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Abstract

Myofiber atrophy occurs with aging and in many diseases but the underlying mechanisms

are incompletely understood. Here, we have used >1,100 muscle-targeted RNAi interven-

tions to comprehensively assess the function of 447 transcription factors in the developmen-

tal growth of body wall skeletal muscles in Drosophila. This screen identifies new regulators

of myofiber atrophy and hypertrophy, including the transcription factor Deaf1. Deaf1 RNAi

increases myofiber size whereas Deaf1 overexpression induces atrophy. Consistent with its

annotation as a Gsk3 phosphorylation substrate, Deaf1 and Gsk3 induce largely overlap-

ping transcriptional changes that are opposed by Deaf1 RNAi. The top category of Deaf1-

regulated genes consists of glycolytic enzymes, which are suppressed by Deaf1 and Gsk3

but are upregulated by Deaf1 RNAi. Similar to Deaf1 and Gsk3 overexpression, RNAi for

glycolytic enzymes reduces myofiber growth. Altogether, this study defines the repertoire of

transcription factors that regulate developmental myofiber growth and the role of Gsk3/

Deaf1/glycolysis in this process.

Author summary

Several diseases in humans reduce skeletal muscle mass and such wasting contributes to

poor prognosis. Muscle mass is modulated in adulthood primarily by changes in the size

of composing muscle cells (myofibers). Many of the signaling pathways that modulate

myofiber size impinge on transcription factors. However, only few of the ~1,400 human

transcription factors have been studied for their capacity to modulate skeletal muscle

mass. To start to fill this gap in knowledge, we have used Drosophila melanogaster for test-

ing the function of evolutionary conserved transcription factors. Because of the reduced

genetic redundancy and the 40-fold increase in muscle mass that occurs in development,

larval body wall skeletal muscles provide an ideal setting for identifying interventions that

induce myofiber atrophy and hypertrophy. Here, we report the phenotype of>1,100
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muscle-targeted RNAi interventions in myofiber size regulation. These include the tran-

scription factor Deaf1, which induces hypertrophy upon RNAi and atrophy upon overex-

pression. These effects stem from modulation of glycolysis by Deaf1. Moreover, glycolysis

is also modulated by the kinase Gsk3, which induces myofiber atrophy and muscle tran-

scriptional changes similar to Deaf1. Altogether, our study provides a resource for under-

standing the function of 447 transcription factors in myofiber size regulation.

Introduction

Skeletal muscle is a key tissue of the human body accounting for approximately 40–50% of the

total body mass. A balance between muscle protein synthesis and breakdown is essential for

maintaining the functionality and size of skeletal muscles [1]. When muscle protein synthesis

exceeds protein degradation, this leads to skeletal muscle hypertrophy, which typically results

from an increase in myofiber size. Conversely, myofiber atrophy occurs when protein break-

down is excessive or protein synthesis is insufficient [1,2]. This occurs following inactivity,

fasting, as a side effect of many pharmacological treatments, and in the course of many degen-

erative diseases such as cancer cachexia, chronic heart disease, diabetes, sepsis, infections,

chronic obstructive pulmonary disease, and renal failure [3]. Importantly, the loss of muscle

mass is not just a side-effect of these conditions but a rather important contributor to morbid-

ity and mortality. Strikingly, prevention of skeletal muscle mass loss in tumor-bearing mice

results in increased survival even if cancer progression is not halted [4–6]. Despite great strides

towards understanding the mechanisms responsible for muscle wasting, incomplete knowl-

edge in this area has hampered the development of suitable therapies.

Gene expression changes are fundamental drivers of myofiber atrophy [7]. Many signaling

pathways that induce atrophy impinge on key transcription factors to promote muscle protein

degradation [1,8–10]. For example, forkhead box O (FoxO) transcription factors are activated

in response to decreased insulin/IGF signaling and induce the expression of components of

the autophagy-lysosome and ubiquitin-proteasome systems which in turn mediate protein

degradation [11–17]. However, apart from a few transcription factors that have been exten-

sively studied [1,8], much remains to be learnt on the role that the ~1,400 transcription factors

encoded by the human genome [18] play in skeletal muscle mass homeostasis.

Drosophila body wall skeletal muscles have emerged as an important model system to deter-

mine the mechanisms of muscle growth and differentiation [19–34]. Previously, we have

found that FoxO overexpression in larval body wall skeletal muscles leads to myofiber atrophy

and reduces developmental muscle growth [35], suggesting that the fruit fly Drosophila mela-
nogaster can be used to identify evolutionary-conserved regulators of myofiber size [10,36,37].

Here, by examining the impact of transgenic RNAi on developmental muscle growth, we have

tested 1,114 RNAi lines targeting 447 of the 708 transcription factors encoded by the Drosoph-
ila genome [38]. Our study provides information on many novel transcription factors neces-

sary for myofiber size determination. These include the transcription factor Deaf1 that is

annotated as a phosphorylation target of the kinase GSK3-b [39], which is a known inducer of

atrophy [40,41]. Similar to Gsk3, Deaf1 overexpression induces myofiber atrophy, whereas

Deaf1 RNAi induces myofiber hypertrophy. Gene expression profiling further indicates that

Gsk3/Deaf1-induced changes in myofiber size are associated with corresponding changes in

the expression of glycolytic enzymes. Altogether, this study expands the repertoire of transcrip-

tion factors that are implicated in myofiber size determination and indicates a possible role of

Deaf1 in this process.
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Results

A RNAi screen targeting transcription factors in Drosophila body wall

skeletal muscles identifies regulators of muscle atrophy and hypertrophy

Previously, it was found that novel regulators of myofiber size can be uncovered by testing

their function in Drosophila body wall larval skeletal muscles. For example, the vast increase in

muscle size (~40-fold) that occurs over ~5 days of Drosophila larval development is modulated

by the insulin/Akt/TOR signaling pathway [35], which is a well-known modulator of atrophy

and hypertrophy in mammals [1]. Moreover, loss of UBR4, a ubiquitin ligase implicated in

atrophy-associated muscle proteolysis [42,43], induces hypertrophy in Drosophila and in

mammals [37]. Altogether, these studies indicate that homologous signaling pathways modu-

late myofiber size in mammals and in the developing Drosophila larvae. Moreover, Drosophila
body wall muscles constitute an excellent setup for the identification of transcription factors

that regulate myofiber size, as found for FoxO and Mnt [35].

On this basis, we took advantage of the simplicity of this system and the availability of trans-

genic RNAi resources for tissue-specific modulation of gene function to interrogate the role of

evolutionary-conserved transcription factors in myofiber size regulation. For these studies

with UAS/Gal4, the skeletal muscle-specific Mef2-Gal4 [44] was crossed with 1,114 transgenic

RNAi lines (from the VDRC and Bloomington stock centers) to target 447 of the 708 tran-

scription factors encoded by the Drosophila genome [38]. Mef2-Gal4 drives transgene expres-

sion in the body wall musculature located beneath the epidermis, and composed of muscles

with stereotypical sizes, each consisting of a single myofiber. Because skeletal muscle-specific

interventions that regulate the size of body wall muscles correspondingly change the size of the

larva [35,37], we have scored the size of larvae as a convenient readout to assess the outcome of

muscle-specific RNAi interventions (Fig 1A).

Compared to control RNAi, ~88% RNAi interventions lead to 3rd instar larvae of normal

size, indicating that these RNAi do not impact developmental muscle growth. However, there

were RNAi interventions that lead to larval lethality (~1.6%) and various degrees of atrophy

(~3.7%), indicating that transcription factors targeted by these RNAi are necessary for optimal

skeletal muscle growth. Conversely, ~3% of RNAi lead to hypertrophy, indicating that the

transcription factors targeted by these RNAi normally limit muscle growth. Additionally, there

were ~3% of RNAi interventions that rather than affecting size primarily affected larval shape,

leading to thin or sickle-shaped larvae (Fig 1B and S1 Table).

RNAi interventions that induce atrophy at the larval stage typically do not develop into

adult flies [35]. Therefore, it is not surprising to find that ~16% of Mef2-Gal4-driven RNAi

interventions did not yield any adults, as these include RNAi interventions that impact larval

stages of muscle growth as well as pupal stages of muscle remodeling. However, there were

some muscle-related phenotypes that were manifested in adult flies obtained from other RNAi

crosses. These included early lethality of adult flies soon after eclosion, as well as defects in

wing position. Normally, the wings are kept at stereotypical positions in adult flies but develop-

mental defects that cause muscle degeneration lead to upheld and/or depressed wings, as

found before for pink1/parkin loss [45] and here for ~1% of RNAi interventions that target

transcription factors (Fig 1C and S1 Table). Altogether, by using muscle-restricted RNAi

screening, we have here identified novel transcription factors that impact developmental skele-

tal muscle growth.

Among the many screen hits identified for their capacity to regulate myofiber size, there

were 17 genes that scored consistently with 2 or more RNAi lines and that therefore are more

likely to be robust regulators of muscle growth (S1 Table). To further test these genes, we re-

screened them with Mef2-Gal4 and also with an additional muscle-specific driver, MhcK-Gal4,
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which drives strong transgene expression from the embryonic stage of muscle development

[46]. However, different fromMef2-Gal4, InR overexpression withMhcK-Gal4 only marginally

increased larval size (S1 Fig), suggesting that MhcK-Gal4might not be suitable to uncover

muscle hypertrophy phenotypes compared to Mef2-Gal4. On this basis, we have re-screened

with MhcK-Gal4 only RNAi lines (from the Bloomington collection) with which we previously

obtained a reduction in body size upon muscle-specific expression.

This follow-up analysis revealed that larval size is overall similarly affected by RNAi driven

byMef2-Gal4 (Fig 1D) and byMhcK-Gal4 (Fig 1E). However, some discrepancies in the phe-

notypes induced byMef2-Gal4 versus MhcK-Gal4 were also observed, presumably because of

differences in the potency and tissue-specificity of these Gal4 lines (Figs 1D–1E and S2). Spe-

cifically, RNAi for CG7839, taf1, mtTFB2, pdm3, Su(var)3-9, and myc (dm) consistently

reduced larval body area with both Mef2-Gal4 and MhcK-Gal4, although pdm3 RNAi yielded

stronger effects withMhcK-Gal4 versusMef2-Gal4. However, RNAi for srp and PolrMT signif-

icantly reduced larval size with Mef2-Gal4 but not with MhcK-Gal4. Moreover, RNAi for

CG6724 marginally reduced larval size with both Mef2-Gal4 and MhcK-Gal4, although this

was statistically significant only with Mef2-Gal4. Conversely, RNAi for Not1 reduced larval

size only when driven byMhcK-Gal4. Lastly, RNAi for Pc and trachealess (trh), which were

previously classified as screen hits, did not significantly impact larval size when rescreened

with Mef2-Gal4 (Fig 1D), suggesting that they are false positives. Altogether, despite some dif-

ferences, RNAi driven by Mef2-Gal4 and MhcK-Gal4 similarly impacts myofiber size (Fig 1D

and 1E), indicating that our screen strategy is appropriate for finding candidate regulators of

muscle growth.

The small set of high-confidence regulators of muscle growth includes genes with func-

tional homologs in humans, i.e. CG7839/CEBPZ, taf1/TAF1, the mitochondrial transcription

factor mtTFB2/TFB2M, pdm3/POU6F2, Su(var)3-9/SUV39H, and dm/MYC (Fig 1D and 1E

and S1 Table). Although these transcription factors have not been previously implicated in

muscle growth or wasting, apart dm/MYC [35], some were found to modulate muscle differ-

entiation in mice. Specifically, TAF1 has been previously implicated in myogenesis via its

Fig 1. Muscle-specific RNAi screening identifies transcription factors that modulate developmental growth of

Drosophila body wall skeletal muscles. (A) Scheme for the identification of transcription factors that modulate

developmental skeletal muscle growth inDrosophila. The skeletal muscle-specific Mef2-Gal4 was crossed with a

collection of 1114 transgenic RNAi lines that target 447 transcription factors and transcriptional regulators to test their

function in developmental muscle growth.Mef2-Gal4 drives transgene expression in the body wall musculature

located beneath the epidermis, and composed of muscles with stereotypical sizes, each consisting of a single myofiber.

Because skeletal muscle-specific interventions that regulate the size of body wall muscles correspondingly change the

size of the larva [35,37], we have scored the size of larvae as convenient readout to assess the outcome of muscle-

specific RNAi interventions. Moreover, in cases where adult flies eclosed, also wing positioning was scored as upheld

or depressed wings can indicate muscle developmental defects and degeneration. (B) Compared to control RNAi, most

RNAi interventions lead to 3rd instar larvae of normal size, indicating that these RNAi interventions do not impact

developmental muscle growth. There were RNAi interventions that lead to larval lethality and various degrees of

atrophy, indicating that transcription factors targeted by these RNAi are necessary for optimal skeletal muscle growth.

Conversely, RNAi for another subset of transcriptional regulators lead to hypertrophy, indicating that the transcription

factors targeted by these RNAi interventions normally limit muscle growth. Additionally, there were certain RNAi

intervention that rather than affecting size primarily affected the shape of the larva, leading to thin or sickle-shaped

larvae. (C) Although RNAi interventions that induce atrophy at the larval stage do not develop into adult flies, we have

examined the adults that eclosed from all other RNAi interventions. The wings are kept at stereotypical positions in

adult flies but developmental defects leading to muscle degeneration are known to lead to upheld and/or depressed

wings, as found here for RNAi of several transcription factors. A full report of screen results is shown in S1 Table.

(D-E) The area of larvae with muscle-specific expression of transgenic RNAi driven byMef2-Gal4 (D) and by

MhcK-Gal4 (E). Similar results are obtained with RNAi driven by both drivers, although some differences are found in

the phenotypes induced byMef2-Gal4 versusMhcK-Gal4, presumably because of differences in the potency and tissue-

specificity of these Gal4 lines. Mean±SD and N = 6–31 (D) and N = 9–32 (E) are shown; ��P<0.01, ���P<0.001,
����P<0.0001. The scheme in Fig 1 was drawn with BioRender.

https://doi.org/10.1371/journal.pgen.1009926.g001
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capacity to bind Pax3 and modulate its ubiquitination and proteasomal degradation [47]

whereas the histone methyltransferase SUV39H1 was found to repress MyoD-stimulated myo-

genic differentiation [48].

Altogether, these findings indicate that RNAi screening in Drosophila is a useful approach

to identify novel candidate regulators of myofiber size determination.

Muscle-specific RNAi for screen hits identifies transcription factors that

modulate developmental myofiber growth in Drosophila
We have conducted a large-scale RNAi screen for transcription factors that regulate develop-

mental skeletal muscle growth in Drosophila. Because body wall skeletal muscles are located

beneath the epidermis, genetic interventions that regulate muscle size correspondingly change

the size of the larva [35,37]. Assessing larval size is an easily-scorable screen readout that has

led to the identification of many regulators of developmental muscle growth (Fig 1).

To better test the impact of screen hits, we have determined their impact on myofiber size

via larval dissections and analysis of body wall skeletal muscles. Specifically, the outcome of

some muscle-specific interventions that affected larval size was validated via the analysis of a

set of representative muscles, ventral longitudinal VL3 and VL4 muscles, which are each com-

posed by a single myofiber with a stereotypical size [35,37].

For these studies, we selected a set of genes based on their extremely high evolutionary con-

servation (i.e., typically, a DIOPT score >7), consistent scoring with multiple RNAI lines, and/

or novelty (Fig 2 and S1 Table). Compared to controls (whiteRNAi and mcherryRNAi), RNAi for

screen hits driven in skeletal muscle by Mef2-Gal4 led to decreased (atrophy) and increased

(hypertrophy) size of VL3 and VL4 skeletal muscles. Quantification of the cumulative area of

VL3 and VL4 muscles from multiple larvae indicates that RNAi for Nurf-38, e(y)1, alien,

CG7839, Taf1, MBD-R2, mtTFB2, pdm3, and dati reduces VL3+VL4 muscle area (atrophy).

This indicates that these transcription factors are necessary for optimal myofiber growth dur-

ing larval development. Conversely, muscle-specific RNAi for FoxO, Cnc, and Deaf1 increases

the area of VL3+VL4 muscles (hypertrophy), indicating that these transcription factors nor-

mally limit developmental myofiber growth. Altogether, these histological analyses confirm

that this muscle-targeted RNAi screen has identified novel transcription factors that regulate

myofiber developmental growth.

Deaf1 RNAi induces myofiber hypertrophy whereas Deaf1 overexpression

causes myofiber atrophy

Among the many regulators of skeletal muscle homeostasis identified in this screen, RNAi

interventions that induce myofiber hypertrophy are the most interesting as they highlight tran-

scription factors that normally impede growth and that could be inhibited to contrast wasting.

Among them, the transcription factor Deaf1 (deformed epidermal autoregulatory factor 1) has

been previously implicated in early development and innate immunity in Drosophila [49–52]

and in human neurodevelopmental disorders [53–55] but not in muscle growth. On the basis

of this possible novel function of Deaf1 in muscle, we further examined its impact on myofiber

size determination. Whereas Deaf1 RNAi induces hypertrophy compared to control RNAi

(Fig 2D), muscle-restricted Deaf1 overexpression led to myofiber atrophy (Fig 3A). Specifi-

cally, the area of ventral longitudinal VL3 and VL4 muscles is lower upon Deaf1 overexpres-

sion (Fig 3B), whereas it increases upon insulin receptor (InR) overexpression, as expected

[35].
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Gsk3 regulates myofiber size similar to Deaf1

Although Deaf1 has not been implicated in myofiber size determination, it was previously

identified as a phosphorylation target of the glycogen synthase kinase GSK3 [39], which

induces myofiber atrophy and muscle wasting in response to many catabolic stimuli via the

phosphorylation of target proteins in mice [14,41,56]. Specifically, it was found that DEAF1

interacts with and is phosphorylated by GSK3A and GSK3B [39]. To determine whether

shaggy (the Drosophila homolog of GSK3 and GSK3B) regulates myofiber size in Drosophila

as found in mammals, we modulated its activity via overexpression of constitutive active

Fig 2. Muscle-specific RNAi for screen hits identifies transcription factors that modulate developmental myofiber

growth in Drosophila. (A) Validation of RNAi screen hits via dissection of 3rd instar larvae and confocal imaging of

ventral longitudinal VL3 and VL4 body wall skeletal muscles, which have stereotypical sizes. (B) Compared to controls

(whiteRNAi and mcherryRNAi), RNAi for screen hits driven in skeletal muscle byMef2-Gal4 leads to a decrease (atrophy)

and an increase (hypertrophy) in the size of VL3 and VL4 skeletal muscles, each consisting of a single myofiber. (C)

Quantitation of the cumulative area of VL3 and VL4 muscles from multiple larvae indicates that RNAi for Nurf-38, e(y)1,

alien, CG7839, Taf1, MBD-R2, mtTFB2, pdm3, and Dati reduces VL3+VL4 muscle area (atrophy). This indicates that

these transcription factors are necessary for optimal myofiber growth during larval development. (D) Conversely, muscle-

specific RNAi for Foxo, Cnc, and Deaf1 increases the area of VL3+VL4 muscles (hypertrophy), indicating that these

transcription factors limit developmental myofiber growth. N = 12–70 and mean±SD is shown; ��P<0.01, ���P<0.001.

https://doi.org/10.1371/journal.pgen.1009926.g002
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Fig 3. Muscle-restricted activity of Deaf1 and Gsk3 impedes developmental muscle growth. (A) Transgenic

overexpression of the transcription factorDeaf1, driven specifically in skeletal muscle withMef2-Gal4, leads to a

reduction in the area of larval muscles, each consisting of a single myofiber, compared to controls with no transgene

expression (Mef2>+). (B) The area of ventral longitudinal VL3 and VL4 muscles is lower uponDeaf1 overexpression,

whereas it increases upon insulin receptor (InR) overexpression. N = 9–19 and mean±SD is shown; ����P<0.001. (C)

Gsk3 transgenic overexpression driven in skeletal muscle with Mef2-Gal4 leads to small size of 3rd instar larvae in a

manner proportional to Gsk3 kinase activity: Gsk3 CA (constitutive active) and WT (wild-type) induce atrophy,

hypomorphic (HYP) mutants with only limited kinase activity have little impact, whereas KD (kinase-dead) Gsk3

mutants do not affect developmental muscle growth. (D) Gsk3 activity in muscle reduces body size, as indicated by

larvae where body wall skeletal muscle are shown by expression of Mhc-GFP. (E) Compared to controls (no transgene

andmcherry overexpression), overexpression of 2 different Gsk3CA transgenes withMef2-Gal4 leads to a decrease

(atrophy) in the size of myofibers, as indicated by the quantitation of the cumulative area of VL3 and VL4 muscles

from multiple larvae (F); N = 9–19 and mean±SD is shown; ����P<0.0001. (G) Conversely, Gsk3 RNAi in skeletal

muscle induces myofiber hypertrophy, as indicated by the the cumulative area of VL3 and VL4 muscles (H); N = 27–71

and mean±SD is shown; ����P<0.0001.

https://doi.org/10.1371/journal.pgen.1009926.g003
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versions. Specifically, we employed Mef2-Gal4 to drive expression of transgenes encoding for

constitutive-active, wild-type, and kinase-dead Gsk3. As expected based on its function in

higher organisms, we found that muscle-specific overexpression of constitutive active (CA)

and wild-type (WT) Gsk3 led to reduced body size, which is indicative of muscle atrophy (Fig

3C and 3D). On the other hand, Gsk3 variants with reduced kinase activity minimally

impacted larval size, and kinase-dead Gsk3 mutants had no effect (Fig 3C and S3 Table).

To corroborate these findings, larvae with skeletal muscle-specific Gsk3CA overexpression

were dissected and the area of ventral longitudinal VL3 and VL4 muscles analyzed. As expected

based on the function of Gsk3 in mammalian systems [14,41,56] and our preliminary analyses

(Fig 3C and 3D), Gsk3CA lead to significant decline in myofiber size (Fig 3E and 3F). To further

assess the role that Gsk3 plays inDrosophila body wall muscle growth, we reduced its levels in

skeletal muscle via RNAi. Conversely to Gsk3 activation (Fig 3C–3F), Gsk3 RNAi induced myofi-

ber hypertrophy, compared to control RNAi lines against white andmcherry (Fig 3G and 3H).

Altogether, these findings indicate that Gsk3, similar to Deaf1, regulates muscle mass in

Drosophila (Fig 3), as observed in mammals [14,41,56]. Because Deaf1 was found to be a phos-

phorylation target of Gsk3 [39], these findings suggest that Deaf1 may negatively regulate myo-

fiber size in Drosophila skeletal muscle by acting downstream of Gsk3 signaling.

Gsk3 and Deaf1 induce similar gene expression changes in Drosophila body

wall skeletal muscles

Because the transcription factor DEAF1 has been previously reported to interact with and to

be phosphorylated by GSK3A/B [39], and it similarly regulates myofiber size (Fig 3), we next

examined whether Gsk3 and Deaf1 induce similar gene expression changes in Drosophila
body wall skeletal muscle. For these studies, we used Mef2-Gal4 to modulate the levels of

Deaf1 and Gsk3 in muscle. As expected, Deaf1 mRNA levels were significantly lower upon

Deaf1 RNAi and higher upon Deaf1 overexpression, respectively. Similarly, higher Gsk3 levels

were found upon its overexpression (Fig 4A).

RNA sequencing from filleted larvae (which consist primarily of body wall skeletal muscles

and the associated epidermis) identified many transcriptional changes that occur upon Deaf1

RNAi in comparison to control white RNAi. Cross-comparison with gene expression changes

induced by Deaf1 overexpression revealed that significantly regulated genes (p<0.05) are

largely regulated in opposite fashions by Deaf1 RNAi and Deaf1 overexpression (R2 = 0.46),

each normalized to its respective control (Fig 4B). Moreover, comparison of the muscle tran-

scriptomes revealed that gene expression changes induced by Deaf1 overexpression are highly

overlapping (R2 = 0.49) with those induced by constitutive active Gsk3 (Fig 4C).

GO term analysis of categories enriched among genes upregulated by Deaf1 RNAi indicates

that Deaf1 RNAi may induce myofiber hypertrophy by promoting glycolysis, sarcomere orga-

nization, and by modulating the function of histone deacetylases (Fig 4D). In particular, gly-

colysis represents the top category of genes upregulated by Deaf1 RNAi and, consistent with

transcriptome cross-comparisons (Fig 4B and 4C), Deaf1 and Gsk3 overexpression induce

converse changes, i.e. significantly reduce expression of most glycolytic enzymes (Fig 4E).

Altogether, these findings suggest that the transcription factor Deaf1 may regulate myofiber

size via the transcriptional modulation of several target genes, including glycolytic enzymes.

Expression of glycolytic enzymes sustains growth of larval body wall

skeletal muscles

We have found that Deaf1 RNAi, which induces myofiber hypertrophy, promotes the expres-

sion of glycolytic enzymes whereas Deaf1 overexpression, similar to Gsk3, reduces their
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expression (Fig 4). On this basis, we next tested the impact of glycolysis on skeletal muscle

growth. To this purpose, we screened 44 RNAi lines targeting glycolytic enzymes with Mef2--
Gal4 and found that many of them led to small larval size (Fig 5A and S3 Table), indicative of

muscle atrophy [35]. We further analyzed some of the RNAi lines that target glycolytic

enzymes. As expected, small body size due to expression of transgenic RNAi for Eno and

Pglym78 in skeletal muscle (Fig 5A) was associated with reduced size of VL3 and VL4 muscles

(Fig 5B and 5C). These findings indicate that glycolysis is necessary for myofiber growth, in

line with previous studies [57,58], and that it may indeed be a primary means by which Gsk3

and Deaf1 modulate myofiber growth in Drosophila body wall skeletal muscles.

Discussion

In this study, we took advantage of a simple, genetically tractable, model organism, Drosophila
melanogaster [59], to expand the knowledge about transcription factors that regulate myofiber

size. Specifically, we have used transgenic RNAi to knock down the levels of evolutionary-con-

served transcription factors in Drosophila larval body wall skeletal muscles which, by growing

~40-fold during few days of larval development, offer an ideal setup for identifying modulators

of myofiber growth. Because these muscles are located right beneath and surround the larval

epidermis, changes in muscle mass result in changes in the overall larval body size, making

this system amenable for visual phenotypic screens [35,37]. Moreover, the reduced genetic

redundancy of Drosophila melanogaster compared to mice and humans constitutes another

advantage for uncovering regulators of myofiber size [22], as demonstrated by the lower num-

ber of transcription factors present in Drosophila compared to humans (708 versus ~1,400).

The RNAi screen here done provides insight into transcription factors that regulate myofi-

ber growth. Because this screen included both DNA-binding transcription factors and tran-

scriptional regulators that are part of larger nuclear complexes, we expect that the screen hits

here identified may modulate myofiber size via a plethora of mechanisms. For example, the

nucleosome remodeling factor Nurf-38 catalyzes ATP-dependent nucleosome sliding and

facilitates transcription of chromatin [60] and this may constitute a mechanism by which it is

necessary for myofiber growth. Another example is e(y)1/Taf9, i.e. TBP-associated factor 9,

which encodes for a component of the transcription factor IID complex, which regulates tran-

scription from core promoters and enhancer-promoter interactions [61] but also regulates

lipid metabolism [62], which has been implicated in muscle wasting [63]. Overall, despite phe-

notypic similarity, the transcription factors and transcriptional regulators here identified may

regulate myofiber size via distinct target genes and transcriptional/chromatin remodeling

mechanisms.

The RNAi screen we have conducted has identified several candidate regulators of muscle

growth. However, as found in other screens [64], some of these hits could be false positives.

For example, trachealess (trh), a transcription factor necessary for the development of the

Fig 4. GSK3 and Deaf1 induce similar gene expression changes in larval skeletal muscles. (A) Validation of genetic

interventions. Muscle-restrictedDeaf1 overexpression leads to an increase in Deaf1 mRNA levels, opposite to Deaf1

RNAi. As expected, GSK3 overexpression also increases Gsk3 mRNA levels. (B) Coincident with their opposite roles in

regulating myofiber size, converse gene expression changes (R2 = 0.46; genes regulated with p<0.05) are induced in

larval body wall muscles by Deaf1 overexpression (OE) and Deaf RNAi, each normalized to their respective controls,

i.e. no transgene overexpression and control white RNAi. (C) Largely similar gene expression changes are induced by

overexpression of Deaf1 and of constitutive active (CA) Gsk3 (R2 = 0.49; p<0.05). (D) DAVID GO term analysis

reveals gene categories that are enriched among Deaf1-regulated genes, which include glycolysis. (E) Analysis of

glycolytic genes reveals that most of them are significantly (p<0.05) and concordantly regulated by Deaf1 and Gsk3.

Specifically, glycolytic enzymes are upregulated by Deaf1 RNAi compared to control whereas their expression is

suppressed by Deaf1 OE and Gsk3CA OE. S2 Table reports the results of RNA sequencing.

https://doi.org/10.1371/journal.pgen.1009926.g004
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Drosophila airway system [65], was initially identified as a screen hit but subsequent re-testing

with Mef2-Gal4 uncovered only minor phenotypes induced by trh RNAi (Fig 1D), suggesting

that this is a false positive. While transcription factors that scored consistently with multiple

RNAi lines (such as Deaf1 RNAi) are less likely to be false positives, screen hits identified with

a single RNAi line most likely also consist in large part of bona fide muscle growth regulators

(indeed in some cases only a single RNAi line was available to test the function of a given tran-

scription factor).

Conversely, other transcription factors that are important regulators of muscle growth may

not have scored because of technical limitations, i.e. they could be false negatives. Although

the potency of transgenic RNAi depends on the Gal4 line used and specific RNAi collection, a

previous study in the Drosophila embryo has found that phenotypes were observed only

among the RNAi interventions that yielded a target gene knockdown greater than 50% [66].

Specifically, this study has found that, out of ~450 RNAi lines targeting kinases, ~29% were

not functional (~12% did not display any knockdown, and an additional ~17% displayed a

knockdown of less than 50% that did not yield a phenotype; [66]). Therefore, it is possible that

around 1/3 of the lines tested in our screen is not functional and that therefore the muscle

growth regulators targeted by these RNAi lines are not uncovered by our screen. On this basis,

rather than being an exhaustive and definitive determination of the transcription factors that

regulate muscle growth, our study provides a list of candidate regulators of myofiber size

which should be further tested in Drosophila and other model organisms.

Another limitation of the screen consists in the tissue specificity of the Mef2-Gal4 line that

we have used. As originally described in ref. [35], this Mef2-Gal4 line drives transgene expres-

sion in body wall skeletal muscles but also in visceral muscles and in some cells in the brain

[35]. Closer analysis of such brain cells suggests that they consist of mushroom body neurons

(S2 Fig), which have been found to express endogenous Mef2 [67]. However, Mef2-Gal4 fluo-

rescence is most strongly observed in skeletal muscle compared to non-muscle cells and there-

fore it is unclear if sufficient target gene knockdown is achieved in non-muscle cells to

generate a phenotype. Moreover, the overall similarity of phenotypes induced by transgenic

RNAi driven by complementary muscle drivers (i.e. Mef2-Gal4 and MhcK-Gal4) suggests that

the observed muscle atrophy phenotypes are indeed due to RNAi expression in skeletal muscle

(Fig 1D and 1E). Nonetheless, the changes in larval body size and myofiber growth observed

in our study may in some cases depend on the modulation of the target gene outside of skeletal

muscle. As in the case of false and negative screen hits, this constitutes a technical limitation of

the study that will be resolved by complementary approaches for testing the function of the

candidate regulators of myofiber size here identified.

Among the many screen hits identified, we have examined in more detail the function of

Deaf1, an evolutionary conserved transcription factor that had not been previously implicated

in skeletal muscle growth. Specifically, we have found that Deaf1 RNAi induces myofiber

hypertrophy whereas Deaf1 overexpression causes atrophy. Mechanistically, Deaf1 RNAi pro-

motes the expression of glycolytic enzymes whereas Deaf1 overexpression reduces it, suggest-

ing that glycolysis is necessary for optimal skeletal muscle growth, as previously found in

Drosophila [57] and in other contexts [68].

Fig 5. RNAi for glycolytic enzymes impedes developmental growth of larval body wall skeletal muscles. (A) RNAi for glycolytic enzymes driven in skeletal

muscle with Mef2-Gal4 leads to small size of 3rd instar larvae, indicating that glycolysis is needed to sustain developmental muscle growth. A full list of phenotypes

obtained with 44 lines targeting glycolysis is reported in S3 Table. (B) Transgenic RNAi for the glycolytic enzymes Eno and Pglym78 reduces myofiber size,

compared to control whiteRNAi and cherryRNAi. (C) The area of ventral longitudinal VL3 and VL4 muscles, each consisting of a single myofiber, is reduced upon

EnoRNAi and Pglym78RNAi. N = 12–29 and mean±SD is shown; ��P<0.01 and ���P<0.001.

https://doi.org/10.1371/journal.pgen.1009926.g005
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We also find that similar transcriptional responses, including expression of glycolytic

enzymes, are induced by Deaf1 and Gsk3, a known inducer of myofiber atrophy [40,69–71]

that interacts with and phosphorylates Deaf1 [39]. Many phosphorylation targets of GSK3

have been identified in mammals, including several transcription factors, such as MITF, NF-

κB, and CREB [72–77]. However, much remains to understand about the GSK3 targets that

are most necessary for GSK3 output in distinct tissues and disease conditions. In particular,

although it is well established that GSK3 promotes muscle wasting [40,69–71], it is incom-

pletely understood how GSK3 promotes transcriptional changes that drive muscle protein

catabolism during atrophy. Our findings now suggest that Deaf1 may contribute at least in

part to the transcriptional changes induced by Gsk3 activity in muscle, and that these may

include the modulation of glycolysis.

Altogether, this study has expanded the repertoire of transcription factors that regulate

myofiber growth and highlights a possible role for Gsk3, Deaf1, and glycolysis in this process.

Materials and methods

RNAi screening

The list of fly stocks used for RNAi screening is reported in S1 Table and refers to RNAi for

Drosophila transcription factors that are evolutionarily conserved in humans, as defined based

on a homology DIOPT [78] score of�2. For each screen cross, 10 Mef2-Gal4 virgin females

were crossed with 5 males for each RNAi line tested. Progenies were reared at 25˚C and trans-

ferred to new food every 4 days. Subsequently, the size of 3rd instar wandering larvae was

scored in comparison with negative controls (whiteRNAi) and positive controls, which con-

sisted in FoxO overexpression (which induces atrophy) and overexpression of insulin receptor
(InR, which induces hypertrophy), as previously shown [35,37]. Specifically, larval size pheno-

types due to Mef2-Gal4-drived RNAi in muscle were scored as follows: A- no larvae/no pupae;

B- very small larvae/no pupae (i.e. smaller than FoxO overexpression); C- small larvae/small

pupae (i.e. similar to FoxO overexpression); D- normal (no visible phenotype); E- increased

larval/pupal size (i.e. similar to InR overexpression); and F- thin or sickle-shaped larvae with

locomotor defects.

Adult flies obtained from RNAi crosses were scored based on the following categories: H-

normal; I- no adults eclosed, i.e. developmental lethal; J- upheld or depressed wings in the

majority of flies in the tube (i.e. similar to pink1 RNAi or parkin RNAi); and K- early lethality

of eclosed flies. Normal muscle development results in stereotypical wing positioning, which is

present in whiteRNAi control flies, whereas upheld/depressed wings are an indication of

improper muscle development and/or muscle degeneration [45]. RNAi interventions that lead

to small larvae and pupae (A-C) and larvae with aberrant shape (F) typically do not give rise to

adult flies, as previously shown [35].

Drosophila stocks

In addition to Mef2-Gal4 [44], the following fly stocks were used: UAS-Deaf1 [50], UAS-foxo

and UAS-InR [35,79], and stocks for overexpression of wild-type, constitutive-active, and

kinase-dead Gsk3 transgenes [80], which are reported in S3 Table. MhcK-Gal4 (Mhc-GAL4.K,

BL#55133; [46]) was used for studies in Fig 1E. The list of fly stocks used for RNAi screening is

reported in S1 Table whereas the list of RNAi lines that target glycolytic enzymes is reported in

S3 Table.

The fly stocks utilized for VL3+VL4 muscle analyses (Fig 2) are the following: UAS-white-
RNAi (BL#33623), UAS-cherryRNAi (BL#35785), UAS-Nurf-38RNAi (BL#31341), UAS-e(y)1RNAi

(BL#32345), UAS-alienRNAi (BL#28908), UAS-SsrpRNAi (BL#26222), UAS-CG7839RNAi
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(BL#25992), UAS-Taf1RNAi (BL#32421), UAS-MBD-R2RNAi (BL#27029), UAS-mtTFB2RNAi

(BL#27055), UAS-pdm3RNAi (BL#35726), UAS-datiRNAi (BL#26711), UAS-foxoRNAi

(BL#27656 and BL#32993), UAS-CncRNAi (BL#32863), and UAS-Deaf1RNAi (BL#32512).

The fly stocks utilized for RNA-seq (Fig 4) are the following: UAS-Deaf1RNAi (BL#32512),

UAS-whiteRNAi (BL#33623), UAS-Deaf1 [50], UAS-Gsk3CA (BL#5255), and w1118 (+).

Staining of body wall skeletal muscles, confocal microscopy, and image

analysis

Male larvae were dissected in ice-cold Ca2+-free, MgCl2-free PBS (Gibco) and filleted larval

samples were fixed for 20 minutes in PBS with 4% paraformaldehyde, as previously done [35].

After washing with PBS, body wall skeletal muscles were stained overnight with DAPI

(4’,6-diamidino-2phenylindole, 1μg/mL) to visualize nuclei, and imaged to detect the endoge-

nous fluorescence of a Mhc-GFP fusion protein. Body wall muscles were mounted on micro-

scope slides and the VL3/4 muscles were imaged using a Zeiss LSM880 confocal laser-

scanning microscope. Confocal images were analyzed using the measure tools of the ImageJ

software to quantitate the area of VL3+VL4 muscles for each sample. Larval body size was

quantified with ImageJ.

RNA sequencing

RNA-seq was done following similar procedures as before [81,82]. Specifically, total RNA was

extracted from filleted Drosophila larvae, which consist primarily of body wall skeletal muscles.

Three biological replicates were prepared for RNA-seq with the TruSeq stranded mRNA

library preparation kit (Illumina) and sequenced on the Illumina HiSeq 4000 platform, with

six samples in each lane. Multiplexing was done on a per flowcell basis. Approximately 100

million reads were obtained for each sample. FASTQ sequences derived from mRNA paired-

end 100-bp sequences were mapped to the Drosophila melanogaster genome (BDGP5) with

the STAR aligner (version 2.5.3a) [83]. Transcript level data were counted using HTSeq (ver-

sion 0.6.1p1) [84] based on the BDGP5 GTF release 75. The TMM method [85] was used to

calculate the normalization factors. Then, linear modeling was carried out on the log2(CPM)

(count per million) values where the mean-variance relationship is accommodated using pre-

cision weights calculated by the voom function [86] of the limma package in R 3.2.3 (R Core

Team 2013; [87]). A q-value (FDR) was calculated for multiple comparison adjustments of

RNA-seq data. The lmFit, eBayes, and contrasts.fit functions from the limma package were

used for the linear modeling. Statistical analyses were performed using log2(FPKM) values in

Partek Genomic Suite 6.6 (www.partek.com/partek-genomics-suite/). The gene sets were ana-

lyzed by DAVID (Database for Annotation Visualization and Integrated Discovery) to identify

enriched functional classes of genes [88].

The RNA-seq comparisons refer to Mef2>Deaf1RNAi(BL#32512) versus Mef2>whiteRNAi
(BL#33623),Mef2>Deaf1 versus Mef2>+, and Mef2>Gsk3CA(BL#5255) versus Mef2>+;

(n = 3/genotype). The RNA-seq data is reported in S2 Table and has been deposited to the

Gene Expression Omnibus with accession number GSE174637.

Statistical analysis

All data points refer to biological replicates and the number is indicated in the figure legends.

Each biological replicate refers to data obtained from a different larva; typically, larvae from 2

or more crosses were analyzed for each genotype. The larvae analyzed in Figs 2–5 were

obtained from crosses different from those used for the screen. The unpaired two-tailed Stu-

dent’s t-test was used to compare the means of two independent groups to each other. One-
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way ANOVA with Tukey’s post hoc test was used for multiple comparisons of more than two

groups of normally distributed data. Bar graphs present the mean ± SEM or ± SD, as indicated

in the figure legends. Throughout the figures, asterisks indicate the significance of the p value:
�p<0.05; ��p<0.01; ���p<0.001. A significant result was defined as p<0.05. Statistical analyses

were done with Excel and GraphPad Prism.

Supporting information

S1 Fig. Comparison of Insulin Receptor overexpression with Mef2-Gal4 and MhcK-Gal4.

Consistent with previous studies in Drosophila and mammals, overexpression of insulin/IGF
receptor (InR) in skeletal muscle viaMef2-Gal4 induces skeletal muscle hypertrophy, as indi-

cated by the increase in body size. However, a relatively minor increase is found with InR over-

expression via MhcK-Gal4 (Mhc-Gal4.K, BL#55133) suggesting that this Gal4 line is not ideal

for uncovering muscle hypertrophy phenotypes.

(TIF)

S2 Fig. Characterization of the tissue-specificity of transgenic expression with Mef2-Gal4.

Red fluorescence due to transgenic DsRed expression is detected primarily in body wall skeletal

muscles but also in visceral muscles and few cells in the brain. We find no evidence for Mef2--
Gal4-driven DsRed expression in insulin producing cells (ipc) with this line. However, DsRed
expression driven byMef2-Gal4 is detected in brain cells of the mushroom body (mb), consis-

tent with our original characterization of this driver (Demontis and Perrimon, 2009, Develop-
ment; PMID:19211682) and a more recent study that has found endogenous Mef2 expression

in a subset of Kenyon cells of the mushroom body (Crittenden et al. 2018, Biology Open;
PMID:30115617).

(TIF)

S1 Table. RNAi screen data.

(XLSX)

S2 Table. RNA-seq data.

(XLSX)

S3 Table. Phenotypes of RNAi lines for glycolytic enzymes.

(TIF)

S4 Table. Additional primary data, related to Figs 2 and 3.

(XLSX)
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