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Abstract

The household secondary attack risk (SAR), often called the secondary attack rate or sec-

ondary infection risk, is the probability of infectious contact from an infectious household

member A to a given household member B, where we define infectious contact to be a con-

tact sufficient to infect B if he or she is susceptible. Estimation of the SAR is an important

part of understanding and controlling the transmission of infectious diseases. In practice, it

is most often estimated using binomial models such as logistic regression, which implicitly

attribute all secondary infections in a household to the primary case. In the simplest case,

the number of secondary infections in a household with m susceptibles and a single primary

case is modeled as a binomial(m, p) random variable where p is the SAR. Although it has

long been understood that transmission within households is not binomial, it is thought that

multiple generations of transmission can be neglected safely when p is small. We use prob-

ability generating functions and simulations to show that this is a mistake. The proportion of

susceptible household members infected can be substantially larger than the SAR even

when p is small. As a result, binomial estimates of the SAR are biased upward and their con-

fidence intervals have poor coverage probabilities even if adjusted for clustering. Accurate

point and interval estimates of the SAR can be obtained using longitudinal chain binomial

models or pairwise survival analysis, which account for multiple generations of transmission

within households, the ongoing risk of infection from outside the household, and incomplete

follow-up. We illustrate the practical implications of these results in an analysis of household

surveillance data collected by the Los Angeles County Department of Public Health during

the 2009 influenza A (H1N1) pandemic.

Author summary

The household secondary attack risk (SAR), often called the secondary attack rate or sec-

ondary infection risk, is the probability of infectious contact from an infectious household

member A to a given household member B, where we define infectious contact to be a

contact sufficient to infect B if he or she is susceptible. The most common statistical

models used to estimate the SAR are binomial models such as logistic regression, which
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implicitly assume that all secondary infections in a household are infected by the primary

case. Here, we use analytical calculations and simulations to show that estimation of the

SAR must account for multiple generations of transmission within households. As an

example, we show that binomial models and statistical models that account for multiple

generations of within-household transmission reach different conclusions about the

household SAR for 2009 influenza A (H1N1) in Los Angeles County, with the latter mod-

els fitting the data better. In an epidemic, accurate estimation of the SAR allows rigorous

evaluation of the effectiveness of public health interventions such as social distancing, pro-

phylaxis or treatment, and vaccination.

Introduction

In infectious disease epidemiology, the household secondary attack risk (SAR) is the probabil-

ity of infectious contact from an infected household member A to a susceptible household

member B during A’s infectious period, where we define infectious contact as a contact suffi-

cient to infect B if he or she is susceptible. It is often called the secondary attack rate, but we

prefer to call it a risk because it is a probability [1]. SARs can also be defined in other groups of

close contacts, such as schools or hospital wards [2].

The SAR is used to assess the transmissibility of disease and to evaluate control measures

[3–7]. The idea was originally developed by Charles V. Chapin in 1903 to study the transmis-

sion of diphtheria and scarlet fever, and it was extended to influenza, tuberculosis, and other

infectious diseases by Wade Hampton Frost [8–10]. Household surveillance data from emerg-

ing infections is often used to estimate the SAR, including 1957 and 1968 pandemic influenza

[11–13], meningococcal disease [2], pertussis [6], SARS coronavirus [14], seasonal influenza

[15–18], rotavirus [19], 2009 pandemic influenza A (H1N1) [20–26], MERS coronavirus [27,

28], Ebola virus disease [29–31], norovirus [32, 33], hand-foot-and-mouth disease [34], cryp-

tosporidium [35], measles [36], and COVID-19 [37, 38].

It has been understood that within-household transmission is not binomial since the work

of En’ko in 1899 [39], Reed and Frost in 1928 [40], and Greenwood in 1931 [41]. The process

is binomial only if the primary case (the first infected household member [42]) is the only pos-

sible source of infection for susceptible household members throughout his or her infectious

period. However, binomial models continue to be used for the estimation of the SAR because

it is thought that multiple generations of transmission within households can be neglected

safely when the SAR is small. In its simplest form, this assumes that the number of secondary

infections in a household with m susceptible individuals and a single primary case is a bino-

mial(m, p) random variable, where p is the household SAR. A given transmission path of

length k from a primary case A to a given susceptible B has probability pk, which decays expo-

nentially as k increases. Up to and including the COVID-19 pandemic, the vast majority of

studies of household transmission use a binomial model (often a logistic regression model) to

estimate the household SAR [2, 6, 7, 9, 11–13, 19, 22–28, 30–32, 35–38]. A smaller number of

studies have used explicit statistical models of transmission [15–18, 20, 21, 29, 33, 43]. Here,

we hope to establish that the latter approach should become universal.

Although the probability of each given transmission path of length k from A to B decays as

pk, the risk of infection through k generations of transmission also depends on the number of

possible paths of length k. A path of length k� 1 from A to B can be specified by choosing

k − 1 individuals from the m − 1 susceptible household members other than B. Each ordering

of these k − 1 individuals produces a unique transmission path. For 1� k�m, the total
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number of paths from A to B of length k equals the number of permutations of k − 1 objects

chosen from m − 1 objects:

Pðm � 1; k � 1Þ ¼
ðm � 1Þ!

ðm � kÞ!
: ð1Þ

Table 1 shows that the number of paths of length k can grow quickly with household size.

Each path can carry infection from A to B, so the total risk of transmission from A to B along

any path of length k can be much greater than pk. A binomial model attributes this additional

risk of infection to direct transmission from the primary case, so the estimated SAR is too

high.

The binomial variance assumes that infections in different household members are inde-

pendent. Because each new infection in a household increases the risk of infection in the

remaining susceptibles, infections within a household are positively correlated. This correla-

tion makes the true variance in the number of infections larger than the binomial variance. To

address this issue, cluster-adjusted variances [6, 21, 23, 24, 31] and random effects [32] have

been used to account for correlation among household members. Because of the bias in the

point estimate of the SAR, this adjustment for clustering does not produce confidence intervals

that have the expected coverage probabilities.

When the latent period (between infection and the onset of infectiousness) and incubation

period (between infection and the onset of symptoms) are longer than the infectious period,

generations of infection can be separated in time. This was seen seen most famously by Peter

Panum in a measles epidemic on the Faroe Islands in 1846 [44]. With such separation, a bino-

mial model could be used to estimate the risk of infection within a follow-up interval designed

to capture only the first generation of transmission. However, such separation of generations

is unusual. For example, the incubation period of influenza is roughly 1–2 days and the dura-

tion of viral shedding is 4–6 days [45, 46]. For influenza and most other infectious diseases,

the follow-up times of households cannot be adjusted to capture exactly one generation of

transmission.

In its original usage, the SAR was defined as the probability that a susceptible in a house-

hold with a primary case is infected by within-household transmission, whether or not there

were multiple generations of transmission within the household [8, 9]. Here, we will call this

the household final attack risk (FAR). With complete follow-up of all households, a cluster-

adjusted binomial model could produce an unbiased estimate of the FAR. However, the esti-

mated FAR will be biased upward if there are co-primary cases or if household members are at

risk of infection from outside the household during the follow-up period [3, 9, 47]. Such condi-

tions are common in practice.

In its modern interpretation, the household SAR is an extremely useful measure of the

transmissibility of infection. However, this interpretation requires us to abandon the use of

binomial models for estimation. Here, we use probability generating functions and simulations

to show that (1) a binomial model produces biased estimates of the household SAR even when

Table 1. Number of paths from the primary case to a given susceptible.

Susceptibles Path length (k)

(m) 1 2 3 4

2 1 1 0 0

4 1 3 6 6

9 1 8 56 336

https://doi.org/10.1371/journal.pcbi.1008601.t001
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the probability of transmission is small and (2) cluster adjustment of the variances does not

produce interval estimates with the expected coverage probabilities. To estimate the household

SAR, explicit statistical models of disease transmission such as longitudinal chain binomial

models [40, 48] or pairwise survival analysis [49–52] should always be used. We illustrate the

practical implications of these results using household surveillance data collected by the Los

Angeles County Department of Public Health during the 2009 influenza A (H1N1) pandemic.

In these data, binomial models produce SAR estimates that are too high to be interpreted as

probabilities of transmission.

Methods

For simplicity, our analytical calculations and simulations assume a uniform SAR within

households (i.e., no variation in infectiousness or susceptibility) and no risk of infection from

outside the household except for the primary case. These assumptions are not realistic, but

binomial models break down even under these ideal conditions. We use probability generating

functions (PGFs) to calculate the true outbreak size distributions at different combinations of

the number of susceptibles (m) and the SAR (p), and we verify these calculations in simulations

of household outbreaks.

Household outbreak size distributions

Assume that each infectious member of a household makes infectious contact with each other

member of the household with probability p during his or her infectious period. Let pmi be the

probability that i out of m susceptibles are infected by within-household transmission in a

household with a single primary case. Then

gmðxÞ ¼
Xm

i¼0

pmix
i

ð2Þ

is the probability generating function (PGF) for the outbreak size distribution in a household

with m susceptibles and one primary case. Because a household with zero susceptibles has zero

secondary infections with probability one, g0(x) = 1.

The PGF for the outbreak size distribution in a household with m + 1 susceptibles can be

derived from the PGFs for smaller households. Imagine a household with m susceptibles of

whom i were infected. Now imagine that the household had one more susceptible. There are

two possible outcomes:

1. With probability (1 − p)i+1, the additional susceptible escapes infection from all i + 1

infected household members. The total number of infections in the household is i.

2. With probability 1 − (1 − p)i+1, the additional susceptible gets infected. He or she acts like a

primary case in a household containing the m − i susceptibles who escaped infection. There

are i + 1 infections, and the number of infections among the remaining susceptibles has the

PGF gm−i(x).

Combining these results, we conclude that

gmþ1ðxÞ ¼
Xm

i¼0

pmi½ð1 � pÞiþ1xi þ ð1 � ð1 � pÞiþ1
Þxiþ1gm� iðxÞ� ð3Þ

The first few iterations yield

g0ðxÞ ¼ 1; ð4Þ
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g1ðxÞ ¼ ð1 � pÞ þ px; ð5Þ

g2ðxÞ ¼ ð1 � pÞ2 þ 2pð1 � pÞ2xþ ð3p2 � 2p3Þx2 ð6Þ

which can be checked by hand. We calculated these polynomials using Python code in S2 File.

As shown in Eq (2), the coefficient on xi in the PGF gm(x) is the probability that i of m suscepti-

bles are infected in a household outbreak started by a single primary case. Using these proba-

bilities, we can calculate the mean and variance of the number of infections among the m
susceptibles.

Household outbreak simulations

We simulated household outbreaks using Erdős-Rényi random graphs [53, 54], where each

pair of nodes is connected independently with probability p. In our graphs, each node repre-

sents a household member and p is the SAR. One node is fixed as the primary case, and all

household members connected to the primary case by a series of edges are infected. This cap-

tures the final outcome of one realization of a within-household epidemic with SAR p. This

simple model allows but does not require multiple generations of infection within households,

allowing us to evaluate the performance of binomial estimates based on the assumption of a

single generation of transmission.

We performed 40,000 simulations for each combination of household size and SAR. In

each simulation, there were 200 independent households of the same size. We used logistic

regression to calculate the proportion of susceptible household members who were infected

with a naive 95% confidence interval. We then calculated a cluster-adjusted confidence inter-

val using generalized estimating equations (GEE) with a robust variance estimate. The variance

inflation factor (VIF) was calculated as the ratio of the robust variance to the naive variance.

All confidence intervals were calculated on the logit scale as b̂ � 1:96 ŝ where b̂ ¼ logit ðp̂Þ is

the estimated log odds of infection and ŝ is the naive or robust standard error estimate. Finally,

we transformed the confidence intervals to the probability scale and estimated the coverage

probabilities for the true household SAR and the true household FAR.

Source code. Simulations were implemented in Python 3 [55], and statistical analysis was

performed in R [56]. The R code is available in S1 File, and the Python code is available in S2

File. All software used is free and open-source, and further details are given in the Supporting

Information.

Household data analysis

To give a practical example of the consequences of using a binomial model to estimate the

household SAR, we use influenza A (H1N1) household surveillance data collected by the Los

Angeles County Department of Public Health (LACDPH) between April 22 and May 19, 2009.

The data was collected using the following protocol [49]:

1. Nasopharyngeal swabs and aspirates were taken from individuals who reported to the

LACDPH or other health care providers with acute febrile respiratory illness (AFRI),

defined as a fever�100˚F plus cough, core throat, or runny nose. These specimens were

tested for influenza, and the age, gender, and symptom onset date of the AFRI patient were

recorded.

2. Patients whose specimens tested positive for pandemic influenza A (H1N1) or for influenza

A of undetermined subtype were enrolled as primary cases. Each of them was given a
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structured phone interview to collect information about his or her household contacts.

They were asked to report the symptom onset date of any AFRI episodes among their

household contacts.

3. When necessary, a follow-up interview was given 14 days after the symptom onset date of

the primary case to assess whether any additional AFRI episodes had occurred in the house-

hold, including their illness onset date.

For simplicity, we assume all AFRI episodes among household members were caused by

influenza A (H1N1) and that all household members except the primary case were susceptible

to infection. All analyses use natural history assumptions adapted from Ref [20] and consistent

with Ref [46]. Identical assumptions were used in Refs [50, 51]. In the primary analysis, we

assumed an incubation period of 2 days, a latent period of zero days, and an infectious period

of 6 days. We also consider 4-day and 8-day infectious periods.

We estimated the household SAR for 2009 pandemic influenza A (H1N1) using binomial

models, a longitudinal chain binomial model [40, 48], and parametric pairwise regression

models [52, 57]. In each household, we censored observations at the end of the infectious

period of the primary case. Thus, the models are fit only to infections that could have been

caused by primary cases, giving the binomial models the best possible chance of accurately

estimating the household SAR. For each assumed infectious period, all statistical models were

fit to exactly the same data. For simplicity, we did not include any covariates in these analyses.

Final size chain binomial models were not used because they require complete observation of

each within-household epidemic, so they cannot be fit to data censored at the end of the infec-

tious period of the primary case in each household.

Binomial models. Two binomial models were fit to the LACDPH households data. The

first model was an intercept-only logistic regression model—a binomial generalized linear

model (GLM) with logit link. The second model was an intercept-only binomial GEE model

[58]. For both models, we calculated Wald confidence intervals using naive and cluster-

adjusted variances [59].

Longitudinal chain binomial model. The chain binomial model assumes that a given

infectious person A makes infectious contact with a given susceptible household member B
with an unknown probability p on each day that A is infectious. On day t, an individual B who

is exposed to k infectious household members will escape infection with probability qk and be

infected with probability 1 − qk, where q = 1 − p. The likelihood contribution from observation

of individual B is the product of these likelihood contributions over all days where B was at

risk of infection. The overall likelihood is the product of the likelihood contributions of all sus-

ceptibles who were at risk of infection for at least one day.

The household SAR is 1 − qι where ι is the infectious period. Because p 2 (0, 1), our likeli-

hood was defined in terms of logitðpÞ ¼ lnðp=qÞ. To get a point estimate of the SAR, the

unknown true q is replaced by a point estimate q̂ ¼ 1 � p̂. Standard maximum likelihood esti-

mation was used to get point and interval estimates on the logit scale, which were transformed

back to the probability scale. For simplicity, we have assumed that the probability of escaping

infection from an infectious household member does not depend on how long he or she

has been infectious or on any covariates. More sophisticated longitudinal chain binomial

models can allow the escape probability to vary with the time since infection or with covariates

[40, 48].

Pairwise survival analysis. Pairwise survival analysis estimates failure times in ordered

pairs consisting of an infectious individual and a susceptible household member [57]. The pair

AB is at risk of transmission starting with the onset of infectiousness in A, and failure occurs if
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A infects B. This failure time, called a contact interval is right-censored if B is infected by some-

one other than A or if observation of the pair stops. To account for uncertainty about who-

infected-whom, the overall likelihood is the sum of the likelihoods for all possible combina-

tions of who-infected-whom consistent with the data [49]. The survival function S(τ, θ), where

θ is a parameter vector, is the probability that the contact interval is greater than τ. If θ0 is the

true value of θ and the infectious period is ι, then the household SAR is 1 − S(ι, θ0). To get a

point estimate of the SAR, the unknown true parameter θ0 is replaced by the maximum likeli-

hood estimate ŷ.

We used intercept-only exponential, Weibull, and log-logistic regression models [52]. For

the exponential distribution, S(τ, λ) = exp(−λτ) where λ is the rate parameter. For the Weibull

distribution, S(τ, λ, γ) = exp[−(λτ)γ] where λ is the rate and γ is the shape parameter. For the

log-logistic distribution, S(τ, λ, γ) = [1 + (λτ)γ]−1 for rate λ and shape γ. For all three distribu-

tions, λ> 0 and γ> 0 so we defined our likelihoods in terms of their natural logarithms lnλ
and lnγ. Standard maximum likelihood estimation was used to get point estimates and a

covariance matrix for the rate and shape parameters. To get a 95% confidence interval for the

SAR, we sampled lnλ and lnγ from their approximate multivariate normal distribution, calcu-

lated the household SAR for each sample, and took the 2.5% and 97.5% quantiles of the calcu-

lated SARs as confidence limits.

Goodness of fit. To see how well the SAR estimates fit the data, we simulated outbreaks in

the Los Angeles households using SAR point estimates from the binomial model, the chain

binomial model, and pairwise survival models. In each simulation, we calculated the total

number of infections among susceptible household members. For each SAR estimate, we per-

formed 4,000 simulations. We then compared the simulated household epidemics to the

observed final size of the outbreak started by the primary cases (i.e., the total number of cases

who can be linked to a primary case through one or more generations of transmission). For all

infectious periods shorter than 12 days, there are a few observed cases that occur after the end

of the initial within-household outbreak. Given each assumed infectious period, these late

cases are excluded because they can only be explained by later introductions of infection into

the household or by transmission paths that include undetected cases.

Source code. Statistical analyses were done with R [56], and the simulations were imple-

mented in Python 3 [55]. The R code is available in S3 File, the Python code is available in S4

File, and the household data are available in S5 File. All software used is free and open-source,

and further details are given in the Supporting Information.

Results

Household outbreak simulations

Fig 1 shows the household FAR calculated using PGFs (lines) and from simulations (symbols)

as a function of the true SAR and the number of susceptibles. There is excellent agreement

between the analytical calculations and the simulations. Both show that the household FAR is

larger than the household SAR when there is more than one susceptible. At a fixed SAR, the

difference between the SAR and the FAR increases with household size. Thus, a binomial

model will produce a point estimate of the SAR that is biased upward whenever there is more

than one susceptible household member.

Fig 2 shows the VIF calculated using PGFs (lines) and from simulations (symbols) as a

function of the true SAR and the number of susceptibles. Again, there is excellent agreement

between the analytical calculations and the simulations. The variance of the number of infec-

tions within households is substantially larger than the binomial variance, and this difference
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increases with increasing household size. Thus, confidence intervals based on a binomial esti-

mate will have coverage probabilities that are too low even if the estimated SAR is correct.

Fig 3 shows the household SAR coverage probabilities for unadjusted and cluster-adjusted

binomial 95% confidence intervals. Even for small households, the coverage probabilities are

below 95% and decrease rapidly as the true SAR increases. Cluster adjustment increases the

coverage probabilities only slightly. With or without adjustment for clustering by household, a

binomial model does not produce reliable point or interval estimates of the household SAR.

Fig 4 shows coverage probabilities of unadjusted and cluster-adjusted 95% confidence

intervals for the household FAR. Coverage of the FAR is much higher than coverage of the

SAR. However, the coverage probabilities for unadjusted confidence intervals are always

below 95%, and they decrease with increasing household size or increasing SAR. Adjustment

Fig 1. The household FAR as a function of the SAR for households with different numbers of susceptibles m. Lines show analytical calculations

using probability generating functions, and simulations show estimates from 40,000 simulated household outbreaks. Each simulated household

outbreak had a single primary case, so the total household size was m + 1.

https://doi.org/10.1371/journal.pcbi.1008601.g001
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for clustering by household corrects this problem, producing coverage probabilities close to

95% for all household sizes. Under these ideal conditions, a binomial model can produce reli-

able point and interval estimates of the household FAR when the variance is adjusted for clus-

tering within households. This does not imply that FAR can be defined clearly or estimated

accurately under more realistic conditions, and it does not imply that the FAR is an acceptable

substitute for the SAR in practice.

Household data analysis

In the LACDPH pandemic influenza A (H1N1) data, there were 58 households with a total of

299 members. There were 99 infections, of which 62 were classified as primary cases because 4

Fig 2. The VIF as a function of the SAR for households with m susceptibles. Lines show analytical calculations, and symbols show estimates from

40,000 simulated household outbreaks. Each simulated household outbreak started with a single primary case, so the total household size was m + 1.

For numerical stability, symbols are shown only for simulations with an observed FAR<0.99.

https://doi.org/10.1371/journal.pcbi.1008601.g002
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of 58 households had two co-primary cases. There were 37 household contacts who were

infected while under observation. The median household size was 5 with a range from 2 to 20.

Both in this example and more generally, co-primary cases and varying household sizes are

practical problems for estimation of the household SAR.

There are three types of cases relevant to our analyses: Possible second generation cases are

susceptible household members who are infected during the infectious period of the primary

case, so it is possible that they were infected by the primary case. Final size cases are susceptible

household members who could have been infected through a transmission path starting from

a primary case. Late cases are susceptible household members who were infected after the end

of the infectious period of the last final size case in the household. Given the assumed infec-

tious period, these cases can only be explained by a new introduction of infection to the

Fig 3. Coverage probabilities of binomial 95% confidence intervals for the household SAR with different numbers of susceptibles (m). Gray

lines are coverage probabilities for unadjusted confidence intervals, and black lines are coverage probabilities for cluster-adjusted confidence

intervals. Each symbol represents 1,000 simulations with 100 households each.

https://doi.org/10.1371/journal.pcbi.1008601.g003
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household or by transmission paths that include undetected cases. In volunteer challenge stud-

ies, approximately 71% of influenza A (H1N1) infections result in symptoms and 37% result in

fever�100˚F [46]. In the analyses comparing binomial models to chain binomial and pairwise

survival models, we use only the possible second-generation cases to give the binomial models

the best possible chance of producing a good estimate of the household SAR.

Table 2 shows the numbers of possible second generation cases, final size cases, and late

cases for each assumed infectious period from 3 days (probably too short) to 12 days (almost

surely too long). Assuming an infectious period of 6 days as in our primary analysis, there are

24 possible second generation cases, 26 final size cases, and 11 late cases. We also show analy-

ses with 4-day and 8-day infectious periods.

Fig 4. Coverage probabilities of binomial 95% confidence intervals for the household FAR with different numbers of susceptibles (m). Gray lines

are coverage probabilities for unadjusted confidence intervals, and black lines are coverage probabilities for cluster-adjusted confidence intervals. Each

symbol represents 1,000 simulations with 100 households each.

https://doi.org/10.1371/journal.pcbi.1008601.g004
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Table 3 shows point estimates and 95% confidence intervals for the household SAR. The

point estimates for all binomial models are identical. As expected, binomial models produce

much higher estimates than the chain binomial or pairwise regression models. Adjustment for

clustering produced wider confidence intervals, with very similar results in the binomial GLM

Table 2. The number of possible second generation cases, final size cases, and late cases for each assumed infec-

tious period. There are always 37 total final size and late cases.

Infectious period (days) Possible second generation cases Final size cases Late cases

3 13 16 21

4 17 22 15

5 20 25 12

6 24 26 11

7 28 32 5

8 28 32 5

9 28 32 5

10 32 36 1

11 33 36 1

12 34 37 0

https://doi.org/10.1371/journal.pcbi.1008601.t002

Table 3. Estimates of the household SAR with 95% confidence limits and Akaike information criterion (AIC) for pairwise regression models.

Model Estimated SAR AIC

6-day infectious period

Binomial: GLM (naive) 0.101 (0.067, 0.144)

GLM (adjusted) 0.101 (0.052, 0.189)

GEE (naive) 0.101 (0.069, 0.147)

GEE (robust) 0.101 (0.052, 0.188)

Longitudinal chain binomial 0.076 (0.051, 0.109)

Pairwise regression: exponential 0.075 (0.051, 0.110) 235.96

Weibull 0.079 (0.056, 0.138) 236.38

log-logistic 0.079 (0.055, 0.133) 236.26

4-day infectious period

Binomial: GLM (naive) 0.072 (0.043, 0.109)

GLM (adjusted) 0.072 (0.033, 0.150)

GEE (naive) 0.072 (0.045, 0.112)

GEE (robust) 0.072 (0.033, 0.149)

Longitudinal chain binomial 0.059 (0.035, 0.090)

Pairwise regression: exponential 0.058 (0.036, 0.092) 166.54

Weibull 0.063 (0.041, 0.135) 162.67

log-logistic 0.063 (0.042, 0.133) 162.65

8-day infectious period

Binomial: GLM (naive) 0.118 (0.081, 0.163)

GLM (adjusted) 0.118 (0.063, 0.211)

GEE (naive) 0.118 (0.083, 0.166)

GEE (robust) 0.118 (0.063, 0.210)

Longitudinal chain binomial 0.085 (0.058, 0.118)

Pairwise regression: exponential 0.084 (0.059, 0.120) 281.88

Weibull 0.085 (0.062, 0.145) 283.77

log-logistic 0.085 (0.062, 0.139) 283.49

https://doi.org/10.1371/journal.pcbi.1008601.t003
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and GEE models. The chain binomial and exponential pairwise regression models produced

nearly identical point and interval estimates of the household SAR. For each assumed infec-

tious period, the Weibull and log-logistic pairwise regression models produced slightly higher

SAR estimates and wider confidence intervals than the exponential model. To compare good-

ness-of-fit among the parametric pairwise survival models, we used the Akaike Information

Criterion (AIC). For the 4-day infectious period, the Weibull and log-logistic models had

lower AICs than the exponential model. For the 6-day and 8-day infectious periods, the expo-

nential model had the lowest AIC. The chain binomial and pairwise regression estimates are

consistent with each other, but neither is consistent with the binomial estimates.

Fig 5 shows histograms of the simulated outbreak sizes in the LA households based on the

four different SAR estimates that assume a 6-day infectious period. The binomial estimates

predict outbreaks much larger than observed, but the chain binomial and pairwise estimates

Fig 5. Histograms of simulated final outbreak sizes in the LA households based on household SAR estimates assuming a 6-day

infectious period. Vertical black lines indicate the observed final size of 26 cases.

https://doi.org/10.1371/journal.pcbi.1008601.g005
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predict outbreak size distributions centered near observed final sizes. Figs 6 and 7 show a simi-

lar pattern for estimates that assume 4-day and 8-day infectious periods, respectively. For the

binomial estimates, the predicted outbreak sizes increase rapidly as the assumed infectious

period gets longer. For the chain binomial and pairwise regression estimates, the predicted

outbreak sizes increase much more slowly. To the extent that a true household SAR exists, it is

almost certainly below the binomial estimates and closer to the chain binomial and pairwise

regression estimates.

An important advantage of the longitudinal chain binomial and pairwise regression models

is that they can estimate the SAR using the entire period of household observation. Table 4

shows point and interval estimates of the SAR based on the full data set collected by the

LACDPH. As before, the chain binomial and pairwise exponential models produce nearly

identical point and interval estimates. Using the full data set, the pairwise Weibull and log-

Fig 6. Histogram of simulated final outbreak sizes in the LA households based on SAR estimates assuming a 4-day infectious

period. Vertical black lines indicate the observed final size of 22 cases.

https://doi.org/10.1371/journal.pcbi.1008601.g006
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logistic models produce point estimates closer to those of the one-parameter models than in

Table 3, but their confidence intervals remain slightly wider. For the 6-day and 8-day assumed

infectious periods, all four models produce lower point estimates of the SAR when using the

full data set than when using only the possible second generation data. For the 4-day assumed

infectious period, the point estimates from the full data are near the higher point estimates

from the possible second-generation data. Fig 8 shows the distribution of outbreak sizes under

the pairwise exponential estimate of the SAR assuming 6-, 4-, and 8-day infectious periods.

The light gray histograms in the background show the distributions based on the point esti-

mates from Table 3, which used the possible second generation data. In all three cases, there is

a small but clear improvement in the predictive fit of the model when the full data set is used.

Similar results were seen for the longitudinal chain binomial and pairwise Weibull and log-

logistic regression models (see figures produced by S3 File).

Fig 7. Histogram of simulated final outbreak sizes in the LA households based on SAR estimates assuming an 8-day infectious

period. Vertical black lines indicate the observed final size of 32 cases.

https://doi.org/10.1371/journal.pcbi.1008601.g007
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Discussion

Studies of disease transmission in households and other clearly-defined groups at risk of infec-

tion will always be one of the most effective means of obtaining critical information about

routes of transmission, predictors of infectiousness and susceptibility, and the natural history

of epidemic diseases [3, 8, 60]. Every author of the studies cited above has made an important

contribution to infectious disease epidemiology and to public health. However, these studies

should no longer be analyzed using binomial models. Even when the SAR is small, it is impor-

tant to account for multiple generations of transmission. Unless these generations are clearly

separated in time, a binomial estimate of the SAR will be biased upward and have a confidence

interval with low coverage probability whether or not it is adjusted for clustering.

A binomial model can estimate the household FAR accurately if cluster-adjusted confidence

intervals are used. However, the FAR was clearly defined in our simulations only because we

made the following assumptions: (1) each household had at most one primary case, (2) all

households were the same size, (3) susceptibles were not at risk of infection from outside the

household after the occurrence of a primary case. In practice, these assumptions are extremely

unlikely to hold. The LACDPH data had households with multiple primary cases, household

sizes that varied from 2 to 20, an ongoing risk of infection from outside the household. Unlike

the household FAR, the household SAR can be clearly defined under more realistic conditions.

Our simulation study of the SAR and FAR also assumed that individuals were identical in

terms of infectiousness and susceptibility, which is extremely unlikely to hold in practice. In

the LACDPH data, individuals varied in age, antiviral prophylaxis use, and other possible pre-

dictors of infectiousness and susceptibility. Some household studies have seen evidence of

lower transmission intensity between individuals in larger households [21]. The chain bino-

mial model and pairwise survival models allow the probability or hazard of transmission to

depend on individual-level, pairwise, and household-level covariates [51, 52]. These covariate

effects are estimated simultaneously, which is critical to preventing bias for contagious out-

comes [61]. Accurate estimates of these effects can provide critical insight into the effectiveness

of public health interventions such as handwashing, social distancing, antiviral prophylaxis or

treatment, and vaccination.

Table 4. Full-data estimates of the household SAR with 95% confidence limits and Akaike information criterion (AIC) for pairwise regression models.

Model Estimated SAR AIC

6-day infectious period

Longitudinal chain binomial 0.069 (0.048, 0.096)

Pairwise regression: exponential 0.068 (0.048, 0.097) 288.33

Weibull 0.069 (0.050, 0.111) 289.74

log-logistic 0.069 (0.050, 0.111) 289.54

4-day infectious period

Longitudinal chain binomial 0.063 (0.043, 0.089)

Pairwise regression: exponential 0.062 (0.043, 0.088) 256.67

Weibull 0.063 (0.045, 0.108) 254.30

log-logistic 0.063 (0.044, 0.105) 254.24

8-day infectious period

Longitudinal chain binomial 0.080 (0.056, 0.108)

Pairwise regression: exponential 0.079 (0.056, 0.111) 339.98

Weibull 0.079 (0.058, 0.122) 341.97

log-logistic 0.079 (0.058, 0.119) 341.66

https://doi.org/10.1371/journal.pcbi.1008601.t004
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The discrete-time chain binomial model [48] and pairwise survival models [49–51] require

more detailed follow-up of each household than binomial models, but they can account accu-

rately for delayed entry, loss to follow-up, and the risk of infection from outside the household.

Most household studies already collect the data needed to use chain binomial and pairwise sur-

vival models for analysis. An additional advantage of these models is that data augmentation

and Markov chain Monte Carlo (MCMC) can be used to fit them if there are undetected infec-

tions or if infection times cannot be determined precisely [62].

Whereas binomial models can be fit using almost any standard statistical package, the lack

of available software has been a major obstacle to the adoption of statistical models of infec-

tious disease transmission in household studies. Chain binomial models are available in the

free and open source software package TranStat (www.cidid.org/transtat), which incorporates

several advanced methods [63, 64] and has been used in analyses of influenza [20], Zika virus

Fig 8. Histograms of simulated outbreak sizes based on pairwise exponential SAR estimates using the full data (dark gray)

superimposed on the corresponding histograms from Figs 5–7 based on estimates using second generation data (light gray).

For each assumed infectious period, a vertical black line shows the observed final outbreak size.

https://doi.org/10.1371/journal.pcbi.1008601.g008
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[65], and Ebola virus [29]. Pairwise survival models are available in the free and open source

transtat package for R, which was used to analyze the LA household data above. This pack-

age includes parametric models and semiparametric models [49–52, 57].

In the COVID-19 pandemic, there have been too few studies of SARS-CoV-2 transmission

in households or other clearly-defined populations at risk of infection, leaving many questions

about the intensity of transmission and the predictors of infectiousness and susceptibility

unanswered [60]. This has forced public health decisions that affect millions of lives to be

made under far greater uncertainty than there could or should have been. Household studies

can provide critical scientific insights to guide public health interventions and policies. The

results above show that replacing binomial models with chain binomial or pairwise survival

models will help these studies contribute more effectively to the prevention and control of

epidemics.

Supporting information

S1 File. R [56] (https://www.r-project.org/) code used to analyze the household outbreak

simulations in section. Produces Figs 1–4. Requires the following packages:

• gee [66] (https://cran.r-project.org/package=gee)

• reticulate [67] (https://rstudio.github.io/reticulate/)

• survival [68] (https://cran.r-project.org/package=survival)

• transtat [69] (https://github.com/ekenah/transtat)

Directions and package versions used for publication are in comments.

(R)

S2 File. Python 3 [55] (https://www.python.org) functions called by S1 File. Requires the

following packages:

• NetworkX [70] (https://networkx.github.io)

• NumPy [71] and pandas [72] (https://www.scipy.org)

Directions and package versions used for publication are in comments.

(PY)

S3 File. R [56] code used to analyze LACDPH household surveillance data in section. Pro-

duces Tables 2 to 4 and Figs 5–8. In addition to the packages listed in S1 File, the following

packages are required:

• MASS [73] (https://cran.r-project.org/package=MASS)

• sandwich [74] (https://cran.r-project.org/package=sandwich)

• stats4 (https://cran.r-project.org/package=stats4)

Directions and package versions used for publication are in comments.

(R)

S4 File. Python 3 [55] functions called by S3 File. Requires the NetworkX and pandas pack-

ages listed under S2 File: Directions and package versions used for publication are in com-

ments.

(PY)
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S5 File. De-identified LACDPH household surveillance data in CSV format used by S3 File.

(CSV)
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