),
and both CNN-based classifications differ to a somewhat higher
amount with 63% and 71% for Inception v3 and InceptionResNet
v2, respectively.

In contrast to its performance on the validation data set,
complex decision tree classification of the experimental data
set resulted in moderate agreement of 73.6% (κ = 0.51)
(recall = 0.795; precision = 0.644). The cross-correlation table
(Figure 4B) reveals clear limitations in the discrimination of
groups 1 and 3, resulting in overestimation of correctly polarised
spheroids and underestimation of aggregates. The distribution
was 60.6% (n = 117) of group 1, 6.2% (n = 12) of group 2,
and 33.2% (n = 64) of group 3. The observed lack of accuracy
as compared to classification of the validation data set probably
arises from the numerical dependence of decision tree-based
classification. Separators used within the classifiers tend to be
overfitting for training data sets. Thus, data sets acquired weeks or
months later often necessitate adaption, which means complete
retraining of the decision trees. Consistently, the ensemble of
bagged decision trees, freshly trained on a data set more similar to
the experimental data set (experiments 1–3), resulted in a better
percentage agreement of 75.1% and a better Cohen’s κ value of
0.59 (recall = 0.886; precision = 0.946) (Figure 4C). The bagged
tree classification determined a distribution of 53.9% (n = 104)
of group 1, 9.3% (n = 18) of group 2, and 36.8% (n = 71) of
group 3, with very similar numbers of spheroids divergently
assigned to groups 1 and 3. Machine learning–based classifiers are
prone to loose accuracy due to normal variation of cell biological
assay conditions.

In comparison, the deep learning approaches using Inception
v3 (Iv3) (Figure 4D) and InceptionResNet v2 (IRNv2)
(Figure 4E) networks, which were retrained by transfer
learning, resulted in percentage agreements of 82.9% for Iv3 and
77.7% for IRNv2, or Cohen’s κ of 0.71 and 0.65 respectively,
showing substantial agreement levels as determined also on the
validation data set (recall = 0.970 and 0.840, precision = 0.829
and 0.884). Group distributions for Iv3 were 60.6% (n = 117)
of group 1, 4.2% (n = 8) of group 2, and 35.2% of group 3
(n = 68; 61 aggregates and 7 multilumen), and, for IRNv2 49.2%
(n = 95) of group 1, 4.2% (n = 8) of group 2, and 46.6% of
group 3 (n = 90; 61 aggregates and 29 multilumen). While the
total number of discrepancies is lower for the Iv3-based CNN,
the cross-correlation table (Figure 4D) reveals unbalanced
divergent classification of groups 1 and 3 by this network. The
IRNv2-based network, in contrast, shows a slightly decreased
accuracy but a balanced number of groups 1 and 3 divergent
classifications. A high and unbalanced number of divergent
assignments to groups 1 and 3 can influence the outcome of an

experiment revealing the demand for high accuracy and balanced
distribution of disputed decisions.

DISCUSSION

Epithelial spheroid formation in 3D cell culture constitutes
a recognised and widely used in vitro model addressing the
capability of cells to perform correct epithelial morphogenesis.
The model was used for multiple applications and in cells of
different tissue origin (Debnath and Brugge, 2005; Giles et al.,
2014; Okuyama et al., 2016; Booij et al., 2017). To date, all
approaches share the common restriction of limited cell/spheroid
numbers and the laborious step of a manual classification of
apicobasal polarity. By establishing a (semi)automated method,
the time-consuming and bias-prone aspect of epithelial polarity
classification can be reduced to less than one-fifth of its duration
or even lower without loss in quality of the experimental
outcome (Figure 4A).

Performance of Supervised Learning in
Relation to Manual Classification
First, manual classification needs generation of blinded image
data, because the rater should not be able to deduce experimental
conditions from image names or other sources of information.
In addition, for a skilled/trained rater, classification of 50
spheroid image files (four-colour z-stacks, 50 planes) requires
30 min or more of focussed attention and, moreover, has to
be performed by at least two, better three analysts. After initial
classification, the results of all analysts are compared and, in case
of disagreement/inconsistencies, require discussion in the group
to find an agreement. In contrast, the duration of semiautomated
analysis by machine learning for 50 spheroid image files is
approximately 20 min from loading of the images to the results
table [duration estimated using a desktop computer; Intel Xeon
X5650 at 2.67 GHz (two processors), 16 GB RAM]. Even if
times for classifier training (and reclassification) as needed for
semiautomated analysis are taken into account, a reduction of
analysis time by 80% is realistic. Deep learning approaches using
pretrained CNNs are even faster. The time-consuming step of
network training took approximately 6 h for the most complex
network based on InceptionResNet v2 on one CPU, parallel
computing on GPU, or multiple CPUs can speed up the training
even for larger training data sets. The duration of prediction
only takes up to a few minutes. In contrast, net analysis times
for manual classification are high, directly proportional to the
number of spheroids and cannot be reduced significantly by
(further) training of the analysts. This constitutes a relevant
limitation of all studies using manual classification.

Second, comparison of percentage agreement and interrater
reliability is an essential criterion for the validation of subjectively
categorised data and is widely used in medical sciences to
validate diagnostic categorisation systems (Freelon, 2010). In the
exemplary analysis of the validation data set, an agreement of
80.2% for the manual classification of n = 351 spheroids by at
least two raters was observed, revealing that in approximately
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20% of the data raters initially disagree in their classifications.
The level of disagreement highlights that the scoring process
needs training and discussion of results. As aforementioned, the
Cohen’s coefficient κ is a parameter better suited to compare
nominal reliability.

In our example of the validation data set, the interrater
agreement of manual classification reached κ = 0.60, which
represents a moderate agreement. Comparison of the “agreed”
manual classification and the semiautomated classification
revealed substantial consent of 91.5% with κ = 0.78. Thus,
semiautomated classification can be considered an adequate
and time-saving match to manual classification without
compromising the quality of analysis. However, applying the
same machine learning–based classifier on a similar but unrelated
data, the experimental data set, the value of percentage agreement
decreased to 73.6% and κ = 0.51 for the complex decision tree
classifier. Furthermore, the bagged decision tree classifier, which
was trained on a related data set, slightly increased the percentage
agreement to 75.1% with κ = 0.59. Thus, machine learning–
based approaches are able to perform reliable classifications
as demonstrated for the validation data set and the freshly
trained tree classifier but are limited by their dependence on
numerical separators. The batch-to-batch variability of biological
experiments is an obstacle, leading to decreasing accuracy on
new data sets and requiring much effort to ensure accuracy
and sensitivity of the classification algorithm. Optimal results
are only achieved on highly similar data sets and furthermore
demand rigorous control and continuous validation.

The outcome of deep learning classifiers with respect to
accuracy and reliability is consistently less sensitive to batch-
to-batch variations in biological data sets. The values for the
Iv3-based CNN were high in both data sets with a substantial
agreement 86.3% and κ = 0.64 for the unrelated validation data
set compared to 82.9% and κ = 0.71 for the related experimental
data set. Validation of the IRNv2-based classification resulted in
moderate agreement levels for the unrelated validation data set
with 75.5% and κ = 0.48 and substantial agreement of 77.7%
and κ = 0.65 for the related experimental data set. Testing
different network structures with differing layer numbers is
important because deeper networks do not necessarily result in
a higher accuracy.

Comparison of Supervised Learning
Strategies
Considering the small number of images for network retraining,
wherein the smallest group of multilumen aggregates contained
only 31 images, and the other groups between 121 and 226
images, the immediate performance of the network indicates
a high potential to replace manual classification in a reliable
manner. Small image numbers can be boosted by image
augmentation, for example, rotation, mirroring, shifting, and
resizing of images. By this means also overfitting of the network
can be overcome, resulting in more accurate and powerful
networks for spheroid classification and low susceptibility
for batch-to-batch variations. Data augmentation by random
rotation (45–315◦) and scaling (0.4–1.2) of the same training data

to n = 600 spheroids per label increased accuracy of the IRNv2-
based CNN to 81.8% (κ = 0.56) for the validation data set from
Figure 3 and to 85.0% (κ = 0.71) for the experimental data set
from Figure 4. An increasing number of training data sets from
different situations will enable further optimised classification
results by the network. Additionally, specific group definitions
are very important using CNN-based image classification. For
example, subdivision of group 3 into aggregates and spheroids
with multiple lumina (Figures 1B,C) led to an improvement of
the initial validation accuracies by 5% to 10%.

CONCLUSION

Assessment of epithelial function is central for the understanding
of disease mechanisms and development of treatment options
for many epithelia-derived states of disease such as ciliopathies.
Classification of epithelial spheroid polarity in 3D culture
is a well-established method that allows assessment of cell
function in lumen formation and establishment of apicobasal
polarity as required for the analysis of disease states. With the
introduction of periodically structured adhesion chips to 3D
culture, tightly controlled assay conditions can be combined with
high-resolution automated imaging. The system is well-suited
for adaptation to high content and high-throughput analyses.
Functional studies on a couple of 100 of epithelial spheroids with
the capacity to screen for subtle effects otherwise attributed to
normal biological variation become realistic.

Thus, classification of spheroid polarity requires an adequate
analysis technique allowing reliable group assignment of high
numbers of multidimensional images. In a machine learning–
based approach, we developed a combination of ImageJ/FIJI and
MATLAB scripts, and in a deep learning–based approach, we
tested retraining of two CNNs for spheroid classification. Both
methods were shown (i) to at least match the current standard
of an “agreed” classification by three raters and (ii) to reduce the
estimated analysis time by at least fivefold (or even more for large
data sets and deep learning approaches). In addition, the machine
learning workflow generates (iii) a comprehensive results table
with quantitative features of all spheroids analysed, whereas the
CNNs provide (iv) a probability of correct group decisions. This
output helps in understanding of the decision process.

We are convinced that our implementation of ImageJ/FIJI
and MATLAB scripts using supervised learning is well-suited to
match the requirements of an automated analysis of epithelial
spheroid polarity. Bearing in mind, however, that the scripting
for adaption to other image characteristics, for example, staining
or other morphological properties, in feature extraction of the
machine learning approach demands a trained and skilled image
analyst, the deep learning approach is the more useful and readily
available access to a supervised learning strategy in spheroid
classification. Based on equatorial plane images as RGB, deep
learning based approaches negate the need of intense image
processing and feature extraction. Even in training and usage,
the CNNs with MATLAB is less complex and results in reliable
classifications outperforming the machine learning approach on
unrelated data sets. Optimisation for higher performance can
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be achieved by increased training data numbers and/or data
augmentation in the training period.

Outlook
The workflow for classification of spheroid polarity was
developed on wide-field fluorescence microscopy images for
reasons of time-economic imaging and access to instruments that
enable high-throughput analysis. Other imaging techniques with
higher resolution in z-direction such as confocal microscopy,
spinning disc, or light sheet fluorescence microscopy can improve
contrast and therefore are expected to work alike or better,
especially when using other marker proteins such as receptors
or ion channels.
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