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Abstract
The resurrection approach is a powerful tool for estimating phenotypic evolution in 
response to global change. Ancestral generations, revived from dormant propagules, 
are grown side by side with descendent generations in the same environment. 
Phenotypic differences between the generations can be attributed to genetic change 
over time. Project Baseline was established to capitalize on this potential in flowering 
plants. Project participants collected, froze, and stored seed from 10 or more natural 
populations of 61 North American plant species. These will be made available in the 
future for resurrection experiments. One problem with this approach can arise if non-
random mortality during storage biases the estimate of ancestral mean phenotype, 
which in turn would bias the estimate of evolutionary change. This bias—known as the 
“invisible fraction” problem—can arise if seed traits that affect survival during storage 
and revival are genetically correlated to postemergence traits of interest. The bias is 
trivial if seed survival is high. Here, I show that with low seed survival, bias can be 
 either trivial or catastrophic. Serious bias arises when (i) most seeds deaths are selec-
tive with regard to the seed traits, and (ii) the genetic correlations between the seed 
and postemergence traits are strong. An invisible fraction bias can be diagnosed in 
seed collections that are family structured. A correlation between the family mean 
survival rate and the family mean of a focal postemergence trait indicates that seed 
mortality was not random with respect to genes affecting the focal trait, biasing the 
sample mean. Fortunately, family structure was incorporated into the sampling scheme 
for the Project Baseline collection, which will allow bias detection. New and  developing 
statistical procedures that can incorporate genealogical information into the analysis 
of resurrection experiments may enable bias correction.
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1  | INTRODUCTION

Global change, including shifting land use, species translocations 
among continents, rising atmospheric CO2, and warming climate 
(Vitousek, 1994), will likely drive evolutionary change in many species 

during this century (Davis & Shaw, 2001; Thomas et al., 2001; Franks 
& Hoffmann, 2012). Several adaptive evolutionary responses to an-
thropogenic change have already been documented (e.g., Carroll, 
Klassen, & Dingle, 1998; Réale, McAdam, Boutin, & Berteaux, 2003; 
Levitan & Etges, 2005; Colautti & Barrett, 2013).
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To date, serendipity has ruled in studies detecting evolutionary 
response to climate shift. Peter and Rosemary Grant were studying 
bird ecology when by chance a severe drought altered food resources, 
spurring evolution of the finch’s beak (Grant & Grant, 2002). Umina, 
Weeks, Kearney, McKechnie, and Hoffmann (2005) could demonstrate 
allelic shifts in loci associated with Drosophila thermal tolerance, and 
Bradshaw and Holzapfel (2008) could show a shortening of the critical 
photoperiod for mosquito diapause, because these research groups 
had solidly established the clinal variation in these traits more than a 
decade before climate change became a research focus. Steven Franks, 
Shiena Sims, and I showed accelerated flowering time in field mustard 
(Brassica rapa) after prolonged drought, using the “resurrection para-
digm” (Franks, Sim, & Weis, 2007). This experiment was possible only 
because several years prior to the drought, Denise Franke Kind (Franke 
et al., 2006) fortuitously stored the excess seed she collected (for an 
unrelated project) under conditions that preserved viability.

Project Baseline (Franks et al., 2008; Franks, Hamann, & Weis, 
2017; Etterson et al., 2016) was established to move the exploration 
of plant evolutionary response to global change beyond serendipity. 
This collaborative effort has collected and stored seed from contem-
porary populations of 61 species. One to two- hundred maternal sib-
ships have been collected from each of 10 or more populations per 
species across their geographic ranges. These seeds are being stored 
in conditions expected to maintain their viability well into the sec-
ond half of this century. This collection and storage phase was im-
plemented between 2013 and 2016. The payoff for this initial effort 
will come only in future years. Researchers who collect seed from the 
same populations can withdraw ancestral seed from the collection to 
do resurrection experiments.

The resurrection approach is a very powerful way to study pheno-
typic evolution. Dormant propagules produced by an ancestral gener-
ation are revived and grown side by side with propagules from a more 
recent generation. Because both generations develop in the same en-
vironment, phenotypic differences between them can be attributed to 
evolutionary (genetic) change over time. Richard Lenski and associates 
have applied it in their ongoing evolution experiment with Escherichia 
coli, where they have measured evolutionary rates, uncovered the 
physiological basis of adaptation, and examined the contingency of 
evolutionary trajectories (Lenski, Rose, Simpson, & Tadler, 1991; Elena, 
Cooper, & Lenski, 1996; Blount, Borland, & Lenski, 2008).

Resurrection experiments have documented adaptive evolution in 
natural populations as well. Using Daphnia galeata hatched from rest-
ing eggs retrieved from sediments in Lake Constance, Hairston et al. 
(1999) found an increase, followed by a decrease, in resistance to toxic 
cyanobacteria between the 1960s and 1990s, matching the rise and 
fall of lake eutrophication. Frisch et al. (2014) examined adaptation to 
eutrophication by Daphnia pulicaria using clones resurrected from sed-
iments as old as 700 years. Changes in Daphnia behavior in response 
to shifting predation risk have also been detected by comparing con-
temporary to resurrected clones (Cousyn et al., 2001). Plants too have 
been the subject of several recent resurrection experiments (Bustos- 
Segura, Fornoni, & Nunez- Farfan, 2014; Nevo et al., 2012; Sultan, 
Horgan- Kobelski, Nichols, Riggs, & Waples, 2013; Thomann, Imbert, 

Engstrand, & Cheptou, 2015). With the first release of Project Baseline 
seeds scheduled for 2018, it is important to consider potential lim-
itations and pitfalls to experiments that attempt to revive ancestral 
genotypes.

1.1 | Confronting caveats

Though powerful, the resurrection approach is subject to three biases 
(Bennington & McGraw, 1995). The first is caused when differences 
in the collection protocol for the two generations select different sets 
of genotypes. For example, ancestral generation seeds collected from 
the wet side of the meadow may be genetically different from de-
scendants collected from the dry side, but that difference could be en-
tirely due to local adaptation at the microgeographic level and not due 
to evolutionary change across time. Similarly, differences in the timing 
of collection relative to seed maturation could distort the true level of 
genetic change in phenology between generations. Consideration of 
these issues in the sampling design can ameliorate this concern (see 
Franks et al., 2017).

A second bias can arise when propagules from the ancestral and 
descendent generations have been produced and stored under differ-
ent conditions, triggering plastic responses in postemergence pheno-
types (Rogalski, 2015). These effects can be ameliorated by rearing 
the propagules in a common environment for one or more genera-
tions before estimating phenotypic divergence (e.g., Hairston et al., 
1999). These “refresher generations” can also be used to produce 
 intergenerational hybrids, which can reveal genetic features of change 
(Franks et al., 2007). Several refresher generations may be required to 
eliminate epigenetic modifications. Great care must be taken to avoid 
unintentional selection during the refresher generations. Breeding 
protocols that ensure equal contributions of all individuals, male and 
female, to each subsequent generation can all but eliminate the op-
portunity for selection. When study species have long generation 
times, refresher generations can be impractical, and so results need to 
be interpreted with caution.

In a similar vein, loss of symbionts during storage could lead to 
phenotypic differences between ancestors and descendants. Cheplick 
(2017) found 25% to 40% of Lolium perenne seeds revived after 
22 years of storage no longer harbored the beneficial endophytic fungi 
are typically inherited maternally. In such a case, re- infection during a 
refresher generation would be indicated for a fair test of evolutionary 
change.

This article will focus on the third potential bias in resurrection 
experiments that arising from nonrandom mortality of ancestors 
during storage (Bennington & McGraw 1995). Suppose a variable trait 
expressed in the propagule affects its chance of surviving prolonged 
storage. If that propagule trait is genetically correlated to a focal poste-
mergence trait (e.g., growth rate, specific leaf area, flowering date), 
the genotypes emerging from storage will be a nonrandom sample of 
those that went in. This will bias the estimated ancestral mean of the 
focal trait, which is the baseline for estimating evolutionary change.

Grafen (1988) called this the problem of the “invisible frac-
tion”. Net selection on loci underlying a late- life trait will be under/
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overestimated if effects of those loci on early- life survival are not 
taken into account (Bennington & McGraw, 1995; Brommer, Merilä, & 
Kokko, 2002). Similar biases arise in estimates of quantitative genetic 
variances and covariances if no accounting is made for the invisible 
fraction (Hadfield, 2008; Nakagawa & Freckleton, 2008; Kruuk, Slate, 
& Wilson, 2008).

Genetic variation in the ability to survive storage could lead to 
an invisible fraction bias when resurrecting the Project Baseline col-
lection. Accessions for the 61 species have been dried to 20% RH 
and stored at −20°C at the National Center for Genetic Resources 
Preservation (Etterson et al., 2016). These are the conventional stor-
age conditions used by gene banks for preserving agronomic species, 
and they are expected to maintain seed viability for 50 to 400 years 
(FAO 2013). Some wild species, however, have poorer desiccation 
and/or freezing tolerance than cultivars (Walters, 2015), and so their 
longevity under storage could be shorter. The 61 target species for 
Project Baseline were identified as good candidates for storage. But, 
what if upon resurrection the germination rate among the stored an-
cestors is lower than the freshly collected descendants? How strongly 
could this bias the baseline for estimating phenotypic evolution? How 
do we detect bias? After placing the issue within the framework of 
missing data theory, I examine the potential magnitude of the invisi-
ble fraction bias in resurrection experiments and offer approaches to 
 detect and account for it.

1.2 | Conceptual background

The invisible fraction problem is a missing data problem (Hadfield, 
2008). When stored seeds fail to germinate, or dormant eggs  perish 

in the sediment before collection (Hairston, Van Brunt, Kearns, & 
Engstrom, 1995), data on their postemergence phenotype are miss-
ing from the analysis. If emergence rate is high, few data are missing 
and so bias in estimates of the ancestral phenotypic mean is likely 
 negligible. Low emergence rates can lead to strong bias, but not nec-
essarily. It depends whether the genetic correlation between failure 
and focal phenotype is strong or weak.

In the parlance of missing data theory, bias occurs when the pro-
cess under study in some way depends on the process generating 
missingness (Little & Rubin, 2002). In this view, there are three ways 
in which data can be missing. First, data can be Missing Completely 
at Random (MCAR), meaning complete independence between the 
two processes. Within the context of a resurrection experiment, fac-
tors causing emergence failure are the same across all genotypes 
in both generations (Figure 1a) and unrelated to postemergence 
phenotype. Even if emergence rates differ between ancestors and 
descendants, the evolutionary shift in phenotypic mean is estimated 
without bias in the MCAR case. Second, data may be Missing at 
Random (MAR). Here, the process generating missingness may 
affect response variables, but in the context of a resurrection ex-
periment, its relative effect does not vary across generations. As 
indicated in Figure 1b, propagules that would produce low ranking 
values for the focal phenotype are less likely to emerge, but because 
failure is tied to rank within the generation, and not rank across gen-
erations, the estimate for evolutionary shift in phenotypic mean is 
unbiased. This holds so long as germination rates are the same in the 
two generations. The missingness of data that are MCAR and MAR 
can be ignored when making inferences on the process of interest 
(Little & Rubin, 2002).

F IGURE  1 Contrasting the phenotypic distribution of trait z in ancestral and descendant generations of a resurrection experiment. Shaded 
portions of the Gaussian distributions represent the potential phenotypes of individuals missing because of early mortality (the missing fraction), 
while the unshaded portions are phenotypes of individuals that survived to have the trait measured. (a) In both generations, the factor causing 
early mortality acts independently of the potential/realized value of z; data for the dead individuals are missing at random. The difference 
between generation means is the same as if all had survived and so is estimated without bias. (b) In both generations, the factor causing early 
mortality declines with z, but it does so equally within each generation. The two means are estimated with equal bias such that the difference 
between them is estimated without bias. (c) The factors causing early mortality depend unequally on z between generations. The ancestral and 
descendant generation means are estimated with unequal biases, and so the difference between them will over/under estimate the expected 
difference had all survived
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Data Missing Not at Random (MNAR) cannot be ignored. Here, the 
process generating missingness changes in intensity and/or direction 
with the process under study (Figure 1c). With regard to a resurrec-
tion experiment, imagine a propagule trait that affects the chances of 
emergence after decades of storage. If that propagule trait is genet-
ically correlated with a focal trait expressed postemergence, ances-
tors and descendants will appear to have diverged, even if selection  
imposed by global change—the process of interest—is zero.

2  | THE POTENTIAL MAGNITUDE OF THE 
MISSING FRACTION BIAS

To illustrate the potential invisible fraction bias, suppose the follow-
ing. We are interested in some focal trait z that is expressed in mature 
plants. A very large, random sample of seeds was collected from a nat-
ural population, dried, frozen, and then revived at a later date. These 
are grown side by side with a descendent generation. All descendent 
seeds germinate, but fraction q of the ancestors fails to revive. Back 
at the time of collection (time 0), the potential mean value for focal 
trait z within the ancestral sample was z̄0, which is the proper baseline 
for testing evolutionary change in z. However, z is expressed at time 
t, after revival and emergence, when only 1- q of the ancestral sample 
remains. Finally, assume that failure depends on seed trait y. To sim-
plify calculations, assume z and y are normally distributed with zero 
mean and unit variance.

How much will the phenotypic mean of the germinated ancestors, 
z̄t, differ from z̄0? Drawing on basic quantitative genetic theory (Lynch 
& Walsh, 1998), the bias can be stated as 

where Gzy is the genetic covariance between the seed and focal 
traits, and βy is the selection gradient acting on y through storage sur-
vival. Absolute selection intensity, |βy|, will increase with mortality, q, 
in some fashion, and, with it, the potential for bias. No terms exclu-
sively for z appear on the right- hand side because the events quanti-
fied by Equation 1 occur before z is expressed. Clearly, if Gzy = 0, the 
data missing from the estimate of zt are MCAR, and the baseline is 
unbiased by the storage process.

Equation 1 can illustrate the relationship of bias to mortality rate 
when Gzy ≠ 0. Truncation selection is the most extreme way for q to 
relate to βy (Crow & Kimura, 1979). All seeds with trait values below 
threshold y* fail, while those with values above the threshold germi-
nate. In this case, q is the area under the normal curve below y*. The 
standard quantitative genetic formulation for the intensity for trun-
cation selection, when variance is 1.0, yields the following selection 
gradient: βy = p(y*)/(1– q), where p(y*) is the probability of drawing an 
individual measuring below y* from a normal distribution.

Figure 2a shows that with truncation selection, zt can deviate dra-
matically from z0 when mortality is high and the genetic covariance is 
strong. Under a “worst- case scenario” (q = 0.95, Gxy = 1), the baseline 
to measure evolutionary change is off by 2 SDs. However, the bias 
is very weak (~0.01 SD) when mortality is only 5% and the genetic 

correlation is 0.25. At moderate mortality rates and genetic correla-
tions, truncation selection can still distort the baseline by 0.1 to 0.4 
SDs (Figure 2a), which is sufficient to obscure (or inflate) a biologically 
significant evolutionary response.

Calculations based on truncation selection set an upper boundary 
on potential bias for a given mortality rate. A weaker relationship of 
mortality to selection ameliorates the impact of a high genetic correla-
tion. Suppose the overall failure rate is 0.5, but the chance that a given 
seed germinates is a logistic function of trait y: 

where W is the survival component of absolute fitness through the 
storage/revival selection episode. The stringency parameter of this 
fitness function, k, determines how abruptly failure increases with 

(1)z t− z0 = Gzyβy

(2)W =
1

1 + eky

F IGURE  2 Bias in the estimated ancestral mean phenotype 
increases with the germination failure (mortality) rate and with the 
stringency of selection on seed traits affecting germination failure. 
(a) Under truncation selection (k = ∞), bias increases strongly with 
germination failure rate when the seed trait y is perfectly genetically 
correlated with the adult trait z (Gzy

 = 1.0), but bias is negligible when 
the correlation is weak. (b) At a given germination failure rate, bias 
can be strong when the failure is overwhelmingly determined by 
trait y (k = 100), but the strength of the relationship depends on Gzy. 
If additional factors unrelated to y are the overwhelming cause of 
mortality (k << 1.0), bias is weak even if Gzy is large
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y. Figure 1S shows that at k = 10, selection is approximately truncat-
ing; nearly, all seeds with y values below the mean fail, while those 
above succeed. When k = 0.1, the chance of failure still increases with 
y, but most failures are independent of seed trait y. In both cases, 
q = 0.5, but the selection gradient on y falls from ~0.80 when k = 10, 
to ~0.05 when k = 0.1. Thus, seed mortality by itself is a poor predic-
tor of bias. Holding q at 0.5, Figure 2b shows that a weak slope to the 
fitness function (low k) generates low bias, even under strong genetic 
correlations.

To repeat, if seed germination failure is very low, bias will be triv-
ial. But the bias under high failure rates can be either trivial or cata-
strophic, depending on how strongly mortality genetically correlates 
with the focal trait. One cannot determine the strength of this cor-
relation from an unstructured sample of propagules. However, if ge-
nealogical relationships within the ancestral sample are known, the 
potential postemergence phenotype of a failed propagule can be 
inferred from phenotypes of its surviving relatives (Hadfield, 2008; 
Steinsland, Larsen, Roulin, & Jensen, 2014). The next section shows 
how relatedness among individuals can be used to detect and account 
for an invisible fraction problem.

3  | DETECTING AND ACCOUNTING FOR 
THE INVISIBLE FRACTION

An invisible fraction bias can be detected when data on juvenile sur-
vival and later- life phenotypes are collected for distinct genotypic 
classes. Mojica and Kelly (2010) presented a salient example in a  
3- year field experiment on the wildflower Mimulus guttatus. Previous 
studies had consistently shown that plants with wider corollas pro-
duced more seed, signifying upward selection on flower size. Because 
these studies examined only mature plants from wild populations, no 
information could be retrieved on the relationship of flower size to 
juvenile survival—the plants that died young were missing from the 
sample used to estimate selection intensity. Mojica and Kelly’s study 
used plants from an artificial selection experiment: seedlings from 
large- selected, small- selected, and control lines for corolla width were 

planted into the field. Considering only the plants that survived to 
adulthood, the line selected for larger flowers had a twofold advan-
tage in seed production over the small- flowered line—a result con-
cordant with previous studies. However, not all plants survived to 
flowering. Juvenile mortality for the large- flowered line was 10 times 
greater than for the small. Clearly, the mean flower size among all 
survivors was smaller than it would have been if all plants from the 
large- flowered line had survived to maturity. Even though flower sizes 
for the dead plants were missing, the resulting bias could be detected 
because each deceased plant could be assigned to either the large-  or 
small- flowered line. Phrased differently, the potential phenotype of 
the missing individuals could be inferred from the phenotypes of their 
surviving relatives (Figure 3).

Returning to the hypothetical situation from the previous section, 
quantitative genetic methods can detect genetic correlations between 
seed traits affecting storage mortality and a later- expressed plant trait 
z. Although the seed traits are unknown and hence unmeasured, they 
can be correlated with the survival fitness component, W, which can 
be known for each seed in a properly designed experiment. If z is ge-
netically correlated to hypothetical y, and y is correlated to W, then 
there will be a genetic correlation between z and W. Figure 4 illus-
trates a situation in which families with low values of z have low stor-
age survivorship, while high z families have high. The inference from 
the genealogical relationships among plants is that alleles increasing z 
also increase traits promoting seed survival.

To illustrate the relationship of bias in zt to GW,z, I ran simulations 
incorporating the same family structure as the Project Baseline col-
lections. This genetic correlation was approximated from the cor-
relation of the family means for z and W. R code for the simulation is 
found in the Data S1. Figure 4 shows the mean bias for simulations 
of a resurrected baseline generation comprised of 200 half- sib fam-
ilies with 20 sibs per family, where the population mean mortality 
was q = 0.5. One hundred simulations were run for each of the k/Gzy 
combinations illustrated in Figure 2b. The simulation shows that a 
moderate to strong genetic correlation between W and z clearly in-
dicates a biased estimate of zt . When GW,z < 0.2, the bias tends to be 
0.1 SD or less. I emphasize, however, that while GW,z can be used to 

F IGURE  3 When seed trait y, which 
causes mortality, is strongly correlated 
with adult trait z, families with high 
values of z will also have survival rates. 
(a) The distribution of potential z values 
for all siblings, missing (shaded bars) and 
measured (open bars; see Figure 1). (b) The 
correlation between the family means for z 
and the proportion of siblings surviving to 
express z
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flag a serious invisible fraction problem, it does not by itself correct 
the bias.

Recently, Steinsland et al. (2014) offered an approach to deal 
with the missing fraction problem that uses a shared parameter 
model (SPM; Vonesh, Greene, & Schluchter, 2006), implemented 
in a Bayesian framework. These models assume a conditional inde-
pendence between the data model and a model for the missingness 
process. Steinsland et al. (2014) should be consulted for details, but 
a brief description follows. Consider vector z, which contains the nor-
mally distributed potential phenotypes, z, of all N individuals sampled 
from a population, both ancestors and descendant (plus hybrids, if 
 included). Also consider vector w, which is the survivorship status of 
all individuals at the time that z is expressed (all elements of w are 0 or 
1). Their joint probability density is 

where the vector d contains parameters for the differences across gen-
erations, m the parameters for the survival process, and a the breeding 
values for z. Thus, the combined model includes a conditional model 
for the data, p(z|a, d), generated from the animal model of quantitative 
genetics (Lynch & Walsh 1998; Wilson et al., 2010), and a conditional 

model for missingness, p(w|a, m). This model structure implies that 
the association between the trait of interest and the failure to revive 
is induced by additive genetic effects (Steinsland et al., 2014). An ad-
ditional parameter is estimated by this procedure that describes the 
association between the two conditional models; if the association is 
0, the two models are unrelated and the invisible fraction ignorable. 
Using this approach, Steinsland et al. (2014) showed that selection on 
the breeding value for spot size in female barn owls (Tyto alba) occurs 
during the early nesting stage, even before the spots are fully formed.

This sort of analysis can be applied to a resurrection experiment 
if the relatedness among the stored propagules is known. This condi-
tion is met in the Project Baseline collection because the stored seeds 
are packaged by maternal sibships (although paternity is not known). 
Germination failure during the refresher generation can be recorded, 
and information on all subsequently expressed traits for the failed 
seeds entered as missing values in the data set. An SPM model may 
then be used to estimate the level of divergence between ancestor 
and descendant samples (and their hybrids) due to additive genetic 
variance, which quantifies the evolutionary response to selection  
exerted by global change.

4  | DISCUSSION

A crucial assumption in resurrection experiments is that the resur-
rected individuals are a random sample of genotypes from the ances-
tral generation (Bennington & McGraw, 1995). If genotype influences 
survival through the storage and revival process, the phenotypic mean 
estimated among the survivors can deviate from the mean expected 
for the ancestral generation as a whole. If so, the baseline for estimat-
ing evolutionary response will be biased, potentially leading to a false 
inference. When selection exerted during storage goes in the opposite 
direction as selection in the wild, a true evolutionary response could 
go undetected—a false negative. False positives arise if no selection 
occurs in the wild, but selection during storage shifts the baseline. 
Minor biases may not affect qualitative inferences, but will lead to 
over/under estimates of evolutionary rate.

The calculations presented above indicate that under a worst- case 
scenario, the estimated phenotypic mean for a late- life trait can be 
highly biased by a strong genetic correlation to seed storage tolerance. 
However, when seed mortality is related to additional, uncorrelated 
factors, and/or when the genetic correlation to storage tolerance is 
weak, the bias is weak. Under some reasonable assumptions, esti-
mates of the baseline mean will be off by less than 0.1 SD, even when 
seed mortality is high. A genetic correlation between storage survival 
and the trait mean signals that the invisible fraction of the sample can-
not be ignored when estimating the ancestral phenotypic mean.

Methods to identify and potentially correct an invisible fraction 
bias depend upon genealogical information. Resurrection experi-
ments have addressed evolutionary change in a variety of ecolog-
ically important traits (see Franks et al., 2017), but in most cases, 
the genealogical structure of the samples was unknown and per-
haps was unknowable. However, it would be wrong, for several 

(3)p(z,w|d,m) = p(z|a,d)p(w|a,m)

F IGURE  4 Bias in estimates of the phenotypic mean for z 
increases with the genetic correlation between z and probability 
of survival, W. Each series in the graph represents a different level 
of stringency in the relation of seed trait y to survival, with k = 100 
indicating that y has overwhelming influence on W, whereas k = 0.1 
indicates that other factors overwhelmingly influence survival. 
Symbols for the series are varied in shading to increase clarity. The 
points in each series, from left to right, indicate increasing levels of 
genetic correlation between y and z (circles, Gzy = 0.125; triangles, 
Gzy = 0.25; squares, Gzy = 0.50; diamonds, Gzy = 1.0). If y determines 
survival, W, and if y is strongly correlated to z, then the correlation 
between W and z will likewise be strong. When y has scant influence 
on W, the genetic correlation between W and z will be weak, no 
matter what the genetic correlation between y and z. Overall, a 
strong genetic correlation of W to z indicates that the missing 
fraction problem is causing a strong bias in the estimate of the 
phenotypic mean of z
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reasons, to conclude that such experiments are necessarily invalid. 
First, if revival rate of dormant propagules is high, bias will be trivial. 
Second, if the performance of ancestral and descendant generations 
is tested both in ancestral- like and in descendant- like environments, 
and if each does better in its own environment, adaptive phenotypic 
evolution over time is the parsimonious explanation (see Franks 
et al., 2017).

It is also parsimonious to conclude adaptation when focal traits 
simply have no functional relationship to processes that would influ-
ence propagule survival and emergence. Resistance to cyanobacte-
ria toxins in Daphnia (Hairston et al., 1999) and herbicide resistance 
in morning glories (Kuester, Wilson, Chang, & Baucom, 2016) seem 
 unlikely to have mechanisms in common with prolonged propagule 
survival. Comparative studies of contemporary populations can be 
used to detect genetically mediated functional relationships, although 
care must be taken to distinguish genetic correlation due to pleiot-
ropy from that due to population structure (linkage disequilibrium). 
But, genes governing basic metabolism are likely to be expressed both 
during revival and subsequent growth. Alleles at metabolic loci that 
are mildly deleterious under typical conditions could be lethal for em-
bryos under the stress of prolonged storage and revival.

Pleiotropic effects of loci expressed during both early and late 
stages are one source of an invisible fraction problem, but stud-
ies on germination rates in crop cultivars suggest a second path— 
genetically mediated maternal effects. Crop varieties with larger seeds 
commonly have higher germination rates, especially under stressful 
conditions such as high temperature or saline soils (Krishnasamy & 
Seshu,1989; Almodares, Hadi, & Dosti, 2007; Moud & Maghsoudi, 
2008). These varieties also have faster growing seedlings. Although 
varietal differences in survival and subsequent growth could be due 
to with- individual pleiotropy, they also could reflect transgenerational 
pleiotropy caused by loci that govern both growth and maternal pro-
visioning. An allele that increases the pool of maternal resources for 
seed production, or one that influences the number of seeds drawing 
upon that pool, would also influence offspring size and, hence, sur-
vival. As that offspring germinates and develops, it will express the al-
leles inherited from the mother. Offspring produced by other mothers, 
with weaker alleles, do not survive to express the focal trait. In such a 
case, supporting studies on the covariance between seed size and the 
focal trait could be useful in correcting for an invisible fraction bias.

Fruiting phenology in plants presents another example of a geneti-
cally mediated maternal effect that could produce an invisible fraction 
problem. If seeds are collected too early in the season, those from late- 
fruiting plants will not have accumulated their full complement of cryo-
protectants (Walters, 2015). When stored under the conditions used for 
the Project Baseline collection, seeds carrying genes for late- flowering 
could have lower storage survival. Fortunately, the Project Baseline 
sampling protocol was designed to alleviate this and related problems 
by making repeated collections encompassing the phenological varia-
tion in target populations (Etterson et al., 2016; Franks et al., 2017).

Although low germination does not lead inevitably to a strong 
bias, high germination precludes it. Some studies using the resurrec-
tion approach have reported similar germination rates in the ancestral 

and descendant generations (Franks et al., 2007; Kuester, Chang, & 
Baucom, 2015; Thomann et al., 2015). Based on this similarity, inves-
tigators (including myself) have made the tacit assumption that germi-
nation failures have generated data that are MCAR or MAR. However, 
data can be MNAR even with equal germination rates in the ancestral 
and descendant samples (Figure 1c). To make the most of resurrection 
experiments, both samples must have known genealogical structure. 
No doubt, advances in statistical methodology will continue to refine 
ways to use information on relatedness to account for bias in esti-
mates of evolutionary response in natural populations. When the final 
release of Project Baseline seed becomes available, ca. year 2065, fu-
ture investigators will be able to use family structure to estimate the 
range of potential bias.
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